A Parallel and Distributed Surrogate Model
Implementation for Computational Steering

Daniel Butnaru*
butnaru@in.tum.de

Gerrit Buse*
buse @in.tum.de

Dirk Pfliiger*
pflueged @in.tum.de

* Institut fiir Informatik, Technische Universitdt Miinchen, Germany

Abstract—Understanding the influence of multiple parameters
in a complex simulation setting is a difficult task. In the ideal case,
the scientist can freely steer such a simulation and is immediately
presented with the results for a certain configuration of the
input parameters. Such an exploration process is however not
possible if the simulation is computationally too expensive. For
these cases we present in this paper a scalable computational
steering approach utilizing a fast surrogate model as substitute
for the time-consuming simulation. The surrogate model we
propose is based on the sparse grid technique, and we identify the
main computational tasks associated with its evaluation and its
extension. We further show how distributed data management
combined with the specific use of accelerators allows us to
approximate and deliver simulation results to a high-resolution
visualization system in real-time. This significantly enhances the
steering workflow and facilitates the interactive exploration of
large datasets.

Keywords-computational steering; surrogate models; sparse
grids; parallelization; real-time systems

I. INTRODUCTION

Interpreting simulations and their dependency on input
parameters is getting more and more difficult with their ever-
increasing complexity and overall computational demands
of single simulation runs. Recent developments concerning
computational power and faster visualization algorithms have
made this task more feasible for certain simulation types, as
results can now be computed and visualized in real-time. For
such simulations, the field of computational steering—usually
associated with visual exploration—has offered tools, method-
ologies and visualization components facilitating a convenient
configure-start-analyze approach. Ways of influencing the run
of a simulation, direct manipulation of parameters, and visual
indicators for exploration objectives have also been addressed
in the computational steering context.

Other types of simulations such as Navier-Stokes-based
computational fluid dynamics (CFD) scenarios or scenarios
in computational mechanics are still only steerable in real-
time, if the underlying mathematical model is simplified or a
coarse discretization is used. For this category of complex and
costly simulations, interactive visual exploration (by means of
parameter steering) is only possible through surrogate models.
Surrogates are approximate representations of the original
simulation, but results at arbitrary points in the simulation’s

Fig. 1. Researchers investigate a CFD scenario in an interactive and visual
manner. In this multi-display multi-node visualization system each display
connects to a computing node and renders part of the view frustum.

parameter space can be obtained significantly faster.

Surrogate models are most predominant and have shown
good results in the area of optimization [1]. In such a setting
an objective function is replaced by a cheap surrogate, which
is then evaluated repeatedly during an iterative process, until
a certain optimality criterion is fulfilled. Research in this area
therefore usually focuses on the accuracy of the constructed
surrogate.

In this paper however, we employ surrogates to interactively
explore a complex simulation in a distributed visualization
system (see Fig. 1). We focus on a particular surrogate model
based on sparse grids, a numerical technique suitable for
the approximation of high-dimensional functions. We quantify
the performance requirements of a computational steering
environment on the basis of the response time, and in the same
way we identify the computational demands on our surrogate
model. We propose a parallel and distributed solution for our
surrogate, which guarantees data delivery at interactive rates
and with sufficiently high resolution for our target visual-
ization setting. The exploration process is thus significantly
enhanced, as a simulation scientist can actually explore the
multi-dimensional parameter space by varying parameters and
immediately observe the effects on the large screens of a multi-
display visualization environment (see Fig. 1).

II. RELATED WORK

Surrogate models for computational steering have also been
proposed in [2] with the focus on user steerable optimization
and not visual exploration. Surrogate models, also known as
meta-models, have been classified in data-fit, multifidelity and
reduced-order [3]. Multifidelity models are based on the origi-
nal physics but perform simplifications (coarser discretization,
relaxed solver tolerances, simplified physics) resulting in a
lower fidelity model. Reduced-order models are also physics-
based and use a reduced basis (eigenmodes of model analysis
or singular vectors for POD [4]) and do a projection of
the original high-dimensional system onto this much smaller
function space. Both multifidelity and reduced order methods
are well suited for optimization tasks [5], however, they are
more complex to construct and the operations needed to
evaluate such models are not easily mapped to hardware for
efficient high-resolution and interactive explorations. Sparse
grids, as data fit models, do non-physics-based approximation
by multi-dimensional piecewise d-linear interpolation, and,
while generally not as accurate as the previous methods, they
are non-intrusive (no need to modify or know the underlying
simulation) and can be formulated for an efficient parallel
execution. This motivates their choice for fast surrogate-based
visual exploration. In [6], sparse grids have been used as
surrogate models, but, again, for optimization purposes and
not for visualization.

III. SURROGATE MODELS FOR COMPUTATIONAL
STEERING

?? The task of understanding the global behavior of a
simulation which depends on more than one parameter can
easily become quite tedious when faced with long execution
times. In a computational steering environment, such a simu-
lation could be started for several parameter combinations in
advance, and a user could then draw conclusions based on the
results. A surrogate model is used in place of the simulation
to enable real-time evaluation, obtaining approximate solutions
significantly faster than running the original simulation. This
is achieved by investing computational effort in building the
surrogate model offline, which can then be evaluated very fast
during the actual online steering. We shall denote with u(z, p),
u: Q2 x P — T, the field variable we seek to approximate as a
function of the physical 3D coordinates = € {2 and the vector
€ P of d parameters, where

P={ulpe (0, d>1}. M

For a fixed p the field variable is called a snapshot
ut(z) := u(x, 1) and represents the result of the simulation
started with p as parameter values. The output of the surrogate
model @(z, 1) is also called a snapshot and will be denoted
ut(z) = u(z, p).

Fig. 2 illustrates the main parts of a surrogate model
approach. The construction of the surrogate model is done
offline and starts by choosing the parameters and their ranges
of interest. This is simulation specific but is also limited by
the amount of effort worth investing in the offline phase,

Identify Query
Parameters Model
OFFLINE ONLINE
—
Build Improve
Model Model

————

Fig. 2. The two phases of the surrogate process.

as a larger parameter count and range, while desirable, will
increase the requirements of the online phase. Next, a sampling
is performed within the chosen ranges, and, for each parameter
combination, a full simulation is performed and stored. We
will denote the set of sampling points Py C P.

For the chosen sampling P all the corresponding simula-
tion snapshots are computed. The offline phase ends with a
surrogate-model-specific model reduction technique, reducing
the initial high-dimensional problem w to the reduced form ,
which is more suitable for fast repeated evaluation. The actual
exploration takes place in the online phase, where the user can
frequently change parameters, and, guided by an interactive
visualization, study the behavior of the original simulation.

In this paper we investigate the requirements of a sparse
grid-based surrogate model and present an efficient implemen-
tation.

IV. SPARSE GRIDS AS SURROGATE MODELS

In previous work [7], we first proposed to use sparse
grids as a surrogate model for high-resolution computational
steering. They are non-intrusive because the underlying sim-
ulation is treated as a black box which delivers snapshots
for the requested parameter combinations. Here, we extend
our approach to a parallel and distributed processing of the
surrogate model. In this section we give an overview of sparse
grids and their properties as a surrogate model.

A. Basics of Sparse Grids

Sparse grids help to overcome the curse of dimensionality
to a great extent. Interpolating a d-dimensional function u on
a regular grid with a resolution of M grid points in each
dimension, they enable one to reduce the number of grid
points significantly from O(M?) to O(M (log M)4~1) while
maintaining a similar accuracy as in the full grid case—at
least if w is sufficiently smooth [8]. This typically even holds
for functions that do not meet the smoothness requirements if
adaptive refinement is employed [9]. The notion sparse grids
was coined in 1990 for the solution of high-dimensional partial
differential equations (PDEs) [10], and they have meanwhile
been successfully employed in a whole range of applications,
ranging from astrophysics and quantum chemistry to data

mining and computational finance, see, e.g., [8], [9] and the
references cited there. In the following, we briefly describe
sparse grids and the main principles they base upon, a hier-
archical representation of the one-dimensional basis and the
extension to the d-dimensional setting via a tensor product
approach. For further details, we refer to [8].

We consider the representation of a piecewise d-linear
function @ : €2 — I' for a certain mesh-width h,, := 27" with
some discretization level n. We consider rectangular domains
Q0 which we scale to Q := [0, 1]%. To obtain an interpolant
4 as an approximation to some function u, we discretize)
and employ basis functions ¢; which are centered at the grid
points stemming from the discretization. @ is thus a weighted
sum of /N basis functions, 4 := Z;\;l v;¢;, with coefficients
Vj.

The underlying principle is a hierarchical formulation of
the basis functions. In one dimension, we use the standard
hierarchical basis

B, = {Wﬂ-;z' <li<2 —1ni odd}.

with piecewise linear ansatz functions ¢ ;(u) =
(-2 —i) and @(p) := max(l — |p],0) for some
level [> 1 and an index 1 < i < 2'. The basis functions are
centered at grid points p;; = 27% at which we interpolate
u, see Figure 3 (top left) for the basis functions up to level
3. Note that all basis functions on one level have pairwise
disjoint supports and cover the whole domain.

The hierarchical basis functions can be extended to d
dimensions via a tensor product approach as

d
()OLZ(M) = H Qalj,ij (.u“]))
Jj=1

with multi-indices [and ¢ indicating level and index of the
underlying one-dimensional hat functions for each dimension.
The d-dimensional basis

Py, = {oni(p) : i;=1,...,25 — 1, i; odd, 1 < j <d}

span hierarchical subspaces WW;. As before, the basis functions
for each W; have pairwise disjoint, equally sized supports
and cover the whole domain. The classical full-grid space of
piecewise d-linear functions V,, can be obtained as a direct
sum of W},

V=Y Y W= B Wi,

I1=1 lg=1 |£|oo§77f

but the hierarchical scheme of subspaces allows one to choose
those subspaces that contribute most to the approximation. By
choosing subspaces with respect to their contribution in the
Ly-norm, this leads to the sparse grid space V,El) s

v .=

A b w.

ll]1<n+d—1

The tableau of subspaces in 2D is shown in Figure 3 (bottom)
for n = 3.

P21
=2

Hz.1 H23
P31 P33 P35 P37 {3 P33 ,5(/)3'7
SVAVAVAVANES

Ha My Has May M3 My Has May

BV NVAVAVAVAN

=1 ;=2 =3 [y
=1 ° o o oo le®
. o | o |
1,=2 !

=
. . o |
|
hd [
1,=3 hd I
hd [
I hd |
[J
e o o
®
(XXX XXX]
®
e o o
L]
(1)
&

Fig. 3. Classical one-dimensional hierarchical basis functions up to level
3 without boundary basis functions (top left), their modified, extrapolating
counterparts (top right), and the tableau of subspaces W; up to level 3 in
two dimensions (center) together with the resulting sparse grid for n = 3
(bottom).

To obtain non-zero values on the boundary, the one-
dimensional basis of level 1 can be extended by the two basis
functions g ¢ and g ;. Unfortunately, even for a very coarse
grid with a resolution of h; = 1/2 this requires to obtain 3%
simulation results—with 3¢ — 1 parameter combinations being
located on the boundary of the parameter space (2. For our
application of computational steering, we assume that we start
with a reasonable choice of (2 and that these extreme parameter
combinations are of less interest than the inner part of 2. We
therefore choose to interpolate only in the inner part and to
extrapolate towards the boundary, and use in the following
the one-dimensional basis functions depicted in Figure 3 (top
right).

B. Construction and Use

Any multi-variate function u can be interpolated on a
sparse grid, but the resulting hierarchical and possibly adaptive

0 0.25 0.5

Fig. 4. Sparse grid sampling P for a two-dimensional parameter space. The
point coordinates denote the (normalized) parameter combinations for which
simulations need to be performed and stored.

structure makes it not suitable for real-time capable interpo-
lation. To enable efficiency, we distinguish the treatment of
the parameters in x, the spatial coordinates representing the
discretization grid, and u, the parameters of interest changed
during exploration. The sparse grid thus discretizes only the
parameter space which has non-regular structure but which,
due to its rather small size, can be handled efficiently. The
evaluation has to interpolate the whole spatial resolution of
the snapshots. Those are stored as large data blocks with a
regular structure (compact vectors), which are supported by
visualization hardware and which can be dealt with efficiently.
This two level approach allows the combination of expensive
adaptivity in the parameter space but on a fast small data
structure with evaluation involving large snapshots but with
high data regularity, enabling ultimately their use as surrogates
for interactive steering. The area we most focus our attention
on are time-dependent CFD simulations. Such simulations
exhibit all the properties that make them ill-suited for a fast
direct exploration: each simulation run can easily be very
costly and can require many time-steps. Furthermore, the
amount of generated data is typically very large, consisting
of a 3D vector field for the velocities plus the pressure field.
The interesting parameters for steering are fluid parameters
(inlet velocities, viscosity, etc.) and time. We discretize them
with a sparse grid and leave the space coordinates as full 3D
vectors.

For sparse grids, the parameter sampling done in the offline
phase is prescribed by the location of the IV sparse grid points
in the multi-dimensional parameter space P (see Fig. 4), i.e,

Pe={ pj }j=1,.~, 2

where the 1; stem from the sparse grid discretization of the
parameter space P. Let H*/ C P, be the set of hierarchical
ancestors of sampling point p;, including p; itself,

H" = { p; YU{ px | pe is hier. ancestor of 11 }. (3)

The sampling Ps starts with a regular sparse grid and is
incrementally refined based on a chosen criterion. For each
{44, the snapshot has to be obtained offline.

The reduction step that is specific to our sparse grid
surrogate model and which concludes the offline phase is
called hierarchization. It denotes the transformation of all

sample snapshots u/i(x), p; € P into their representation
as hierarchical increments v;(z) = v/ (x), i.e, the surpluses.
Hierarchization is a necessary step before the model u(x, 1)
can be evaluated. The surplus v;(x) depends on the surpluses
of all hierarchical ancestors p in H*/ as

oo wm@)elw), @
e €HMIN{p; }
which corresponds to subtracting the sparse grid interpolation
on the next coarser level from the current snapshot.

Once the surrogate u is constructed, the online phase can
start. It can be evaluated on the entire parameter space P by
using information from the set of sampling points Ps. The
evaluation at point ; € P is obtained as a linear combination
of the N weighted basis functions corresponding to the N grid
points,

vj(z) == u (x) —

N
Uz, p) = Zw(w) - () - (5)

In order to implement this formula three central aspects need
to be considered:

1. Identify affected basis functions: Sparse grid ansatz
functions ¢; do not have uniformly shaped supports. For an
example, see how the support size varies in the illustrations in
Fig. 3. Also, only few ¢; from different subspaces or levels
may have overlapping supports. Thus, many basis functions
will not be affected by a certain evaluation. Evaluating the
surrogate model at point o therefore requires in the first step
to identify the set .A* of affected basis functions with respect
to evaluation point y,

A= {¢; | 5=1,...,N A¢;(u) #0}. ©)

Fig. 5 qualitatively shows which snapshots (smaller cubes)
need to be collected to interpolate a new snapshot at the
evaluation point marked with a triangle. Note that working
with the full set of basis functions (or grid points, respectively)
instead of A* is not an option as typically N > |.4#| which
would result in a lot more effort in the next step.

2. Combine weighted surpluses: : This step can and should
be completely separated from the first step of identifying
the data dependencies. It is the critical operation of the
online phase, and its performance is crucial to a smooth
user experience. Based on the output of the previous step,
efficient gather and reduce strategies need to be implemented
to compute the sum (5).

3. Improve the model: Last but not least, the set P, of
sampling points can be extended. The explorative nature of
our setting demands an extensible approach, allowing for
incremental improvement of the surrogate model’s approxi-
mation quality during the online phase. If the initial sampling
of the parameter space does not capture the features of the
underlying simulation function u, automatic or user driven
refinement helps to refine the model’s “database” Ps. The
acquisition and integration of new simulation data however
relies on steps from the offline phase: The reduction operation
hierarchization needs to be performed for each new simulation

Fig. 5. An example for a sparse grid interpolation: the value u*(z) of the
approximated snapshot for the (triangle marked) parameter combination u
of interest is constructed as a sum of the weighted hierarchical coefficients
v;(x), marked with cubes.

result u#i (x) by applying (4). This calls for a hybrid solution
that transparently mixes parts of the two phases without
interfering with the user experience.

C. Response Time

The optimization of all three steps has to be guided by
the performance requirements of the computational steering
environment, usually specified by means of system response
time. Responses of a system to user action serve as continuity
of the exploration process. Depending on the task at hand,
different kinds of responses and response delays are acceptable
psychologically [11]. For the visual computational steering we
consider two main types of exploration tasks. In a parameter
sweep, the user continuously increments a single parameter
being interested in its influence on the behavior of the simula-
tion. A response time of no more than 0.2 seconds was found
to be suitable for such user continuous actions [11]. The task
of parameter comparison involves to switch between two or
more parameter combinations and to interprete the differences.
For this task, a response time of up to 2 seconds would still
allow for an uninterrupted thought process. In the next section,
we present the design of a surrogate model realization which
fulfills these requirements.

V. SYSTEM ARCHITECTURE

The goal we set for surrogate-model-based computational
steering is a system which can be easily connected to a
distributed visualization environment and delivers results at
interactive rates. At the same time, it can be updated with
new snapshots on user request during exploration.

A. CPU/GPU Repository

The sparse grid repository is the center piece of the ex-
ploration workflow. It is separated into a CPU and a GPU
component. The CPU component implements the logic of
the surrogate model. The GPU component is responsible for
data storage as well as fast data delivery when the model is

insert: fi;
evaluate:
weP determine
DHi = HI\P,
determine return DV
Ay = 0,(n) ===
where ¢; € A" for ;€ D
simulate u(z, i)
assemble
snapshot upload:
u(e,)
compute determine
Tz, p) = Al = ()
Z () B; where ¢, € Al
GjEAN hierarchize:
()
return
return u(x, p) compute
(e,) o () =ulz, u)
= - — 72 ve(z) v
ore ANk

Fig. 6. Sequence diagrams for the evaluation of the surrogate model at point
p € P (left), and the extension of the model by a new snapshot u(zx, f1;),
where yu; is a valid sparse grid sampling point with ; & Ps (right).

evaluated. For ease of reference we refer to the components as
device and host, a common terminology in GPU computing.

CPU component (host): The host acts as the frontend of
the repository towards the application side. Algorithms for
adaptive sparse grids are typically sophisticated and need to
be executed on a flexible CPU. Therefore the host maintains
the complex structure of the sparse grid surrogate model and
delegates tasks to the device, its dedicated worker.

GPU component (device): The device is the backend of the
repository, responsible for data and compute intensive tasks.
Nearly no knowledge about the surrogate model is necessary to
perform the tasks given by the host, which are always related
to (4) and (5). In these equations long vectors (the snapshots
u” (x) and surpluses v;(x)) are added or subtracted — the
perfect task for a processor with high memory bandwidth.
Nvidia’s Tesla C2070 offering a specified bandwidth of 144
GBY/s is therefore our choice for the backend in charge of these
operations. In comparison, the theoretical bandwidth of Intel’s
Westmere processor (as used in the system) is specified as 32
GB/s, however only around 21 GB/s can actually be achieved
(measured with STREAM benchmark [12], [13]).

In the following, the interfaces between device, host and
application are explained for the two scenarios in which the
repository is accessed (also see Fig. 6 and the functionality
specified in Sec. IV-B):

1) The surrogate model is evaluated at position p € P.
The host determines the set of affected basis functions
A*H, evaluates them and passes the resulting values §; :=
¢j(1), ¢; € AH to the device. The interpolated snapshot
ut(x) is efficiently assembled on the GPU, from (5).

2) The surrogate model is extended by the inclusion of a

new snapshot u*s(x), where p; ¢ P, is a valid new
sparse grid sampling point. The host first determines all
unfulfilled hierarchical dependencies DHi = HHi\Ps,
i.e., the hierarchical ancestors of f; missing in P,
which are required to ensure a valid grid structure.
Once the snapshots for the p;, € D7 are computed by
the application, the host prepares the hierarchization of
the new snapshots u/*(x) by computing the respective
weights v, = ¢,(ux). With the ~,, the device can
efficiently perform hierarchization (4) and integrate the
surpluses vi(x) into the model.

B. Distributed Snapshots and CPU Involvement

The presented repository uses GPUs to deliver fast results to
the visualization, but it is limited by the amount of snapshots
it can actually store. A current high-end GPU featuring 6
GB of memory can store and combine up to 200 snapshots
of size 1283. Depending on the dimensionality d of the
parameter space, this might not be enough to ensure a good
approximation quality. To mitigate this limitation, we use the
combined memory of all available GPUs to distribute the
repository and thus store more snapshots. On each node n
we construct the surrogate u*(x) for a slice of the entire
domain €). Such a distribution allows for a flexible and load
balanced computation of the final snapshot but requires a
gather operation in order to assemble the full snapshot for
visualization.

To allow for even larger snapshot sizes and/or number
of snapshots, the CPU can be additionally involved in the
collection of affected contributions. The solution we propose
is a two step evaluation where first a fast solution is obtained
using the contributions mostly on the GPU while in a second
step, the remaining contributions are delivered from the CPU.

C. Visualization Requirements and Interface

In our steering environment, the user chooses a parameter
w1 and is presented in real-time with the visualization of the
corresponding full snapshot u*(x). As presented above, the
repository is distributed among the visualization nodes in order
to utilize all the available GPUs, meaning that each node
produces only a slice of the final snapshot. We then use an all-
gather operation to collect all slices at all visualization nodes.
Each of them then renders only the section of the final image
corresponding to their view frustum. An explicit all-gather
operation can be skipped if the visualization environment
implements distributed rendering algorithms.

We make use of the described data delivery and identify
the minimal interface exposed by the surrogate model to any
visualization software:

init(): distribute and load the repository,

evaluate(, buffer): place the full snapshot u* in the
visualization buffer via all-gather,

improve(): trigger several new simulation runs in
order to improve the accuracy around p.

The presented interface treats the repository as a pure data
deliverer which stores no information whatsoever about the

Node 1 Repository Node 2 Repository

$

Identify Affected

/

CPU

RELE

NITTETE

AN
9 /A0

Collect Contributions

\ Assemble
//
evaluate(p) evaluate(p)
Visualize

Fig. 7. CPU/GPU repository structure with visualization interface. Hierar-
chized snapshots v; are distributed among nodes and stored in GPU and main
memory. Each repository evaluates a part of the final snapshot, gathers the
rest from the other nodes, and assembles the whole snapshot.

simulation scenario or its geometry. This allows for loose
coupling between components.

VI. RESULTS

All the measurements presented in this section have been
obtained on our FRAVE (Fully Reconfigurable CAVE Envi-
ronment) system (see Fig. 8)!. The FRAVE is a multi-display
semi-immersive visualization system organized as a collection
of building blocks which enable it to be folded, extended or
split up to accommodate a specific type of visualization goal.

A single building block consists of the following compo-
nents:

e Displays: one or two 3D full HD (1920x1080) 65 plasma
screens Panasonic TX-P65VT20E

o Graphic cards: an Nvidia QuadroPlex 7000 for graphics
(2x 6 GB RAM) and an additional Nvidia Tesla C2070
card (6 GB RAM) for computing purposes

! www.mac.tum.de/wiki/index.php/FRAVE

Building Block Panasonic 56" Displays

Infiniband
Fig. 8. The FRAVE consists of a series of building blocks connected by

Infiniband. The current FRAVE setup has 6 building blocks powering 10
displays (8 for the walls, 2 for the floor).

0.05

snapshot size |T(x, W] : 3*1283 floats / 6 EBBZEKI
snapshot size |T(x, p)] : 3*2563 floats / 6

0.045 -

o©

o

=
T

°

o

@

5
T

o

=)

@
T

0.025

Time for evaluation in sec
o
o
N

o©
o
=
wu

o
o
et

0.005

) o % 2N

Number of affected basis functions

Fig. 9. Time needed locally for evaluation in two different scenarios. | A |
is varied on the horizontal axis to account for different sets Ps.

e Computer: a dual-socket Intel Xeon E5630 quad-core
system (2.53 GHz) with 24 GB RAM and 8 TB hard
drive

e Frame: a light aluminum frame on which all the above
components are mounted and which can be moved freely

Each building block can be added to the system by connecting
it to the Infiniband network, where it is needed.

A. GPU-Based Evaluation and Hierarchization

In this section, evaluation is benchmarked as a local oper-
ation. We hereby assume that the repository is running on 6
building blocks, and that the set of all snapshots is equally
distributed to the 6 instances of the repository. Triggering
evaluation on a node then implies that only one sixth of a
snapshot has to be interpolated. We examine the performance
of this operation in two scenarios:

« 200 snapshots, each consisting of 3-1282 floats (24 MB),

total amount of data =~ 4.8 GB, and

o 150 snapshots, each consisting of 3-2563 floats (192 MB),

total amount of data ~ 28.1 GB.

Even though the first scenario is small enough to be treated
locally on each node, there would be almost no storage space
left to extend the model. In the second test scenario the
repository is put to test for full load. Figure 9 shows for
both scenarios and varying number of affected basis functions
how long evaluation takes on a single node. For the assumed
number of snapshots, |A*| is unlikely to exceed 50 in our
scenario. Still, the chart shows that the repository would be
able to deliver the partial snapshots within the response time,
even for a larger number of affected basis functions.

It is not necessary to benchmark the incremental hierar-
chization in the same way, as the time needed for this operation
during the online phase can be approximated. Hierarchization
basically corresponds to a number of evaluations executed
successively, as sketched in Fig. 6. Multiplying the time for
evaluation by k should thus give an estimate of the time needed
to add k new snapshots to the surrogate model.

B. Data Assembly

As illustrated in Fig. 7, each node delivers only a slice
of a full snapshot @*(x) to the visualization. However, the
visualization requires the full snapshot locally in order to
render, and a gather step has to be performed. Figure 10
presents the cost of such a gather operation for different node
counts and snapshot sizes on the FRAVE’s Infiniband network.
We notice that the assembly time scales linearly with snapshot
size while being almost constant with respect to the number
of nodes involved. We do not expect this to be the case for a
much higher number of nodes. But for visualization systems
like the FRAVE, which consist of a moderate number of nodes,
it can be assumed.

While the evaluation cost allows for a very good response
time, the assembly costs for snapshots larger than 3 x 2563
prevent an interactive parameter sweep (< 0.2 s). A parameter
comparison is however still possible (< 2s). It is worth
mentioning that such snapshot sizes are challenging even for
classical visualizations and require special approaches to visu-
alize in an interactive manner. The distributed data availability
might actually be more appropriate for such visualization
algorithms.

VII. CONCLUSION

In this paper we analyzed the computational operations of
a sparse grid surrogate model. We conclude that the main
computational effort of the online phase incurs in the evalua-
tion, a summation of hierarchically weighted vector fields. A
first efficient implementation for the evaluation operation was
presented which makes use of all available GPU resources of a
visualization system to distribute and compute new snapshots
for desired parameter combinations. The evaluation operation
has then been benchmarked and found to be fast enough for an
interactive exploration of a high-resolution simulation. While
limitations regarding the scalability of the proposed system
exist, solutions to mitigate them have been sketched.

Beside surrogate models based on sparse grids we are cur-
rently also considering other types of non-intrusive surrogate

Time for allgather in seconds

0.8 -

3 nodes EXXXXX
4 nodes
0.7 + 5nodes mm—
0.6
0.5
0.4
%%
0.3 i
1%
K
1%
13
0.2 :::
1R
i
1%
1%
T &
12
m 1
1R
0 R
9 9 K 9 > o, 9
o, +’e >)) +$J +~5‘J
> L) 6, 6o 6 £ s
@ 2 5 *
o <% 6o N

Size of the simulation domain

Fig. 10. All-gather cost for different snapshot sizes and numbers of nodes.
The given spatial resolution refers to the discretization of the three component
velocity vector field €.

models [14]. Depending on the setting and visualization task,
each of them will have its advantages.

ACKNOWLEDGMENT

This publication is based on work supported by Award No.
UK-C0020, made by King Abdullah University of Science and
Technology (KAUST).

[1]

[2]

[3]

[4]

[5

[t}

[6

=

[7

—

[8]
[9]

[10]

[11]

REFERENCES

N. V. Queipo, R. T. Haftka, W. Shyy, T. Goel, R. Vaidyanathan, and
P. K. Tucker, “Surrogate-based analysis and optimization,” Progress in
Aerospace Sciences, vol. 41, no. 1, pp. 1 — 28, 2005.

K. Matkovic, D. Gracanin, M. Jelovic, and Y. Cao, “Adaptive inter-
active multi-resolution computational steering for complex engineering
systems,” in EuroVis Workshop on Visual Analytics, 2011.

M. S. Eldred and D. M. Dunlavy, “Formulations for surrogate-based
optimization with data-fit, multifidelity and reduced-order models,” in
Proceedings of the 11th AIAA/ISSMO Multidisciplinary Analysis and
Optimization Conference, 2006.

B. N. B. D.M. Luchtenburg and M. Schlegel, “An introduction to the
POD Galerkin method for fluid flows with analytical examples and
MATLAB source codes.” Tech. Rep., 2009.

R. Jin, W. Chen, and T. Simpson, “Comparative studies of metamod-
elling techniques under multiple modelling criteria,” Structural and
Multidisciplinary Optimization, 2001.

A. Klimke and C. J. Pye, “Sparse grid meta-models for model updating,”
in Proceedings of the IMAC XXVII Conference, 2009.

D. Butnaru, D. Pfliiger, and H.-J. Bungartz, “Towards high-dimensional
computational steering of precomputed simulation data using sparse
grids,” Procedia CS, vol. 4, pp. 56-65, 2011.

H.-J. Bungartz and M. Griebel, “Sparse grids,” Acta Numerica, vol. 13,
pp. 147-269, 2004.

D. Pfliiger, Spatially Adaptive Sparse Grids for High-Dimensional
Problems. Miinchen: Verlag Dr. Hut, 2010.

C. Zenger, “Sparse grids,” in Parallel Algorithms for Partial Differential
Equations, ser. Notes on Numerical Fluid Mechanics, W. Hackbusch,
Ed., vol. 31. Vieweg, 1991, pp. 241-251.

R. B. Miller, “Response time in man-computer conversational transac-
tions,” in Proceedings of the December 9-11, 1968, fall joint computer
conference, part I, 1968, pp. 267-277.

[12] J. D. McCalpin, “Memory bandwidth and machine balance in current
high performance computers,” IEEE Computer Society Technical Com-
mittee on Computer Architecture (TCCA) Newsletter, pp. 19-25, 1995.

[13] ——, “Stream: Sustainable memory bandwidth in high performance
computers,” University of Virginia, Tech. Rep., 1991-2007.

[14] M. Frangos, Y. Marzouk, K. Willcox, and B. van Bloemen Waanders,
Surrogate and Reduced-Order Modeling: A Comparison of Approaches
for Large-Scale Statistical Inverse Problems. John Wiley & Sons, Ltd,
2010, pp. 123-149.

