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Abstract

This thesis is part of a project with the Q&A website gutefrage.net, two main
goals of this project that will be addressed here are an online clustering of the
questions and the development of a new recommender system. Clustering as well
as the implementation of recommender systems are subject of active research,
especially in the context of “Big Data”. Currently, there are over 16 million
questions growing by an amount of about eight thousand each day. Thus, it
is not feasible to reprocess the whole data set all the time, processing the new
questions has to build up on the already processed questions. An algorithm to
do so has been developed before, where the questions are processed batch-wise
and transformed into a global feature space. The actual clustering is based
on density estimation, identifying clusters by regions of high density in the
feature space. Sparse grids are used to estimate the density of a batch and
to update the global density estimation accordingly. While this approach is
efficient, the analysis will show that the quality of the clustering is not quite
acceptable yet, with the main problem being that there is actually no relation
between questions in different batches. We present a solution to this issue that
is able to somehow relate the batches using the clustering of the previously
processed batches to add virtual questions with fixed positions. We provide also
an improved dissimilarity measure for the questions, especially for the question
titles, which is needed for the feature space transformation. Furthermore, we
extend the flat clustering to an hierarchical clustering algorithm that is able to
detect more clusters and subdivide larger clusters at deeper levels. Opposed to
the flat clustering algorithm, it is also independent from the choice of a high
density threshold. The clustering is then used to implement the recommender
system, where we already get acceptable recommendations for moderately large
data sets.
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1 Introduction

“Give a man a fish and you feed him for a day. Teach a man to fish and
you feed him for a lifetime.” This proverb states that it is more desirable to
teach somebody how to achieve something than just giving the plain result.
The very same principle applied to programming computers is the basic idea
of machine learning. Especially as the available data grows with every day, we
need methods that are able to extract important information from data sets in
an at least partially automated way, which is what data mining and especially
clustering is about. The handling of “Big Data” thereby is still a demanding
task and subject of active research.

This thesis is part of a project with the Q&A website gutefrage.net, where
we have over 16 million questions, growing every day by about eight thousand.
Two main goals are to cluster the questions in an efficient way and to develop a
new recommender system. From the first one, we especially hope to get insight
into currently important topics, the latter one should help users to find what
they are searching for.

From a research perspective, the methods developed for the clustering as well
as for the recommender system could of course be applied for similar problems
as well. We especially analyze the clustering approach taken so far here and
discuss several improvements. The development of the recommender system
builds up on the clustering.

We start with introducing several methods that are used for the clustering here
and put them into a more general context in Chapter 2. In particular, density-
based clustering methods are discussed, as the clustering algorithm developed
here builds up on density estimation as well. Furthermore, we use sparse grids
for the density estimation and thus, the sparse grid technique is also introduced,
which is especially useful for high-dimensional problems. Finally, an overview
of recommender systems in general is given.

The single steps of the clustering algorithm are then described in Chapter 3.
We analyze the state of the clustering before this thesis and discuss several
improvements.

How the clustering can be used for the recommender system is discussed in
Chapter 4. We also give a short outlook how the recommender system could be
extended in the future, using information beyond the clustering.

The results for different data sets, comparing different approaches and differ-
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1 Introduction

ent parameter choices for the clustering as well as for the recommender system,
are discussed in Chapter 5. We especially evaluate what the different improve-
ments brought us and where further improvements are needed for the clustering.
We finish with a summary and an outlook in Chapter 6, providing particularly

some ideas for further investigation.
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2 Machine Learning

According to [29], “a computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance
at tasks in T, as measured by P, improves with Experience E.” In this thesis, we
basically face two machine learning tasks: clustering a large amount of questions
and use this clustering to compute recommendations. To do so, we use several
machine learning techniques that are introduced in this chapter. We start with
a short introduction of data mining and go on with the more specific task of
clustering. Next, we give an introduction to density estimation and show how it
can be used for clustering. Afterwards, we introduce the sparse grids technique
and show how it can be used in the context of data mining. We finish this
chapter with an introduction to recommender systems.

2.1 Data Mining

The term data mining is not used consistently in the literature. Sometimes it
is synonymously used with the term knowledge discovery in databases (KDD),
which according to [16] “is the nontrivial extraction of implicit, previously un-
known, and potentially useful information from data.” But e.g. in [14], data
mining is seen as “a particular step in this process” and defined a bit more spe-
cific as “the application of specific algorithms for extracting patterns from data.”
The steps in the KDD process in [14] are:

� Data Selection

� Preprocessing

� Transformation

� Data Mining

� Interpretation/Evaluation

We focus on this particular sub-step here. Prediction and description are com-
monly named as the two main goals of data mining, the standard tasks are
usually grouped into classification, regression and clustering [10,14,19]. In clas-
sification as well as in regression we learn a function from a training data set, i.e.
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2 Machine Learning

Figure 2.1: An example of three convex clusters on the left and three non-convex
clusters on the right, marked by the colors red, blue and green. The
black points are noise.

data items for which the function values are known. Thus, this type of learn-
ing is also called supervised. In the case of classification the learned function
maps every data item to predefined classes, in the case of regression we have a
real-valued function. Both tasks are mainly predictive. In contrast, clustering
is an unsupervised, descriptive task. As this is one main task in this thesis, we
discuss it more detailed in the next two sections.

2.2 Clustering

In clustering, we try to group data items into so-called clusters, see Fig. 2.1 for
two simple examples. The traditional approach for clustering is to minimize the
similarity of the objects inside a cluster and to maximize the dissimilarity of
objects in different clusters [16, 24]. Thus, we need some kind of dissimilarity
measure, which is mostly the euclidean distance. Most clustering methods lead
to mutually exclusive or overlapping clusters or to a hierarchical representation.

In the first case, the classic approach is to use partitioning methods such
as k-means or k-medians, where k is the pre-specified number of clusters [2,
24]. The main drawback of these methods is that they are not able to identify
non-convex clusters, see the right example in Fig. 2.1. Several methods have
been introduced to handle this problem, such as kernel methods and spectral
clustering. The basic idea of kernel methods is to map the data into a higher-
dimensional feature space, where a linear partition leads to a non-linear partition
in the original space. Quite often, kernel methods are generalizations of the
classic partitioning methods, e.g. kernel k-means. Spectral methods build up
on an undirected graph representation, where the nodes represent the data items
and the potentially weighted edges represent their relationships. Clustering the
data can then be reduced to graph partitioning problems, usually based on
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2.3 Clustering with Density Estimation

variations of the min-cut problem. Constructing the graph usually depends on
a pair-wise similarity or dissimilarity measure between the data items. Popular
choices are [26]:

� ϵ-neighborhood graph: Connect nodes with dissimilarity less than ϵ, usu-
ally unweighted.

� k-nearest neighbor graph: Connect each node to its k nearest neighbors,
i.e. nodes with smallest dissimilarity or largest similarity and ignore the
directions to get an undirected graph. Weight the edges by their corre-
sponding similarity.

� fully connected graph: Connect all nodes and weight edges with corre-
sponding similarity.

For a more detailed introduction and an overview of different clustering methods
see e.g. [2, 12,15,26].
In the case of overlapping clusters at one level, fuzzy clustering algorithms

are used, which are mostly based on a fuzzification of the classic clustering
algorithms, see [7] for an overview.
Hierarchical clustering partitions the data at several levels, i.e. clusters can

recursively be divided into sub-clusters. There are two main approaches for
hierarchical clustering, resulting in so-called dendrograms. Both are iterative
methods based on a dissimilarity measure between the current set of clusters [2,
17]:

� Agglomerative: Use a bottom-up approach. We typically start with all
data points as clusters and merge them iteratively together, resulting in
a binary-tree structure. Typical choices to merge the clusters are single-
linkage, all-pairs linkage, centroid linkage and sampled linkage.

� Divisive: Use a top-down approach. We typically start with all data points
as one cluster and can use any flat clustering algorithm in each iteration,
resulting in an arbitrary tree-structure.

In this work, we will use a top-down approach which is different to the classic
divisive algorithms, as data items can disappear at some level, see Section 3.3.
The flat clustering algorithm is based on density estimation, we discuss this idea
in the next section.

2.3 Clustering with Density Estimation

Before discussing the idea of density-based clustering, let’s take a brief look at
density estimation in general. Given a random variable X and a sequence of
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2 Machine Learning

observations X1,. . . ,XN we want to estimate its probability density function f .
If we already know—or make an assumption about—the distribution of X, only
the parameters of the density function have to be estimated, e.g. the mean
µ and the variance σ2 in the case of the normal distribution. This is called
parametric density estimation. A classic approach to estimate the parameters is
to use the maximum likelihood estimator, see e.g. [3]. Non-parametric density
estimation makes no assumption about the underlying distribution and is thus
more flexible. Classic approaches are the usage of histograms, kernel estimators
or grid-based methods. We take a brief look at a grid based method introduced
in [20] as this is the underlying method used in this work, for more details and
further methods see e.g. [3, 22]. Starting with an overfitted initial guess of the
density fϵ based on observations X1,. . . ,XN ,

fϵ =
1

N

N∑
i=1

δXi , (2.1)

with the Dirac delta function δXi centered on Xi, we seek to find f̂ , such that:

f̂ = arg min
u∈V

∫
Ω
(u(x)− fϵ(x))

2 dx+ λ

∫
Ω

(
u′′(x)

)2
dx, (2.2)

where V is a functional space and λ is the regularization parameter. The left
term ensures that the solution fits the data while the right term smooths it. We
can transform this to the variational equation,

∫
Ω
(f̂(x)s(x)− fϵ(x))

2dx+ λ

∫
Ω
(f̂ ′′(x)s′′(x))2dx =

1

N

N∑
i=1

s(Xi), (2.3)

for all s in the test function space Ṽ, see [20]. To solve this problem we have
to choose an appropriate ansatz and test function space. In this work, we take
the Ritz-Galerkin approach and choose the sparse grid space as ansatz and test
function space, based on [30]. We will discuss the sparse grid technique in the
next Section 2.4. The variational Equation 2.3 then leads to a system of linear
equations, that is solved using the conjugate gradient method.

Now, the idea of density-based clustering as introduced in [13] is that “within
each cluster we have a typical density of points which is considerably higher
than outside of the cluster”. What remains is to formalize what a high density
region is. One approach can be found in [13], leading to the famous DBSCAN
algorithm. We will follow the approach described in [30], see Section 3.1.
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Figure 2.2: The linear hat basis functions in 1-D up to level 3 (left) and how they
are used for interpolation (right). The arrows indicate the values of
the surpluses for the current level.

2.4 Data Mining with Sparse Grids

Sparse grids have been successfully applied to solve the classic data mining tasks
classification and regression, see e.g. [18, 32, 33], as well as for density-based
clustering in [30]. Sparse grids in general are a discretization technique that
try to overcome the curse of dimensionality, i.e. the exponential dependency
of the number of grid points on the number of dimensions. In the context of
classification and regression they are used to represent the function to learn,
while in clustering we will use them to represent the density function. Thus,
let’s look at how a standard interpolation problem is solved using sparse grids.
We follow the notation of [33].
First, consider the one-dimensional case. Given a function f : Ω→ R, assume

for simplicity Ω = [0, 1], we seek to find an interpolant u, such that:

u(x) ≈ f(x). (2.4)

Typically, u is the weighted sum of some basis functions, as it is the case for
sparse grids. Sparse grids use a hierarchical basis, we identify each basis function
φl,i by its level l and index i ∈ Il,

Il = {2k − 1, k = 1, . . . , 2l−1}. (2.5)

We will use the linear hat basis function,

φl,i(x) = max(1− |2lx− i|, 0). (2.6)
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Figure 2.3: Subspace-tableau of the 2-D sparse grid space V3 showing all grid
points and indicating the tensor product construction for the 2-D
basis functions from 1-D hat basis functions.

The subspace Wl is then defined by,

Wl = span {φl,i, i ∈ Il}. (2.7)

The sparse grid space Vn is then the direct sum of its subspaces,

Vn =
⊕
l≤n

Wl. (2.8)

The regular sparse grid interpolant un ∈ Vn of level n with surpluses αl,i is thus,

un(x) =
n∑

l=1

∑
i∈Il

αl,iφl,i(x). (2.9)

The hierarchical basis functions and the sparse grid interpolation are illustrated
in Fig. 2.2.

8



2.5 Recommender Systems

Figure 2.4: Starting with the 2-D sparse grid on the left, we obtain the sparse
grids in the middle and on the right by refining the red grid points,
i.e. inserting all children in the hierarchical basis. The newly in-
serted grid points are black-rimmed. The grey grid points are the
hierarchical ancestors that will be inserted as well. Based on [33].

For the d-dimensional case, we extend the subspaces W #»
l and the basis func-

tions φ #»
l ,

#»
i , with level vector

#»

l = (l1, . . . , ld) and index vector
#»
i = (i1, . . . , id),

using a tensor product approach,

φ #»
l ,

#»
i (x) =

d∏
j=1

φlj ,ij (x), (2.10)

W #»
l =

d⊗
j=1

Wlj = span {φ #»
l ,

#»
i , ij ∈ Ilj∀j = 1, . . . , d}. (2.11)

The d-dimensional sparse grid space is then derived by,

Vn =
⊕

| #»
l |1≤n+d−1

W #»
l , (2.12)

see Fig. 2.3.

For many problems it is desirable to have adaptivity. Sparse grids come with
a quite natural adaptivity criterion, as higher surpluses indicate higher errors.
We will use spatially adaptive sparse grids, i.e. the only restriction for inserting
a grid point is that its hierarchical ancestors are inserted as well—as most sparse
grid algorithms require this. See Fig. 2.4 for a simple refinement example.

2.5 Recommender Systems

The general goal of recommender systems is to propose data items to users which
could be interesting for them as well. The computation of the recommendations
will be based on informations we have about the users and/or the data items.

9



2 Machine Learning

For example, a user who liked some book B could be interested in books of the
same author or the same genre, but also in books liked by other users that liked
B as well.
Implementations of recommender systems can be classified into personalized

and non-personalized methods [31]. In the personalized setting for recommender
systems we have a set of users U , a set of Items I and an utility or rating
function r : U × S → R. The recommender systems now tries to estimate the
rating function and then recommends the N items with the highest rating for
each user [1, 27]. Common approaches for the implementation of personalized
recommender systems are [1, 6, 27]:

� Content-based: Compute recommendations based on the similarity to the
content of items the user liked in the past. See [31] for an overview of
mainly content-based recommender systems.

� Collaborative: Compute recommendations based on the similarity to other
users. See [36] for an overview.

� Hybrid: Combine the content-based and collaborative approach. See [1]
for an overview.

In the non-personalized settings, there are two main approaches [31]:

� Aggregated Opinion Approach: Rate the items based on ratings given by
the users and recommend the items with best ratings to all users. The
rating function is reduced to r : I → R.

� Basic Item Association Recommender: Compute recommendations based
on the item or items (e.g. items in the cart for an online shop) the user is
currently viewing. The rating function could be defined as r : 2I × I → R.
Setting U = 2I , this is obviously a special case of the rating function for
the personalized setting. Thus, we could also see a set of items as a class
of users.

In this thesis, we will discuss the implementation of a non-personalized rec-
ommender system that uses a combination of the two named approaches, see
Chapter 4.

10



3 Clustering with Sparse Grid Density
Estimation

The clustering algorithm we present in this chapter builds up on [35]. We first
give a short summary of the general work flow of the algorithm described there
and discuss several improvements in the following sections.

3.1 Work Flow of the Clustering Algorithm

For each question we have a title and assigned tags, this is the only data we use
for the clustering. As discussed in Section 2.2, we need some kind of dissimilarity
measure for the questions. As the algorithm is thought to deal with a large (over
16 million) and also growing number of questions, it is not feasible to compute
this dissimilarity pair-wise for all questions. Also we do not want to reprocess
the whole data set when new questions are added. Thus, the idea is to process
the questions batch-wise, i.e. we only compute dissimilarities between questions
in a batch of rather small size (e.g. 1000). The main steps for a generalized
version of the algorithm described in [35] are:

1. Compute dissimilarities δi,j between the titles for all questions i, j in the
current batch. Different measures are discussed in Section 3.2.1.

2. Compute weighted dissimilarities by scaling δi,j down if questions i and
j have at least one common tag. Different approaches discussed in Sec-
tion 3.2.2.

3. Optional: Compute all-pairs-shortest-path for the dissimilarities to obtain
distances di,j .

4. Transform the questions using obtained distances or dissimilarities into
the euclidean feature space via multi-dimensional scaling (MDS). Different
approaches discussed in Section 3.4.

5. Estimate the density function of the feature space F via sparse grid density
estimation for the current batch. Update the global density estimation
accordingly.

11



3 Clustering with Sparse Grid Density Estimation

6. Optional: Compute a clustering of the questions using a density-based
clustering algorithm. Different approaches discussed in 3.3.

3.2 Dissimilarity Measures

As already mentioned, we only use the title and the tags of a question to compute
pair-wise dissimilarities. In this section, we first discuss different dissimilarity
measures for two titles. Afterwards, we look at two approaches to use the tags
for the overall dissimilarity measure.

3.2.1 String Measures

One of the most common metrics for the dissimilarity of two strings is the Leven-
shtein distance, first proposed in [25]. It is also used for the clustering algorithm
we build up on here in [35] to compute the distance of two question titles. The
Levenshtein distance l(s1, s2), l : Σ

∗ × Σ∗ → N0 with alphabet Σ of two strings
s1, s2 is the minimum number of insertions, deletions and substitutions needed
to get from s1 to s2. Obviously, we have l(s, s) = 0, l(s1, s2) = l(s2, s1) (given
the minimum sequence of insertions, deletions and substitutions to get from s1
to s2, just reverse the sequence to get from s2 to s1 and the other way around)
and the triangle inequality l(s1, s3) ≤ l(s1, s2) + l(s2, s3) (given the minimum
sequences to get from s1 to s2 and from s2 to s3, the composition of both se-
quences leads to a sequence that transforms s1 to s2). Thus, the Levenshtein
distance is a metric.
The main disadvantage when measuring the dissimilarity of two question titles

via the Levenshtein distance is that it does not take the reordering of words into
account. More formally, we can see a question title t as a string of the following
form with words w1, . . . wn and delimiter d /∈ Σ:

t = w1dw2 . . . dwn. (3.1)

Now, in the simplest case, assume we have titles t1 = w1dw2 and t2 = w2dw1

with w1 ̸= w2, then l(t1, t2) > 0 but we would like to have a distance of 0. The
new approach is to see a title as unordered set of words,

t = {w1, . . . , wn}. (3.2)

To compute a distance of two titles, we compare the words pair-wise using the
Levenshtein distance. Now we are also not interested in the exact distance but
rather in the fact if two words have the same or a similar meaning or not. Taking
into account typing errors, misspellings, different grammatical forms and so on,
we try to recognize this using the Levenshtein distance relative to the word

12



3.2 Dissimilarity Measures

Algorithm 1 The weighted pair-wise Levenshtein algorithm to compute a dis-
similarity value for two question titles.

1: function weighted pairwise levenshtein(t1, t2)
2: sum ← 0 ◃ weighted sum of matched words
3: for w ∈ t1 \ S do ◃ S is the set of stop words
4: for v ∈ t2 \ S do
5: ◃ use Levenshtein distance l(·, ·) to recognize similar words
6: if l(w, v) ≤ c ·max(|w|, |v|) then ◃ c = 1

4 in our case
7: ◃ ω(·) is the word weighting function
8: sum ← sum+ min(ω(w), ω(v))
9: end if

10: end for
11: end for
12: weightsum1 ← ∑

w∈t1\S ω(w)
13: weightsum2 ← ∑

w∈t2\S ω(w)

14: similarity ← min
(
1, sum

max(weightsum1,weightsum2)

)
15: if similarity = 0 then
16: ◃ no common words
17: return 1
18: else
19: ◃ at least one common word not in S
20: ◃ transform dissimilarity with parameters wsim, ed
21: return wsim · (1− similarity)ed

22: end if
23: end function

13



3 Clustering with Sparse Grid Density Estimation

length of the longer word. To get a similarity value for the titles, we count the
number of similar words and set them relative to the larger number of words
of the two titles currently compared. In practice, this almost always leads to
a similarity value in [0, 1], only if words are matched multiple times we could
have similarity values greater 1. In these cases, we just set the similarity value
s to 1 and thus, we can use 1− s as dissimilarity value. To achieve that similar
questions have a really small dissimilarity value, we take this dissimilarity value
to the power of some constant parameter ed > 1 (as dissimilarity values close to
0 are very rarely otherwise). For a somehow clear distinction between questions
that have nothing in common (i.e. they have dissimilarity value 1) and questions
that have at least one common word, we also scale the latter by some constant
factor wsim.
Another obvious observation is that in most question titles there are many

meaningless words like articles, prepositions and so on. They should not con-
tribute to the dissimilarity measure and thus, we exclude them using a set of
stop words S (downloaded from [9]). Going further, there are typically words in
a data set with significant higher frequency than others. Thus, it can be useful
to weight the words according to their frequency in the data set. We discuss
different choices for the weighting function ω : Σ∗ → [0, 1] in Section 5.1.1.
Putting things together, you can find a pseudo code for the whole procedure
in Algorithm 1. Note, that the dissimilarity measure defined by this algorithm
does not define a metric, as the triangle inequality can be violated. But at least
for the classical MDS approach, the assumption is that the dissimilarities are
distances, see Section 3.4.1. We can compute distances from the dissimilarities
using the Floyd-Warshall algorithm. As this is only done for the questions in
a batch and also the algorithm can be easily parallelized and scales very well,
the complexity of O(N3) with batch size N is not critical. Also, note that the
weighted dissimilarities obtained by scaling the dissimilarities down using the
tags are not necessarily distances either, for both approaches that are discussed
in the next section.

3.2.2 Usage of Tags

The approach to use the tags suggested in [35] is via the Laplacian L of the
undirected graph G = (V,E) where the nodes V = {q1, . . . , qN} represent the
questions and {qi, qj} ∈ E if and only if questions qi and qj share at least one
common tag. The elements of the Laplacian L = (li,j)1≤i,j≤N are given by:

li,j =


deg(qi) if i = j

−1 if {qi, qj} ∈ E

0 otherwise
. (3.3)
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1q 2q

3q

4q
5q 6q

Figure 3.1: Example of the undirected graph representation of five questions
where an edge between two questions indicates that they share at
least one common tag.

The graph-weighted dissimilarities δLi,j are then obtained by:

δLi,j =


δi,j

li,i+lj,j
if li,j = −1

δi,j otherwise
. (3.4)

Consider the example shown in Fig. 3.1 and assume questions q1, q2, q3 share
pair-wise exactly one common tag. As deg(q1) = deg(q2) = 2 and deg(q3) = 5,
we would scale δ1,3 and δ2,3 by a factor of 1

2+5 = 1
7 , but at the same time we would

scale δ1,2 only by a factor of 1
2+2 = 1

4 , although all three pairs share exactly the
same number of tags—which seems a bit inconsistent. To overcome this issue,
we use the adjacency matrix of the weighted undirected graph Ĝ = (V,E, ω)
with the weighting function ω : E → N here,

ω({q, q̂}) = |T ∩ T̂ |, (3.5)

where T , T̂ is the set of tags of q, q̂, respectively. The weighted dissimilarities
are then computed by:

δAi,j =


δi,j

1+ω({qi,qj}) if {qi, qj} ∈ E

δi,j otherwise
. (3.6)

3.3 Hierarchical Clustering

In this section, we describe the extension of the flat density-based clustering
algorithm that is used in [35] and was first described in [30] to a hierarchi-
cal clustering algorithm. But let’s first summarize the main steps of the flat
algorithm:
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3 Clustering with Sparse Grid Density Estimation

a) b) c) d)

Figure 3.2: Samples for a 9× 9 Cartesian grid, each square represents a sample.
We want to find the k-nearest neighbors for the red square. The
gray squares depict the samples for which we know that the distance
is ≤ ∆ which are at least ∆2+3∆

2 (equality for example d)), where
∆ = 2 in a), ∆ = 4 in b), d) and ∆ = 3 in c). Together with
the blue squares, they form the limited search space, including all
squares with distance at most ∆. Choosing ∆ = 2 would be sufficient
for k ≤ 5, ∆ = 3 would be sufficient for k ≤ 9 and ∆ = 4 would be
sufficient for k ≤ 14.

1. Sample over the feature space F and compute the density p(si) using the
sparse grid density estimation for each sample si, 1 ≤ i ≤ n.

2. Compute the undirected k-nearest neighbor graph Gk = (S,Ek), with

� S = {s1, . . . , sn},
� {si, sj} ∈ Ek if and only if si ∈ Nk(S, sj) or sj ∈ Nk(S, si), where
Nk(S, si) denotes the set of k-nearest neighbors of si in the set S
according to the euclidean distance.

3. Remove the samples with density below a high density threshold ϵ, i.e.
compute the subgraph Ĝk,ϵ = (Ŝϵ, Êk), with

� S̃ϵ = {si, p(si) < ϵ},
� Ẽk,ϵ = {{si, sj} ∈ Ek, si ∈ S̃ϵ or sj ∈ S̃ϵ},

� Ŝϵ = S \ S̃ϵ, Êk,ϵ = Ek \ Ẽk,ϵ.

4. Compute the connected components Ŝ1, . . . , Ŝm in Ĝk,ϵ that represent

the clusters and label them with the label function l : Ŝ → N, ∀i =
1, . . . ,m, ∀s ∈ Si : l(s) = i.

The straightforward approach to compute the k-nearest neighbor graph Gk

would be to compute the euclidean distances ∥si − sj∥2 between samples si,
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3.3 Hierarchical Clustering

sj pair-wise and then choose the k smallest distances. This leads to a complex-
ity of Ω(d|S|2). For a large number of samples or when we repeat the routine
frequently, as we will do later for the constrained MDS for every batch, this
can become inefficient. As we use a Cartesian grid with equal step-size for each
dimension as samples, we can improve the complexity to O(dk|S|). Note, that
|Ek| = Ω(k|S|) and the number of dimensions d is small. The idea is to limit
the search space to size O(k) for each sample. For simplicity, we only consider
the two-dimensional case here and assume that the Cartesian grid has step-
size 1. Note, that it is possible to extend the approach to the d-dimensional
case using the same idea. For an arbitrary sample, we have at least ∆2+3∆

2
other samples with euclidean distance at most ∆ ∈ N, see Fig. 3.2. Further,
we can limit the number of samples with a distance smaller than ∆ by O(∆2),
also shown in Fig. 3.2. Thus, if we choose ∆ such that,

∆2 + 3∆

2
≥ k

⇒ ∆ =

⌈
−3
2

+

Ê
9

4
+ 2k

⌉
,

(3.7)

we only have to compute the distance to O(∆2) = O(k) samples. What remains
is to compute the k samples with smallest distance. If we sort the samples in
the search space according to their distance, we would get an overall complexity
of O(kd|S|+k log(k)|S|), which would be already fine as k is rather small. If we
want to avoid the additional summand of O(k log(k)|S|), we can pre-compute
the distances for the maximum search space of size (2∆+1)2−1. Then, we would
sort the d-dimensional array according to the distances and store the difference
of the indices for each dimension. We can then just go through the sorted array
for each sample mapping the index-differences to actual indices and skip the
samples if they do not exist for the current sample. The overall complexity is
then in O(dk|S|).
What remains is to map the actual questions to the clusters defined by the

samples. The approach we take here is to map each question to the cluster as-
signed to the sample with the smallest distance that was not removed. Formally,
the function m : QF → N that maps the feature representations of the questions
QF to cluster labels with the label function l is defined as,

m(q) = l(min(arg min
s∈Ŝ

(∥q − s∥2))). (3.8)

Note, that the min is just for the case where there are several samples with
minimum distance, which rarely happens in practice.
One obvious drawback of the flat clustering algorithm and also for many other

methods based on density estimation is that we have to choose a high density
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3 Clustering with Sparse Grid Density Estimation

threshold—and what a good choice is depends on the actual data set. Ap-
proaches to avoid an explicit choice of a high density threshold are e.g. discussed
in [5, 28] and e.g. implemented in the statistical software R, see [4]. The main
idea that is used there and that we also employ here is to discover all clusters
that are extracted by some threshold. Based on this idea, we iterate over in-
creasing density thresholds in the range [min1≤i≤n(p(si)),max1≤i≤n(p(si))] using
a step-size ϵstep determined by a given number of steps nsteps. At first glance,
this could sound like replacing one parameter by another, but for sufficient large
number of steps, the resulting cluster tree should stay more or less the same.
For each density threshold, we run the flat clustering algorithm and check if
there are any new clusters split up by this density threshold. The new clusters
are then added as children to the cluster they belonged to before. In the context
of clustering questions, a cluster should represent some topic and its child clus-
ters should represent more specific topics, e.g. if the topic of the parent cluster
is music, then its child clusters could have topics like baroque music, classical
music, rock music and so on. Now if we always keep the cluster hierarchy in
the way described before, this will probably not be the case. There could be
clusters that have the same parent but have (nearly) nothing in common, e.g.
they could be connected by some noise for rather low density thresholds. In this
case, we want to delete the parent cluster and move the children up. If a cluster
is split up by threshold ϵ, we try to detect this using the last graph Ĝk,ϵ−ϵstep

that connected the child clusters. A pseudo code sketch for the split routine is
given in Algorithm 2, the underlying idea is illustrated in Fig. 3.4. The whole
hierarchical clustering procedure is sketched in Algorithm 3 and illustrated in
Fig. 3.3.

3.4 Multidimensional Scaling

One main step when processing a batch is to transform the questions into the
euclidean feature space F. The approach taken in [35] is to use classical multi-
dimensional scaling (MDS) and then transform the obtained solution into the
feature space by translation and scaling it accordingly. The nice thing about
this is that it has an analytical solution, the problem however is that when ap-
plied only to questions of a single batch there is no relation between the batches.
Thus, questions from different batches that are similar are mapped to locations
with small distances just by chance. This is why we will add constraints that
relate the already processed questions to the questions in the current batch. But
to understand this approach, we give a short introduction to classical MDS, a
more elaborate introduction to MDS and its variations can be found in [8].
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Feature space 

Density

2 Clusters
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Figure 3.3: Illustration of the hierarchical clustering algorithm for an one-
dimensional feature space with 5 steps. Starting with the samples
S as one cluster, the development of the cluster tree is shown from
the left to the right using the density thresholds t1, . . . , t5. Note,
that the clusters that would be the only child of their parent are
not shown, as they are removed in a first post-processing step for
the cluster tree. After using the threshold t3, we move the clusters
5 and 6 up. For the threshold t5 nothing changes. With a single
threshold, at most 4 clusters could be detected. Every threshold is
labeled with the number of clusters it detects.
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3 Clustering with Sparse Grid Density Estimation

Algorithm 2 Algorithm to decide if child clusters should be moved up.

1: function split child(parent, child, G = (V,E))
2: Vp ← parent.nodes() ◃ including child nodes
3: Vc ← child.nodes()
4: connections parent ← |{e = {i, j} ∈ E, i, j ∈ Vp}|
5: max connections parent ← 1

2 |Vp|(|Vp| − 1)

6: connectivity parent ← connections parent
max connections parent

7: connections child parent ← |{e = {i, j} ∈ E, i ∈ Vc, j ∈ Vp}|
8: max connections child parent ← |Vc|(|Vp| − |Vc|)
9: connectivity child parent ← connections child parent

max connections child parent
10: return connectivity child parent

connectivity parent ≤ t ◃ t is the split threshold parameter
11: end function
12: function split(parent,G = (V,E))
13: for child in parent.child clusters() do
14: if split child(parent, child,G) then
15: return True
16: end if
17: end for
18: return False
19: end function
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3.4 Multidimensional Scaling

Figure 3.4: Two examples for the split algorithm in two dimensions with 10 ×
10 samples and k = 4. For both examples, the yellow and the
blue samples depict two clusters that are detected by some density
threshold ϵ, the parent nodes of interest are the union of both plus
the red patterned samples (samples belonging to the parent cluster
with density less than ϵ, but greater than ϵ−ϵstep). The bold red lines
are the connections between the child and parent clusters, together
with the green lines they form the connections inside the parent. In
the example on the left, there are 19 connections inside the parent
and the parent has 15 nodes. Thus, the connectivity of the parent is
19

15·14
2

. There is only one child-parent connection for the yellow and

blue cluster, respectively. The yellow cluster has 4 nodes and thus,
its connectivity to the parent is 1

4·(15−4) . The blue cluster has 9 nodes

and thus, its connectivity to the parent is 1
9·6 . The connectivity-ratio

is then ≈ 0.126 for the yellow cluster and ≈ 0.102 for the blue cluster.
Choosing e.g. the split threshold t = 0.2, we would delete the parent
and move the children up. In the right example, there are many more
child-parent connections, leading to connectivity ratios ≈ 0.652 for
the yellow cluster and ≈ 0.502 for the blue cluster. Thus, choosing
the same split threshold t = 0.2, we would not move up the child
clusters.
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3 Clustering with Sparse Grid Density Estimation

Algorithm 3 The hierarchical clustering algorithm using the flat k-nearest
neighbor algorithm for each investigated density threshold.

1: function cluster hierarchical(S, k, nsteps) ◃ S is the set of samples
2: pmin ← mins∈S(p(s)) ◃ p(·) is the sparse grid density estimation
3: pmax ← maxs∈S(p(s))
4: ϵstep ← pmax−pmin

nsteps

5: compute Gk

6: Gk,pmin
← Gk

7: for i = 1 to nsteps do
8: ϵ ← pmin + i · ϵstep
9: compute Gk,ϵ and discover connected components C1, . . . , Cm

10: updated ← ∅
11: for j = 1 to m do
12: select c ∈ Cj ◃ Choice of c does not matter
13: parent ← c.get cluster() ◃ most specific cluster of c
14: parent.add child(Cj)
15: updated ← updated ∪ {parent}
16: end for
17: for parent ∈ updated do
18: if parent.num children > 1 then
19: if split(parent, Gk,ϵ−ϵstep) then
20: ◃ move child clusters up and delete parent
21: parent.get parent().add children(parent.get children())
22: parent.get parent().remove child(parent)
23: end if
24: else
25: parent.remove children()
26: end if
27: end for
28: end for
29: end function
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3.4 Multidimensional Scaling

3.4.1 Classical MDS

The main idea of MDS is to embed N objects in a space of given dimensionality
d such that their pair-wise dissimilarities δi,j are represented as close as possible.
For simplicity, we use Rd. The dissimilarities should be non-negative, symmetric
and the dissimilarity of an object to itself should be zero. In classical MDS, the
additional assumption is that they also fulfill the triangle inequality. Thus, they
represent a metric. In classical MDS, we minimize the loss function L : Rd×N →
R,

L (X = (x1, . . . , xN )) =
N∑
i=1

N∑
j=1

(
∥xi − xj∥2 − di,j

)2. (3.9)

The analytic solution X̂ can be computed by [8]:

1. Compute D2 = (d2i,j)1≤i,j≤N

2. Apply double centering to D2:

� BD = −1
2JD

2J , with

� J = I −N−1
11

T , where I is the identity matrix and 1 is the column
vector of ones.

3. Compute the eigendecomposition BD = QΛQT

4. Let Λ+ denote the matrix containing the first d eigenvalues greater than
zero and Q+ is the matrix with the first d columns of Q. Then the solution

is given by X̂ = Q+Λ
1
2
+.

To obtain the features for the questions, what remains is to transform the solu-
tion into the feature space (done by translation and scaling it accordingly).

3.4.2 Constrained MDS

As mentioned, the main problem when using classical MDS as described to
transform the questions into the feature space is that we have no relation between
the batches. In the constrained MDS approach we describe now, the basic idea
to relate the current batch with the batches processed before is to add virtual
questions, minimizing basically the same loss function and fix the position of the
virtual questions with additional constraints. For the virtual questions we have
a virtual title and virtual tags, just as for the real questions. To compute the
virtual questions we use the clusters from the previous batches. The virtual title
will then consist of the keywords in the cluster, i.e. the words which occur most
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3 Clustering with Sparse Grid Density Estimation

frequently in the question titles in the cluster. Similar like in the dissimilarity
computation, we exclude words of the stop word set and weight them according
to their global frequency. Also, we require that the word frequency in the cluster
at least doubles the global frequency. The same is done to compute the virtual
tags (except that we do not exclude any tag a priori).

The virtual questions should, in the best case, represent all questions in a
cluster. We try to achieve this to some extent by computing as many keywords
such that the sum of their weighted frequencies (i.e. occurrences of the word
multiplied by its weight and divided by the number of questions in the cluster)
exceeds a given threshold ϵfreq. If this threshold is not exceeded for a given
maximum number of keywords Kmax, this cluster is not used to add a virtual
question. At the same time, even if the threshold is already exceeded, we com-
pute at least a minimum number of keywords Kmin—whenever possible. If a
virtual question is added, exactly Kmin virtual tags are computed (or less if
there are not enough tags that have at least double the global frequency).

To compute the dissimilarity between a virtual and a real question, we use the
same measure as for the real questions, with the slight variation that we divide
the dissimilarity by the number of words in the virtual title, as we also want
small dissimilarities between real and virtual questions if only one keyword of
the cluster matches.

The main assumption in this approach is that clusters can be represented by
a rather small number of keywords. Using the pair-wise Levenshtein approach,
the majority of pairs of questions will have the maximum dissimilarity value of
1—which is also not surprising as there is really no direct relation between most
questions. Thus, our assumption will be violated for most of the batches we get
in practice. Our approach to overcome this problem is to remove questions in
a batch that have nearly no relations to other questions in the batch and also
no relation to already computed virtual questions. These questions could then
potentially be added in a later batch again, for the experiments in Chapter 5
we add them once again and if they are removed again we remove them finally.

Formalizing and Solving the Constrained MDS Problem

We now formalize the constrained MDS approach and discuss how to solve it. Let
N denote the current batch size and M the number of virtual questions added so
far. For the virtual questions v1, . . . , vM with respective clusters C1, . . . , CM and
the feature representations of the contained questions QF,1, . . . , QF,M we have
positions P = (p1, . . . , pM ) = (pi,j) ∈ Rd×M that are given by the arithmetic
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mean of the features,

pm =
1

|QF,m|
∑

qf∈QF,m

qf , 1 ≤ m ≤M. (3.10)

With the dissimilarity matrix ∆r = (δi,j) ∈ RN×N for the real questions and the

dissimilarity matrix between real and virtual questions ∆v = (δ̂i,m) ∈ RN×M

and the distance matrix for the virtual questions DP = (d̂i,j) ∈ RM×M ,

d̂i,j = ∥pi − pj∥2 , (3.11)

we construct the overall dissimilarity matrix ∆ = (δi,j) ∈ R(N+M)×(N+M),

∆ =

�
∆r ∆v

∆T
v DP

�
. (3.12)

Computing all-pairs-shortest-path for ∆, we get the distance matrixD = (di,j) ∈
R(N+M)×(N+M). While we stick to D in the following, it is also possible to use ∆
instead, as we use a least squares solver. To be able to update the global sparse
grid density estimation, we have to transform the questions always to the same
feature space F = [a, b]d, which means that we have linear boundary constraints
for the least squares solver. With the features of the real and virtual questions
X = (x1, . . . , xN+M ) ∈ FN+M we seek to minimize,

min
X∈FN+M

�
N+M∑
i=1

N+M∑
j=1

(
di,j − ∥xi − xj∥2

)2+
M∑

m=1

(0− ∥pm − xN+m∥2)
2

) , (3.13)

where the upper term is the loss function of the classcial MDS for D and the
lower term ensures that the transformed positions of the virtual questions do
not differ too much from their original positions. Using this function directly,
we would have (N +M)2 +M constraints and d · (N +M) variables. Thus, the
Jacobi matrix, which is needed for the least squares solver, would have a size of
Ω(d · (N +M)3). Already when d = 2 and N +M = 1000, this would lead to a
size of over 8GB (single-precision), which makes this approach quite inefficient.
To overcome this problem, we transform the minimization problem. The first
step is to square all euclidean norms and the corresponding dissimilarities in the
minimization problem, as this simplifies the computation of the Jacobian later
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on,

min
X∈FN+M

�
N+M∑
i=1

N+M∑
j=1

�
d2i,j − ∥xi − xj∥22

�2
+

M∑
m=1

�
02 − ∥pm − xN+m∥22

�2) . (3.14)

By defining the functions fi : FN+M → R, gm : F(N+M) → R,

fi(X) =
N+M∑
j=1

�
d2i,j − ∥xi − xj∥22

�2
, 1 ≤ i ≤ N +M, (3.15)

gm(X) = ∥pm − xN+m∥22 , 1 ≤ m ≤M, (3.16)

we can rewrite 3.14 as,

min
X∈FN+M

(
N+M∑
i=1

(È
fi(X)

)2
+

M∑
m=1

(gm(X))2
)
, (3.17)

leading to a least squares problem with N + 2M constraints and d · (N + M)
variables. Thus, for d ≥ 2 we have more variables than constraints. We use the
Intel MKL least squares solver here, see [21], that uses a trust region algorithm,
see [11]. The solver requires to have at least as much constraints as variables.
Thus, we solve the problem dimension-wise, i.e. starting with an initial guess
we solve 3.17 varying only the coordinates of the current dimension and keeping
the other variables constant. Formally, let X0 denote the initial guess,

X0 =

�
x10
...
xd0

�
, (3.18)

then we compute the partial solutions x̂s ∈ [a, b]1×(N+M) by,

x̂s = arg min
xs∈[a,b]1×(N+M)

(
N+M∑
i=1

(È
fi(Xs)

)2
+

M∑
m=1

(gm(Xs))
2

)
, ∀s = 1, . . . , d,

(3.19)
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where Xs denotes the intermediate solution,

Xs =



x̂1

...
x̂s−1

xs

xs+1
0
...
xd0


. (3.20)

Thus, we have now to solve d least squares problems with N + 2M constraints
and N +M variables. The global solution X̂ is then given by,

X̂ = Xd =

�
x̂1

...
x̂s

�
. (3.21)

If we want to improve the global solution, we can repeat the procedure using
X̂ as initial guess. A nice property of this approach is that we could easily
control the number of dimensions. More specific, if e.g. the euclidean norm of
the residuum is too large, we could increase the number of dimensions without
recomputing the solution for the other dimensions. If we do not get a significant
better solution by adding an additional dimension, we could of course also just
throw away this dimension again. All in all, these are the steps we have to do
for the constrained MDS:

1. Compute dissimilarities between real and virtual questions using the pair-
wise Levenshtein approach and compute distances between the virtual
questions using the euclidean distance.

2. Build the overall dissimilarity matrix. Optionally compute all-pairs-shortest-
path.

3. Solve the d least squares problems, repeat until solution does not improve
significantly (with a limited number of iterations).

4. Compute a clustering for the features of the real questions in the batch.
Compute cluster keywords, tags and center. Add a virtual question for
all clusters where the weighted frequency sum of the keywords exceeds a
given threshold.

5. If the number of virtual questions exceeds a given maximum, cluster the
whole data processed so far and overwrite the current virtual questions
with the virtual questions computed from this global clustering.
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Now, we show that the Jacobian matrix can be computed efficiently, i.e. in
O
(
d · (N +M)2

)
. Note, that there are Ω

(
(N +M)2

)
non-zero entries in general

and d is very small compared to N +M . With X = (x1, . . . , xN+M ) = (xi,j) ∈
FN+M we have for a fixed dimension t, 1 ≤ t ≤ d, and for all i, k, 1 ≤ i, k ≤
N +M ,

∂
È
fi(X)

∂xk,t
=

1

2
· 1È

fi(X)
· ∂fi(X)

∂xk,t
(3.22)

Plugging in the definition for fi in 3.15 we get for its partial derivation,

∂fi(X)

∂xk,t
=

∂
(∑N+M

j=1

�
d2i,j − ∥xi − xj∥22

�2)
∂xk,t

=
N+M∑
j=1

2 · (d2i,j − ∥xi − xj∥22) ·
∂
(
−∥xi − xj∥2

)2
∂xk,t

.

(3.23)

For the remaining partial derivation we get,

∂
(
−∥xi − xj∥2

)2
∂xk,t

=
∂
�
−∑d

s=1 (xi,s − xj,s)
2
�

∂xk,t

=


− (2xk,t − 2xj,t) , if i = k and i ̸= j

− (2xk,t − 2xi,t) , if j = k and i ̸= j

0, otherwise
.

(3.24)

Plugging in reversely, the Jacobian for the first part of the constraints is given
by:

∂
È
fi(X)

∂xk,t
=


2√

fi(X)
·∑N+M

j=1 (d2i,j − ∥xi − xj∥22)(xj,t − xk,t), if i = k

2√
fi(X)

· (d2i,k − ∥xi − xk∥22)(xi,t − xk,t), if i ̸= k
.

(3.25)

Consider the computation of a fixed row i of the Jacobian matrix, i.e. the row
belonging to the function

√
fi. The left term is thus constant and we only need

to compute it once. The function fi(X) and thus the left term can be computed
in O(d(N +M)). The remaining right term for the case i = k can be computed
in O(d(N+M)) as well and this case obviously occurs only once for fixed i. The
remaining right term for the case i ̸= k can be computed in O(d) and this case
occurs O(N +M) times. Overall, we get a complexity of O(d(N +M)) for one
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3.4 Multidimensional Scaling

row and thus, the complexity for all N + M rows is in O(d(N + M)2). What
remains is the Jacobian matrix for the functions gm,

∂gm(X)

∂xk,t
=

∂∥pm − xN+m∥22
∂xk,t

=
∂
∑d

s=1 ∥pm,s − xN+m,s∥22
∂xk,t

=

{
2(xN+m,t − pm,t), if k = N +m

0, otherwise
,

(3.26)

which can obviously be computed in O(M(N+M)). Thus, the total complexity
of the overall system is still O(d(N +M)2).

Weighted Constrained MDS

We extend the constrained MDS approach to a weighted version now. There
are two main reasons to introduce weights:

� Virtual questions represent a cluster of questions and are the basis for the
relation of the batches. Especially questions with small dissimilarities to a
virtual question should get transformed close to this virtual question to be
in the same cluster at the end. Thus, the constraints for the dissimilarity
values between a virtual and a real question should be weighted higher.

� Satisfying the constraints for small dissimilarities as close as possible is
more important than satisfying those with large dissimilarities. For ques-
tions with small dissimilarities it is most of the times required that their
features have also a small distance to have them in the same cluster. For
questions with large dissimilarities, the exact distance of their features
does not matter as long as they are somehow separated. Also, considering
two questions that both have a small dissimilarity value to a third question
it could even be better not to represent their computed dissimilarity.

Based on these observations, we use weights wi,j for all 1 ≤ i, j ≤ N +M of the
following form here:

wi,j =

{
wv↔r · (wmin + (1.0− di,j)

es) , if i ≤ N, j > N or i > N, j ≤ N

(wmin + (1.0− di,j)
es) , otherwise

,

(3.27)

where wmin is the constant minimum weight and wv↔r > 1 is the constant weight
factor for the constraints between virtual and real questions. The term (1.0 −
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Figure 3.5: The weights for the constraints dependent on the dissimilarity value
between the questions for wmin = 1, wv↔r = 2 and es = 4.

di,j)
es , with parameter es, ensures that the constraints between more similar

questions are weighted higher than constraints between less similar questions
(remember that 0 ≤ di,j ≤ 1). The weights dependent on the dissimilarity value
of the constraints are plotted in Fig. 3.5. Instead of fi we use fw

i now,

fw
i =

N+M∑
j=1

wi,j ·
�
d2i,j − ∥xi − xj∥22

�2
, 1 ≤ i ≤ N +M. (3.28)

The Jacobian matrix can be derived similar to the unweighted version, resulting
to,

∂
È
fw
i (X)

∂xk,t
=

2√
fw
i (X)

·∑N+M
j=1 wi,j ·

�
d2i,j − ∥xi − xj∥22

�
· (xj,t − xk,t), if i = k

2√
fw
i (X)

· wi,k ·
�
d2i,k − ∥xi − xk∥22

�
· (xi,t − xk,t), if i ̸= k

.

(3.29)
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4 Development of a Clustering-Based
Recommender System

In this chapter we discuss the development of the implemented recommender
system. We start with the goals and put them into the general context of
recommender systems. Afterwards, we describe how we use the hierarchical
clustering to compute recommendations and discuss how additional data can be
used.

4.1 Goals

The recommender system developed here is thought to recommend questions
that could help answering the actual question of the user (which could differ
from the one currently visited), but also subsequent questions (e.g. somebody
who asks how to install a software could also be interested in how to use it).
The context (“Q&A website”) of this recommender system is a bit different to
the context of most other recommender systems, due to the following facts:

� In most cases, we have no information about the user except that he visits
a certain question currently.

� Even if we have more information about a user, the current question can be
independent of those visited before (especially if the time frame between
is not rather small).

� Thus, the currently visited question gives the most certain information
about the actual question of the user.

Following these observations, a non-personalized approach is used here. More
specific, the recommendations to a user will only depend on the currently visited
question. To achieve the initially mentioned goals, for a given question we have
the following two criteria:

1. Recommend questions that are similar.

2. Recommend questions of good quality.
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4 Development of a Clustering-Based Recommender System

As we have to deal with a large amount of questions, we could add that this has
to be done somehow efficiently. How we try to achieve these goals is discussed
in the next section.

4.2 Implementation

As already mentioned, the recommender system is based on the previously com-
puted clustering. We start this section with describing how we use the clustering
and go on with a discussion how additional data that is available can be used.

4.2.1 From Clusters to Recommendations

The basic idea to use the clustering is quite simple: as clusters should form a
group of similar questions, they can be used as search space for possible recom-
mendations. But, as we have a hierarchical clustering, there is more information
about the clusters. Also, especially the top level clusters clusters can become
very large. Thus, we only use the questions of a cluster that have this cluster as
most specific cluster, i.e. they are not clustered on a deeper level. Remember
that the idea of the hierarchical clustering is that the ancestors of a cluster rep-
resent more general topics and the descendants represent more specific topics.
Following this idea, we can extend the search space by the two parameters lup
and ldown, i.e. the number of levels we look up and down in the cluster tree,
adding the respective clusters (again only the questions that have this cluster
as most specific cluster) to the search space. The possibility to add the siblings
of a cluster as well is also implemented but not recommended at least for the
top level clusters, as this would make the search space quite large. The underly-
ing idea would be that—as these clusters have the same parent—we could find
especially subsequent questions there.
Now, having defined the search space for a question, what remains is the

question“how to search in the search space”. We re-use the pair-wise Levenshtein
approach here, see Section 3.2.1, but now using simply the similarity value as a
rating and then take the questions with the highest ratings. Using this approach,
we will hopefully achieve our first goal to“recommend questions that are similar”.
How we try to achieve the second goal will be discussed in the next section.
Quite obvious, the quality of the recommendations and the run time for the

recommender system depend on the quality of the clustering. On the other
hand, we could use the quality of the recommendations to compare the quality
of different clusterings to some extent. Though it is not necessarily needed that
all questions in a cluster are pair-wise similar, we need to have at least some
similar questions in the (related) cluster(s) of the current question, to be able to
compute good recommendations. For the run time, it is important that the size
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4.2 Implementation

of the clusters is somehow balanced and that we have a reasonably high number
of clusters, as the run time for one cluster is quadratic in the size of the search
space (assuming the rating computation for one question relative to the current
question is in O(1)).

4.2.2 Usage of Additional Data

The additional data we consider here are the user votes and the log data. The
usage of the user votes is straightforward. Using weights wv for the votes and
ws for the similarities, we compute the combined rating r(qc, q) for a question q
with v ∈ N0 up-votes and similarity s to the current question qc by:

r(qc, q) = wv · log(v + 1) + ws · s. (4.1)

For now, the log data is not used, but we give a short outlook here of how it
could be used in the future. The first idea that is already implemented is to use
the log data to validate the computed recommendations as well as the clustering.
For this purpose, we can see every entry of the log data as a visit of a question
for which we have the following informations:

� user ID,

� session ID,

� time,

� visited question.

The idea is to reconstruct the order of questions an user visited during a session.
These questions have a strong relation in most of the cases. With the question
qstart the user started with and the set of questions R the user visited afterwards,
we give scores for each qr ∈ R if qr is a recommendation to qstart. We could also
use this to validate the clustering, only checking if qr and qstart have the same
most specific cluster then.

To use the log data also for the recommender system in the future, we suggest
three approaches:

� Use the idea for the validation to extend the search space for the related
questions.

� Count the visits of the questions for a given time back in the past and use
them similar to the user votes.
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4 Development of a Clustering-Based Recommender System

� Try to recognize if an user found his answer when visiting a question.
Given the questions of a session q1, . . . , qn in the order visited, if qi and qi+1

are not similar and the time the user visited qi extends a given threshold
(perhaps dependent on the content size), the user probably found the
answer to his actual question at qi. Again, we can now give an up-vote to
qi and use this similar to the user votes.
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5 Results

In this chapter, we discuss the results for the clustering and the recommender
system using the following data sets:

� bitcoin: Data set extracted from stackexchange.com containing over 8
thousand questions about the digital currency bitcoin in English lan-
guage.

� autofrage: A side portal from gutefrage.net containing over 15 thousand
questions about cars in German language.

� computerfrage: Another side portal from gutefrage.net containing over
67 thousand questions about computers and other technical stuff in Ger-
man language.

� gutefrage: The questions from gutefrage.net, which are over 16 million
and also in German language.

Experiments for the first three data sets were done on a dual socket Intel Xeon
Processor E5-2670 (2.6GHz, 8 cores and 16 threads per socket) with 128GB
RAM and QDR infiniband, experiments for the gutefrage data set were done
on a quad socket AMD Bulldozer Opteron 6274 (2.2GHz, 16 cores and threads
per socket) with 256GB RAM and QDR infiniband. The actual clustering as well
as the recommender system is implemented in C++, it is already parallelized for
most of the parts for shared memory systems using OpenMP. Several libraries
are used, especially the SG++ toolbox [33] for the spare grid density estimation,
the Intel MKL [21] to solve the constrained MDS problem via least squares and
the math library Armadillo [34]. There are also lots of parameters for the whole
program, if not stated otherwise we use the following here:

� String measure: weighted version of pair-wise Levenshtein

– Weighting function: ω(fw) = a · f2
w + b · fw + c,

* fw is the absolute frequency of word w in the data set Q

* a, b, c computed such that ω(0) = 1, ω
(
|Q|
10

)
= 0, ω′(0) = 0

– scaling factor wsim for questions with at least one common word: 3
4
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– exponent for the dissimilarity value ed: 4

� Remove unrelated questions from batch: yes, if

– no relation (i.e. max. dissimilarity value) to at least 98% of the
questions in the batch and

– no relation to a virtual question (relation to virtual question if dis-
similarity value < 1

2wsim)

� Use tags: yes, via adjacency matrix

� MDS: constrained

– #dimensions: 2

– Compute distance matrix from dissimilarity matrix: no

– min. weight wmin for a constraint: 1

– weight factor for constraints between virtual and real questions wv↔r:
20

– exponent for the similarity values es: 4

– max. #virtual questions Mmax:

* start with 100

* ensure Mmax ≥ 10 times #global clusters

– weighted frequency sum threshold ϵfreq: 25%

– max. #keywords Kmax: 20

– min. #keywords Kmin: 5

� Sparse grid density estimation:

– start level: 4

– #refinement steps: 6

– #refinement points: 300

– regularization parameter λ: 10−5

– learning rate: 1
#batches processed

� Clustering: hierarchical

– number of nearest neighbors k: 8

– nsteps to iterate over the density range: 100

– split threshold t: 0.4

36



5.1 Clustering

– number of samples per dimension: 100

� Recommender system:

– look lup levels up in the cluster tree: 0

– look ldown levels down in the cluster tree: 0

– use sibling clusters: no

– weight for the similarity ws: 1

– weight for the votes wv: 0

– #recommendations computed: 6

� Scaling:

– Sparse grid scaled to [0, 1]

– Features scaled to [0.1, 0.9]

– Dissimilarity values scaled to [0, 0.4]

5.1 Clustering

In this section, we look at the results for the improvements discussed in Chap-
ter 3 and compare them to the previous approaches. We start with the dissim-
ilarity measures, focusing mainly on the string metrics but also have a look at
the different approaches to use the tags as well as different weighting functions
for the words. Afterwards, we compare the flat clustering with the hierarchical
clustering results and also look at the influences of some of the parameters. We
go on with a comparison of the classical and constrained MDS, discussing also
some parameters that influence the constrained MDS. We finish this section by
discussing the current overall state of the clustering.

5.1.1 Dissimilarity Measures

We start this section with a little example of 10 questions that are taken from
the bitcoin data set, see Tab. 5.1. The idea is that we have two groups of three
questions that are very similar and two groups of two questions that have also
something in common. We look at the dissimilarty matrices of three different
string measures for the titles here:

� Levenshtein metric, see Tab. 5.2,

� pair-wise Levenshtein without weighting the words, see Tab. 5.3,

� weighted pair-wise Levenshtein, see Tab. 5.4.
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ID Title Tags

1 is mining still profitable mining-reward, mining-profitability
2 is asic bitcoin mining profitable mining-profitability, altcoin,

mining-reward
3 is bitcoin mining profitable yet mining-profitability, mining-hardware

4 how can i keep my wallet secure wallet, backup, security, encryption
5 which wallet is better and secure wallet, bip32
6 is javascript wallet generator available wallet, security

at bitaddressorg relatively secure

7 how do i make a transaction transactions, raw-transaction,
multi-sig-transactions

8 what is this transaction i did not transactions
make

9 can i run bitcoind without blockchain, daemon
downloading new blocks

10 heartbleed when will bitcoind 091 ubuntu
be released for ubuntu 1204

Table 5.1: 10 questions taken from the bitcoin data set, where questions 1 to 3
and 4 to 6 are very similar, 7, 8 and 9, 10 are also somehow similar
where 7 and 8 also share a common tag, while 9 and 10 do not.
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5.1 Clustering

For the Levenshtein metric, there is no clear distinction between similar ques-
tions and questions that have nothing in common. The first group has small dis-
similarity values for all pairs, as also the order of the common words (“mining”,
“profitable” and “bitcoin”) is the same. For the other groups, similar questions
are only partially recognized as such. The unweighted pair-wise Levenshtein
algorithm recognizes all questions of the same group as similar, while most of
the dissimilar questions have the max. dissimilarity value. Exceptions are the
values for the questions 2 and 3 to 9 and 10, where the words “bitcoin” and “bit-
coind” (the latter is not a typo) are matched. As one might expect, the word
“bitcoin”has a very high frequency in the data set bitcoin. Thus, questions that
have only “bitcoin” in common should not be recognized as similar. With the
weighted pair-wise Levenshtein algorithm, we achieve exactly this. Note, that
we did use the whole data set to compute the weights. The dissimilar questions
that were recognized as somehow similar have now also the max. dissimilarity
value. The values for the similar questions only change slightly, as all matched
words other than “bitcoin” have similar weights. The features of the questions
for all three string measures are shown in Fig. 5.1. As already observed from
the dissimilarity matrix, the groups of similar questions are only partially close
in the feature space for the Levenshtein metric. For the unweighted pair-wise
Levenshtein algorithm, the last three groups are recognized as expected, while
the first group is split up due to the relations of questions 2 and 3 to the last
group. For the unweighted pair-wise Levenshtein algorithm, all groups are to-
gether and well separated. Note, that we didn’t scale the dissimilarity values
further for the transformation.
Considering the tags, there are only common tags for questions in the same

group. The dissimilarity matrix for the weighted pair-wise Levenshtein algo-
rithm after using the tags via the Laplacian are shown in Tab. 5.5, values for
using the tags via the weighted adjacency matrix are shown in Tab 5.6. The dis-
similarity values are all scaled equally inside the groups for the Laplacian, while
for the adjacency matrix dissimilarity values for questions that share two com-
mon tags are reduced more compared to those that only share one common tag.
The features for the weighted pair-wise Levenshtein algorithm are not affected
by the tags in a qualitative sense, as all groups were already well recognized
before and there are no common tags between the groups. The features for the
Levenshtein metric and the unweighted pair-wise Levenshtein algorithm using
the tags via the Laplacian and adjacency matrix are shown in Fig. 5.2. Using the
Laplacian, also questions of different groups tend to get merged together, while
for the adjacency matrix the recognition of the different groups is improved at
least for the Levenshtein metric. The qualitative result for the unweighted pair-
wise Levenshtein approach is more or less equal to the result without using the
tags. Still, for larger settings the tags will be useful for all measures, as there
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ID 1 2 3 4 5 6 7 8 9 10

1 0 0.25 0.23 0.41 0.43 0.98 0.39 0.48 0.61 0.84
2 0.25 0 0.15 0.46 0.48 0.95 0.46 0.46 0.54 0.77
3 0.23 0.15 0 0.43 0.49 0.95 0.43 0.51 0.54 0.77

4 0.41 0.46 0.43 0 0.34 0.93 0.34 0.54 0.64 0.8
5 0.43 0.48 0.49 0.34 0 0.82 0.41 0.49 0.64 0.75
6 0.98 0.95 0.95 0.93 0.82 0 1 0.97 0.98 1

7 0.39 0.46 0.43 0.34 0.41 1 0 0.44 0.67 0.8
8 0.48 0.46 0.51 0.54 0.49 0.97 0.44 0 0.57 0.75

9 0.61 0.54 0.54 0.64 0.64 0.98 0.67 0.57 0 0.75
10 0.84 0.77 0.77 0.8 0.75 1 0.8 0.75 0.75 0

Table 5.2: The dissimilarity matrix using the Levenshtein metric for the 10 ques-
tions in Tab. 5.1, scaled to [0, 1] by dividing by the max. dissimilarity.
The similarities of the questions are only partially recognized, also
some questions that are not similar have rather small dissimilarity
values.

ID 1 2 3 4 5 6 7 8 9 10

1 0 0.047 0.0093 1 1 1 1 1 1 1
2 0.047 0 0.0029 1 1 1 1 1 0.24 0.36
3 0.0093 0.0029 0 1 1 1 1 1 0.24 0.36

4 1 1 1 0 0 0.097 1 1 1 1
5 1 1 1 0 0 0.097 1 1 1 1
6 1 1 1 0.097 0.097 0 1 1 1 1

7 1 1 1 1 1 1 0 0 1 1
8 1 1 1 1 1 1 0 0 1 1

9 1 0.24 0.24 1 1 1 1 1 0 0.36
10 1 0.36 0.36 1 1 1 1 1 0.36 0

Table 5.3: The dissimilarity matrix for the 10 questions in Tab. 5.1 using the
pair-wise Levenshtein approach without weighting the words. The
similar questions are well recognized while the dissimilar questions
have the max. dissimilarity value of 1, except for 2,9; 2,10; 3,9 and
3,10. This is due to the fact that the words “bitcoin” and “bitcoind”
are matched, note that bitcoind is not a typo.
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ID 1 2 3 4 5 6 7 8 9 10

1 0 0.021 0 1 1 1 1 1 1 1
2 0.021 0 0.021 1 1 1 1 1 1 1
3 0 0.021 0 1 1 1 1 1 1 1

4 1 1 1 0 0 0.19 1 1 1 1
5 1 1 1 0 0 0.19 1 1 1 1
6 1 1 1 0.19 0.19 0 1 1 1 1

7 1 1 1 1 1 1 0 0 1 1
8 1 1 1 1 1 0 0 1 1

9 1 1 1 1 1 1 1 1 0 0.38
10 1 1 1 1 1 1 1 1 0.38 0

Table 5.4: The dissimilarity matrix for the 10 questions in Tab. 5.1 using the
weighted pair-wise Levenshtein approach. The similar questions are
well recognized while the dissimilar questions have the max. dissim-
ilarity value of 1. Opposed to the unweighted version, the questions
2,9; 2,10; 3,9 and 3,10 have also dissimilarity value 1, as the word
“bitcoin” has weight 0 (the weights are computed using the whole
data set).

are similar questions that have no common words but common tags.

We now look at different word weighting functions for the pair-wise Leven-
shtein algorithm. Quite obvious, words with higher frequency should have lower
weights, thus, the weighting function dependent on the frequency of the words
should be monotonically decreasing. The next idea to construct a weighting
function is to set it to zero for frequencies that are greater than some thresh-
old, we use 10% here. Inspired by tf–idf (term frequency–inverse document
frequency), first introduced in [23], the first weighting function we came up with
for a data set with N questions is:

ω(f) = max
�
0, log

�
N

10 · f

��
. (5.1)

A quadratic function q2 on [0, N
10 ] with similar course can be constructed by

claiming the following conditions:

q2(0) = 1, q2
�
N
10

�
= 0, q′2

�
N
10

�
= 0. (5.2)

As previously mentioned, for f > N
10 we set q2(f) = 0. This function decreases

slower than the logarithmic one for the interesting frequencies. Both functions
have in common, that the weights for words with moderate frequency are already
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ID 1 2 3 4 5 6 7 8 9 10

1 0 0.0053 0 1 1 1 1 1 1 1
2 0.0053 0 0.0053 1 1 1 1 1 1 1
3 0 0.0053 0 1 1 1 1 1 1 1

4 1 1 1 0 0 0.047 1 1 1 1
5 1 1 1 0 0 0.047 1 1 1 1
6 1 1 1 0.047 0.047 0 1 1 1 1

7 1 1 1 1 1 1 0 0 1 1
8 1 1 1 1 1 1 0 0 1 1

8 1 1 1 1 1 1 1 1 0 0.38
10 1 1 1 1 1 1 1 1 0.38 0

Table 5.5: The dissimilarity matrix for the 10 questions in Tab. 5.1 using the
weighted pair-wise Levenshtein approach after using the tags via the
Laplacian matrix. The dissimilarity values are reduced equally inside
the groups of similar words, although some questions share one and
some share two common tags.

ID 1 2 3 4 5 6 7 8 9 10

1 0 0.007 0 1 1 1 1 1 1 1
2 0.007 0 0.011 1 1 1 1 1 1 1
3 0 0.011 0 1 1 1 1 1 1 1

4 1 1 1 0 0 0.063 1 1 1 1
5 1 1 1 0 0 0.094 1 1 1 1
6 1 1 1 0.063 0.094 0 1 1 1 1

7 1 1 1 1 1 1 0 0 1 1
8 1 1 1 1 1 1 0 0 1 1

9 1 1 1 1 1 1 1 1 0 0.38
10 1 1 1 1 1 1 1 1 0.38 0

Table 5.6: The dissimilarity matrix for the 10 questions in Tab. 5.1 using the
weighted pair-wise Levenshtein approach after using the tags via the
weighted adjacency matrix. The dissimilarity values are reduced more
for the questions that share two common tags than for the ones who
only share one common tag.
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(a) Levenshtein

(b) Unweighted pair-wise Levenshtein (c) Weighted pair-wise Levenshtein

Figure 5.1: Transformation into the feature space for the 10 questions from
Tab. 5.1 using the different string metrics without using the tags.
For the Levenshtein metric, only questions of the first group (1 to
3) are close together. Using the unweighted pair-wise Levenshtein
algorithm, three groups are recognized and the first group is split up
due to the relations between the first and the last group. With the
weighted pair-wise Levenshtein algorithm, all groups are recognized
and well separated.
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(a) Levenshtein, (b) Levenshtein,

Laplacian Adjacency

(c) Unweighted pair-wise Levenshtein, (d) Unweighted pair-wise Levenshtein,

Laplacian Adjacency

Figure 5.2: Transformation into the feature space for the 10 questions from
Tab. 5.1 using the Levenshtein metric (top) and the unweighted ver-
sion of the pair-wise Levenshtein algorithm (bottom) and using the
tags via the Laplacian matrix (left) and the weighted adjacency ma-
trix (right). The Laplacian matrix tends to merge different groups
together, the adjacency matrix improves the result at least for the
Levenshtein metric.
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Figure 5.3: Two quadratic and a logarithmic word weighting function for a data
set of 10 000 questions. All have in common that they are 0 for a
relative frequency ≥ 10%, i.e. for an absolute frequency of 1000 in
this case. The quadratic functions are both 1 for a frequency of 0, the
first derivative for q1 is 0 for a frequency of 0%, the first derivative
of q2 is 0 for a frequency of 10%. The logarithmic function has been
normalized such that it is 1 for an absolute frequency of 1.

quite low, see Tab. 5.7 for some examples. Thus, small dissimilarity values will
be rather rarely and especially for the constrained MDS approach, we will hardly
find any keywords that can connect questions from different batches. This leads
us to the also quadratic weighting function on [0, N

10 ] that we use here, claiming
the following conditions now:

q1(0) = 1, q1
�
N
10

�
= 0, q′1(0) = 0. (5.3)

Again, we set q1(f) = 0 for f > N
10 . Opposed to the other two convex functions,

this function is now concave on [0, N
10 ]. Thus, words with moderate frequency

have nearly the same weight, only words with very high frequency have signif-
icant lower weights. What “high frequency” means can obviously controlled by
changing the threshold where we set the function to zero (second condition). A
plot of all three functions is shown in Fig. 5.3.
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word abs. frequency rel. frequency q1 q2 log
analysis 10 1.18 · 10−3 0.999 0.978 0.658
java 21 2.48 · 10−3 0.999 0.953 0.548
connect 50 5.92 · 10−3 0.996 0.887 0.419
hash 101 1.19 · 10−2 0.985 0.776 0.315
network 194 2.29 · 10−2 0.947 0.594 0.218
bitcoind 259 3.06 · 10−2 0.906 0.481 0.175
bitcoin 2052 2.42 · 10−1 0 0 0

Table 5.7: Weights for some words from the bitoin data set using different
weighting functions. For the logarithmic one and q2, there is a much
larger difference for the weights of words with low frequencies and
moderately high frequencies than for q1. Thus, for the logarithmic
weighting function and q2 we get less low dissimilarities and it will
be tough to find keywords for the virtual questions that can connect
the batches.

5.1.2 Hierarchical Clustering

In this section, we look at some results for the hierarchical clustering. Starting
with a comparison to the flat clustering algorithm, we look at the two unique
parameters for the hierarchical clustering afterwards, i.e. the number of different
density thresholds we explore and the split threshold. We finish this section with
two approaches to rate the resulting cluster tree.

Comparison of Flat and Hierarchical Clustering

We start with a short discussion of the flat compared to the hierarchical cluster-
ing. The different clusterings for a single batch of the data set autofrage are
shown in Fig. 5.4. We chose the density threshold automatically by iterating
over the thresholds also used by the hierarchical clustering algorithm and maxi-
mized the number of clusters. For the first level, the larger clusters are more or
less the same, only some are already split up at the first level for the hierarchical
clustering. Also, the hierarchical algorithm tends to split regions with only few
points into more clusters leading to 42 clusters at the first level, while the flat
algorithm only detects 28 clusters. Obviously, the hierarchical algorithm is also
able to split especially the larger clusters at a deeper level.

Parameters of the Hierarchical Clustering Algorithm

We look at the two main parameters of the hierarchical clustering algorithm
now: the number of steps to explore different density thresholds and the split
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Figure 5.4: Flat and hierarchical clustering for the first batch of the data set aut-
ofrage without removing questions, each color represents a cluster.
The density threshold for the flat clustering is computed automati-
cally by maximizing the number of clusters. This is done by iterating
over the same thresholds that the hierarchical clustering algorithm
uses, leading to a density threshold of 5.56. The flat clustering has 28
clusters, the hierarchical clustering has 42 clusters on the first level,
16 on the second level and 10 on the third and last level. For the first
level, the clustering is quite similar to the flat one, only some points
belong to different clusters and the hierarchical algorithm splits up
some more clusters. Of course, the hierarchical clustering is now
able to split up especially the larger clusters further.
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Figure 5.5: Hierarchical clustering for the questions of the first batch (size 2000)
of the data set autofrage for different number of steps. Each color
represents a cluster. The result at the first level is similar for all
clusterings. For a larger number of steps the first level clusters tend
to grow and are subdivided at deeper levels.
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(a) nsteps = 100

(b) nsteps = 1000

Figure 5.6: Global hierarchical clustering for the questions of the data set aut-
ofrage for 100 and 1000 steps, each color represents a cluster. The
tendency observed for one batch that more steps lead to more lev-
els is significantly weakened here. Most of the questions are only
clustered up to level 3 in both cases. Note, that the features for the
questions are not the same, as the number of steps also influences the
processing of single batches (due to the computation of the virtual
questions via the clustering).
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threshold. The resulting cluster trees for different number of steps are shown
in Fig. 5.5. While the clusters at the first level look similar for all number of
steps, for more steps more and more questions are clustered at deeper levels and
thus, the number of levels also increases slightly. The clusters for the first level
are also partially larger for more steps, but they are then subdivided at deeper
levels. For the global clustering, these tendencies are significantly weakened, see
Fig. 5.6, as the density is smoother.

For the split threshold, similar tendencies can be seen. As expected, for low
split thresholds we get deeper cluster trees, for higher thresholds the cluster tree
tends to get more and more flat, see Fig. 5.7. Also, for lower split thresholds and
thus more levels, we have larger clusters at the first level that are then subdivided
at deeper levels. Opposed to the number of steps though, the influence of the
split threshold is not weakened for the global clustering, see Fig. 5.8.

Ratings for the Clustering

Even for the moderately large data sets, it is tough to evaluate manually how
good a clustering is compared to other clusterings. Thus, we discuss two ap-
proaches to rate different hierarchical clusterings in a more automated way here.
This could also be useful for further parameter optimization. The first rating ap-
proach is based on the idea that clusters should form groups of similar questions.
For the similarity measure, we use again the pair-wise Levenshtein approach, but
using the similarity value without further transformations (the same that is used
in the recommender system), see Section 3.2.1. We compute the pair-wise simi-
larities of the questions in a cluster and their sum is normalized by its theoretical
maximum value. Formally, we compute the similarity index Isim of a cluster C
with its NC specific questions QC = {q1, . . . , qNC

} (excluding the questions that
are clustered at a deeper level) and similarities si,j by:

Isim(C) =
2

|QC | · (|QC | − 1)

NC−1∑
i=1

NC∑
j=i+1

si,j . (5.4)

Motivated by the procedure to compute the virtual questions from the clusters,
the second approach to rate a clustering is by the summed weighted frequency of
the cluster key words. Formally, the frequency index Ifreq of cluster C with N̂C

questions (including questions of the child clusters) and key words k1, . . . , kKC

with their frequency fC(ki) inside the cluster is given by,

Ifreq(C) =
1

N̂C

KC∑
i=1

ω(ki) · fC(ki), (5.5)
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Figure 5.7: Hierarchical clustering for the questions of the first batch (size 2000)
of the data set autofrage for different split thresholds, each color
represents a cluster. As expected, there are more levels for smaller
thresholds, for a threshold of t = 0.6 the clustering is almost flat.
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(a) t = 0.2 (b) t = 0.5

Figure 5.8: Global hierarchical clustering for the questions of the data set aut-
ofrage for different split thresholds, each color represents a cluster.
As in the case for one batch, the smaller split threshold of 0.2 leads
to significantly more levels than the split threshold of 0.5. Note,
that the features for the questions are not the same, as the split
threshold also influences the processing of single batches (due to the
computation of the virtual questions via the clustering).

where ω is the word weighting function. To rate the overall clustering, we look at
the distribution of both rating indices. Histograms of both indices for different
batch sizes are shown in Fig. 5.9. For increasing the batch size from 500 to
2000, the results get better, but when increasing it further to 5000 they get
worse again. The first fact is quite intuitive, having more questions inside a
batch, more direct dissimilarities between the questions are computed where we
do not have to take the detour via the virtual questions. The latter is most
probably explained by the fact that we get more and more constraints inside
a batch while the number of constraints that connect the batches (constraints
between virtual and real questions) are more or less the same. Thus, the features
will more and more depend on the questions in the current batch and less on
the virtual questions. Similar questions in different batches will then not be
connected by the virtual questions and thus, probably not be in the same cluster
in the end. Another issue could be that even without the virtual questions the
MDS is not able to closely represent the given dissimilarity matrix, especially as
we only use two dimensions here. An approach to overcome the first issue could
be to increase the weight for the constraints between real and virtual questions
dependent on the batch size (perhaps also dependent on the number of virtual
questions). For the latter, we could try to increase the number of dimensions—in
a static or dynamic way.
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The rating indices for removing and not removing unrelated questions are
shown in Fig. 5.10. Removing questions gives us a slight improvement of the
clustering. The obvious drawback is that we have to reprocess the removed
questions or that we do not have all questions clustered if not doing so. With
the approach to remove questions chosen here, only for the first batches a larger
number of questions is removed and for those where we add the once-removed
questions again, as there are more and more virtual questions (questions do not
get removed if they have small dissimilarity to at least one virtual question). It
could be an approach for further investigation to evaluate if removing questions
in a less conservative way is worth it.

5.1.3 Constrained Multidimensional Scaling

In this section, we first look at the differences between the classical and con-
strained MDS and then discuss the results for the constrained MDS a bit more in
detail. Especially, we show the differences when using the dissimilarity matrix
compared to the distance matrix and also how removing unrelated questions
from a batch influences the resulting features.

In Fig. 5.11, features for the first batches of the data set computerfrage
are shown for the classical and constrained MDS. For the classical MDS, we
use the distance matrix (as the assumption for the classical MDS is that the
dissimilarities are metric) opposed to the constrained MDS where we use the
dissimilarity matrix. The approach to remove questions from the batches can
not be applied directly to the classical MDS, as we have no virtual questions.
When using only the first condition (at least related to 2% of the questions in
the batch), we would always remove a large amount of questions and thus, we do
not remove questions for the classical MDS. Considering the results obtained by
the classical MDS, the batches are completely independent from each other and
the features are always transformed around the diagonal from the bottom-left
corner to the upper-right corner of the feature space. The constrained MDS
typically arranges the features in an elliptic form, as most of the dissimilarities
have the maximum value (0.4 due to the scaling). As we use a density-based
clustering here, we want to have high density regions that are separated by low
density regions. For the classical MDS, there are some high density regions
for the single batches, but they are not well separated. For the constrained
MDS, this is at least partially the case, though the clusters are also not too well
separated for most of the batches.

The clear difference of using the dissimilarity matrix compared to the distance
matrix (i.e. the metric obtained by computing all-pairs-shortest-path from the
dissimilarity matrix) is shown in Fig. 5.12. For the distance matrix, questions
inside a batch are mostly close together, while the virtual questions are mainly
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(d) batch size 2000
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(e) batch size 5000
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(f) batch size 5000

Figure 5.9: Cluster ratings for different batch sizes for the data set comput-
erfrage. On the left, histograms for the frequency index (weighted
frequency sum of cluster keywords), on the right, histograms for
the similarity index (normalized sum of pair-wise similarities) of the
clusters are shown. The x-axis is cut off at 2 (frequency index) and
at 0.2 (similarity index), as larger values are rarely and result from
very small clusters. We get better ratings when increasing the batch
size from 500 to 2000, but the ratings get worse for a batch size of
5000 and we also get less clusters (213 for 5000, 224 for 2000 and 190
for 500). This is probably due to the fact that for too large batch
sizes the influence of the virtual questions is very limited.
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Figure 5.10: Cluster ratings for the data set computerfrage with (bottom) and
without (top) removing unrelated questions. For the first, there are
199 clusters, for the latter there are 246 clusters (counting clusters
at every level). Note, that we cut off the x-axis at 2 for the fre-
quency rating and at 0.2 for the similarity rating, as the values
greater than that are rarely and result from very small clusters.
Overall, we can see a slight improvement when removing unrelated
questions.
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Figure 5.11: First six batches of the data set computerfrage using classical
MDS with the distance matrix and constrained MDS with the dis-
similarity matrix. Note, that for the classical MDS also no ques-
tions have been removed. For the classical MDS, features are al-
ways transformed at more or less the same area of the feature space
and high density regions are not well separated from low density
regions, which violates the assumption for the density-based clus-
tering. For the constrained MDS, a larger area of the feature space
is used. For the first batch, clusters are quite well separated while
with increasing number of processed batches this is less the case.
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Figure 5.12: Features of the first and last three batches of full size of the data
set computerfrage using the distance matrix (top) and the dis-
similarity matrix (bottom). The virtual questions before processing
the current batch are marked by the red points, for the first three
batches also the resulting virtual questions are shown (marked by
blue circles). For the distance matrix, the features of one batch
are mostly close together and the question features for the different
batches look more irregular. For the dissimilarity matrix, features
spread out and are mostly aranged in an elliptic form due to the
fact that most questions have max. dissimilarity value.
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Figure 5.13: Features of the first six batches of the data set autofrage with
(bottom) and without (top) removing unrelated questions. In batch
4 (bottom), the removed questions are processed. For the first
batch, removing questions makes a clear difference, for the batches
afterwards less questions are removed and thus, the results look
more similar in most cases. However, with removing unrelated
questions we seem to avoid effects like in batch 4 on the top (in
this case, there are only very few strong relations to the virtual
questions which are moved with the whole batch to the boundary
of the feature space where we have no virtual questions yet).
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ignored. When using the distance matrix, we have much more small dissimilarity
values between real and virtual questions as well as between the real questions.
Thus, the constraints between the real questions are quite well satisfied by trans-
forming them somehow close together. For the constraints between real and
virtual questions this is not possible without violating the position constraints.
Thus, either the features of the virtual questions (with small dissimilarities to
the virtual questions) will be moved a lot or the constraints between virtual
and real questions will not even approximately be fulfilled in most cases – or
a mixture of both, which makes the virtual questions almost useless in either
case. Looking at it in a more abstract way, we loose critical information about
the actual computed dissimilarities when computing the distance matrix. Even
though it is reasonable to say that if questions q1 and q2 as well as questions q2
and q3 are closely related, then also questions q1 and q3 are probably related,
the all-pairs-shortest-path algorithm does not care about how many questions
are there that connect q1 and q3 and also not how many questions are involved
to connect them. The constrained MDS with the pure dissimilarities is thus
better suited to keep the important information and reject the information that
probably also does not reflect reality (the dissimilarity measure will never be
perfect).

Now, we discuss what we achieve by removing unrelated questions from a
batch. Features for the first batches of the data set autofrage with and without
removing questions are shown in Fig. 5.13. For the first batches (and especially
for the first), we remove more questions as there are obviously not too many
virtual questions yet (questions do not get removed if they have relatively small
dissimilarity value to at least one virtual question), the number of removed
questions per batch stabilizes typically quite fast to significantly less than 100.
Exceptions are mainly the batches where we process the removed questions
again. Thus, a significant difference for the features can be seen only for the
first batches. However, for some batches questions are not spread out over the
feature space as well when not removing questions, see e.g. the fourth batch
in Fig. 5.13 on the top, note that is an extreme case though. This happens if
there are only few relations to the virtual questions and is thus mainly avoided
when unrelated questions are removed. Even though the noticeable difference
for the features of single batches is rather small, the features are more spread
out overall when removing unrelated questions.

5.1.4 Overall Picture

After looking at the single steps that are needed for the clustering, we give a
short overall picture of what the different improvements all together brought
us. The resulting clusterings for the approaches taken before (Levenshtein met-
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ric, Laplacian, dissimilarity matrix, classical MDS, no questions are removed,
flat clustering) and for our standard parameters (especially weighted pair-wise
Levenshtein, adjaceny matrix, dissimilarity matrix, constrained MDS, remove
questions, hierarchical clustering) for the data set computerfrage are shown
in Fig. 5.14. For the first one, relatively large parts of the feature space remain
empty, we get also relatively few and large clusters. For the latter, features are
more spread out filling nearly the whole feature space (remember that we scale
the features to [0.1, 0.9]). We also get much more and smaller clusters, but some
clusters are still too large and not meaningful. Especially for larger data sets,
this becomes more and more a problem, see Fig. 5.15, e.g. when using the clus-
tering for the recommender system (for the data set computerfrage this is not
critical when properly parallelized). Thus, though the discussed improvements
seem to be a step in the right direction, further investigation of the clustering
will be needed.

5.2 Recommender System

In this section, we want to look at some results for the recommender system. As
already mentioned, the run time of the recommender system and the quality of
the recommendations depend on the underlying clustering. For the gutefrage
data set, already after processing the first 1 million questions there are some
too large clusters that make it infeasible to compute recommendations via the
approach described in Chapter 4. Thus, we only discuss the recommendations
for the smaller data sets here. Also, we do not use the votes here, as this is not
really meaningful in an offline setting. In Tab. 5.8, the recommendations and
their ratigns for two questions from the data set computerfrage are shown.
For the first question the recommendations are quite good, while the second
question has no relation to its recommendations, which is also indicated by the
lower ratings. To somehow evaluate the overall quality of the recommendations,
we use a brute-force recommender system here, i.e. the ratings are computed
pair-wise for all questions in the data set. This is the theoretical best result
we could obtain by any clustering based on the used rating function (which is
the similarity value obtained by the pair-wise Levenshtein approach here). Of
course, this can only be done for rather small data sets. Histograms of the
recommendation ratings for the data set autofrage using different number of
levels to look up and down in the cluster tree as well as for the brute-force rec-
ommender system are shown in Fig. 5.16. By increasing the number of levels, we
can improve the recommendations slightly. Also, the number of questions with
no recommendations (rating function is zero for all questions in the search space)
is decreased from 3772 (lup = ldown = 0) to 3141 (lup = ldown = 1) and 3088
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(a) previous approach

(b) improved clustering

Figure 5.14: State of the clustering before this thesis (top) and with the dis-
cussed improvements (bottom) for the data set computerfrage.
Several improvements can be seen here. The classical MDS trans-
forms the questions always into the same area of the feature space,
thus, large parts remain empty. In contrast, the features for the
constrained MDS are much more spread out. Opposed to the case
for a single batch, the flat clustering is not able to split the questions
into a number of clusters comparable to the hierarchical clustering,
leading to very large clusters (largest cluster contains over 24000
questions, data set has about 67000 questions). On the other hand,
also the hierarchical has some clusters at the first level that are still
too large relative to the size of the data set (largest cluster contains
over 5000 questions).
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Figure 5.15: The cluster tree for the first 1 million questions from the data set
gutefrage. There are some very large clusters, the largest cluster
at the first level contains over 595 000 questions (more than half of
the processed questions), over 322 000 of them not clustered at a
deeper level (about a third of the processed questions). This shows
that the clustering has to be improved further.
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5.2 Recommender System

lup = ldown = 2. Additionally, 907 questions have been removed before. For the
brute-force recommender system, only 133 questions have no recommendations.
Although we would not expect that there is a meaningful clustering leading to
recommendations as good as for the brute-force recommender system, we can
probably get closer by improving the clustering further.
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question recomendations (rating)

ist dieser gamer pc gut
eigentlich schon oder

1. wird aus diesen teilen ein guter gamer pc
(0.598996)

2. brauche hilfe beim zusammenstellen eines gamer
pc (0.334987)

3. ist mein pc fuer games tauglich vor kurzen
gekauft (0.332321)

4. pc ist immer an (0.331645)

5. ist das ein pc zum zockenets2 (0.331272)

6. gamer pc konfiguration im high end bereich
(0.271904)

wie kann ich bei dem
samsung ue 40 d 6540
kanaele verschieben

1. eignet sich die gtx 650 zum zocken (0.166915)

2. gutes gamer notebook bis 650 gesucht (0.166915)

3. wird mein nexus one das neue android 40 bekom-
men (0.166904)

4. wie laeuft das update auf android 40 ab
(0.166904)

5. bringt es etwas pc viren in quarantaene zu ver-
schieben (0.166896)

6. wie verschieb ich dateien vom pc auf einen usb
stick (0.166896)

Table 5.8: The recommendations for two questions from the data set computer-
frage with their ratings. For the first question, the recommendations
are quite well while for the second questions there is no relation from
the question to the recommendations, as also indicated by the ratings.
Note, that the titles are normalized in a pre-processing step.
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(a) lup = ldown = 0

0.0 0.2 0.4 0.6 0.8 1.0
recommendation rating

0

5000

10000

15000

20000

25000

30000

35000

ab
so

lu
te

 fr
eq

ue
nc

y
(b) lup = ldown = 1
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(c) lup = ldown = 2
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(d) brute-force

Figure 5.16: Histograms for the recommendation ratings of the data set aut-
ofrage for different levels to look up and down in the cluster tree
to extend the search space. At the bottom right, the histogram
for the brute-force recommender system is shown, i.e. ratings are
computed pair-wise for all questions in the data set. This gives
us the theoretical best result we can achieve using any clustering
relative to the used rating function. We see slight improvements
for increasing the levels (it can not get worse of course), but also
for lup = ldown = 2 the brute-force ratings are significantly better.
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Of making many books there is no end,
and much study wearies the body.

— Ecclesiastes 12,12b

The two main goals of this work have been the analysis and improvement of the
clustering algorithm and the implementation of a clustering based recommender
system. Overall, the quality of the clustering could be improved significantly
while keeping the algorithm efficient in the sense that it could be used in an
online setting. On the other hand, especially for larger data sets we get still
too large and not meaningful clusters. To extract meaningful information from
the clustering or to use it for the recommender system for large data sets, the
clustering has to be improved further. But before discussing what could be done
in further investigation, let’s recap the most important results.

The first important step for the clustering is to define a dissimilarity measure
between the questions. Compared to the previous approach, i.e. the Levenshtein
metric, we could achieve quite good results here with the weighted pair-wise
Levenshtein approach. Similar questions are recognized as such in many cases
and also dissimilar questions have mostly large dissimilarity values. The criteria
via the Levenshtein metric to recognize words as similar works quite well and
generally meaningless words are excluded by a stop word list as well as high
frequent words in a specific data set are lower weighted. Also, the usage of the
tags via the weighted adjacency matrix compared to the Laplacian seems to be
more consistent.

To be able to process the questions via sparse grid density estimation, the
next step is to transform the questions into the feature space. Considering the
previous approach, i.e. using classical MDS, there has been no relation between
the batches. This problem was addressed by the constrained MDS, adding vir-
tual questions to a batch whose positions are fixed by additional constraints. To
compute the virtual questions, the clusters obtained from the previous processed
batches are used. Overall, we could relate the batches to some extent by this
approach yet, though it is an open question if the main assumption, i.e. that
a cluster can be represented by a reasonable low number of keywords combined
with the most frequent tags, holds at least for a reasonable large amount of the
clusters. Also, there are quite some parameters that influence the constrained
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MDS in a direct or indirect way, where it is not quite clear how far from optimal
the choices we made here are.

Considering the hierarchical clustering algorithm, we can split up the questions
into more and thus smaller clusters than the flat clustering algorithm is able to
for any density threshold. With the simple split method and the possibility
to not cluster every data item at every level, we are able to compute more
meaningful hierarchies compared to keeping the whole dendrogram as is done in
the classic hierarchical clustering algorithms (which is the result when we never
move child clusters up and cluster all nodes of a parent cluster also at the next
level). With the split threshold, we are able to control the height of the cluster
tree to some extent. While it is quite obvious that some choices for the split
threshold are too low and some are too high, it is not quite clear if there is any
optimal choice, as this could especially also depend on the underlying data (the
split algorithm only operates on the samples).

Considering the recommender system, we get already acceptable recommen-
dations for moderately large data sets. For larger data sets the clusters are still
too large, making it infeasible to compute recommendations via the approach
discussed here (at least we would have to skip large parts of the data set).

Now, let’s look at some approaches that we think could be worth investigat-
ing to further improve the clustering. First, as already indicated, it could be
worth to study some of the parameters in a more structured way. We already
observed that at least some of them are not independent, so this is not trivial.
To compare different parameter combinations, the ratings for the clustering pro-
vided in Section 5.1 as well as the log data as described in Section 4.2.2 and the
recommendation ratings could be used. Sparse grids could be employed to deal
with the high-dimensional parameter space. Still, the most relevant parameters
should be identified first (which should be mainly the ones newly introduced in
this thesis). It is not quite clear though, how much we can achieve by simply
optimizing the parameters. Most probably, there will be also more fundamen-
tal changes necessary. Going through some of the main steps in the overall
clustering algorithm, we suggest the following:

� String measures: While the pair-wise Levenshtein approach works quite
well already, there are still especially similar questions that are not rec-
ognized as such. Two main reasons for this are that synonyms as well
as compound words compared to their partwords normally will not be
recognized as similar. Dealing with the first one could get quite expen-
sive, but probably also not impossible. The second one, however, could
be done without increasing the complexity significantly, as the distance of
the substrings is computed by the algorithm for the Levenshtein metric
anyway.
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� Feature space transformation: A problem with the constrained MDS
is that the feature space will be filled nearly everywhere and there is no
space for new clusters, and we can not easily scale it as we would have to
reprocess the global density estimation somehow. We suggest the following
two approaches to deal with this:

– We could make use of the fact that the constrained MDS algorithm
is already designed to determine a reasonable number of dimensions
automatically. Thus, if needed, we could increase the number of di-
mensions from time to time. Neither the features of the already pro-
cessed questions nor the sparse grid density estimation would have to
be reprocessed necessarily when increasing the number of dimensions.
This could be achieved by setting the feature coordinates of the al-
ready processed questions to the middle of the sparse grid interval
for the new dimension (which is [0, 1] here). Due to the tensor prod-
uct approach of the sparse grid basis functions, extending the global
sparse grid with an additional dimension is then more or less trivial,
as we can just copy the surpluses and potentially have to scale them
to obtain a density (i.e. the integral of the sparse grid interpolant on
the extended sparse grid domain is 1).

– Instead of adding virtual questions to the feature space of the real
questions, we could compute virtual questions from single batches
and relate the batches by transforming the virtual questions of all
batches into their own feature space. We could then cluster the vir-
tual questions feature space and merge clusters from different batches
by this.

� Cluster post-processing: To post-process the clusters, two basic oper-
ations would be needed:

– Split: The main problem of the current clustering is that we get too
large clusters. Thus, we could try to somehow split the clusters if they
are too large or not meaningful, as e.g. indicated by the frequency
index. This could be done by reprocessing the questions inside a
cluster, cluster the resulting feature space and replace the cluster in
the global cluster tree by the resulting local cluster tree. We could
also just try to keep the cluster meaningful by removing questions
from the cluster that are not represented by its virtual question.

– Merge: As similar questions are not always transformed close to-
gether, there will be clusters that have essentially the same topic.
This could be discovered by the similarities of the virtual questions.
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6 Summary

So there is some work to do, many questions have been processed and many
will be in the future. The remaining question is this: “Will the virtual questions
get real?”—find some recommendations above!
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