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Abstract

Inverse problems, also called inference problems, are one of the most important and
well-studied mathematical model. In the past few decades, statistical inverse problems
have raised in many branches and fields of mathematics, science and engineering. In most
practical cases, they involve dealing with large data sets and high-dimensional problem
spaces, which makes them intractable to solve with high-fidelity forward models. For this
reason, different techniques for reducing computational costs are required, such as em-
ploying more efficient sampling methods, employing surrogate models that approximate
the high-fidelity models at much lower computational costs. Driven by this motivation,
this thesis targets on the analysis and experiments of sparse grid interpolants (SGI) as sur-
rogate models in the Bayesian inference framework. For assessing the quality of the SGI
as surrogate models, this thesis presents three experiments, which are inverse problems
based on three different classes of systems. The results show that the SGI surrogate mod-
els are suitable for statistical inverse problems. Indeed, they demonstrate good capability
of inferring parameters with sparse observed data containing large noise.
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Chapter 1

INTRODUCTION

1.1 Inverse Problems

An inverse problem is a framework that converts some observed data or measurements
into the values of the input parameters to a physical system that could have possibly pro-
duced such data. In other words, it is a mapping of the observed data to some hidden
quantities of the system that we are interested in. This is useful, because the information
of interest of the system cannot be directly measured or observed. Inverse problems are
also called inference problems, in the sense that, the solution of the problem is an inference
based on some observed evidence.

The mathematical expression of an inverse problem is given by

y = G(x) + η.

y ∈ D represents the data, obtained via observations or measurements, with certain error
or noise (due to the measurement procedure). G(·) : Ω → D represents the system that
relates the input parameters to the output data. It is usually referred to as the forward model
or forward system, since it is a mapping from the input (parameters) to the output (data).
In this sense, inverse problems are considered inverse, because they are a mapping from
the output to the input. G(x) represents the output of the forward model in the absence
of error or noise. x ∈ Ω represents the input parameters—the unknown of interest. And η
represents the noise.

Due to the fact that, in most cases, there is no explicit formula to map the data directly
to the parameters, i.e., x = G−1(y), solving an inverse problem relies on performing many
forward simulations with different plausible input parameters and comparing all the sim-
ulation outputs with the observed data [2]. Generally speaking, by solution strategies,
formulations of the inverse problems can be categorized into two groups—the determin-
istic approach, and the statistical approach [13]. Each of this formulation framework has
its own unique characteristics and properties, which makes one approach more preferable
than the other depending on the problem itself and/or one’s needs.

For a deterministic inverse problem, formulation is based on the classical regulariza-
tion framework, in which one defines a function for measuring the differences between
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1 INTRODUCTION

the observed data and the simulation data produced by feeding the forward system with
certain parameters, this term is called the data term; additionally, a penalty term is employed
for imposing physical model constraints, regularizations, bounds, etc., or encoding prior
informations of the solutions. A solution is then defined as the one that minimizes the two
terms. This framework produces a single “optimal“ solution that best fits the observable,
and therefore, is also referred to as an optimization-based approach. The regularization
methods are well studied. They address the issues of the ill-posedness of the inverse prob-
lems. However, they do not have a good ability to account for uncertainties. In practical
inverse problems, the observed data contains error, additionally, the model might not be
perfectly known. The deterministic approach does not have a good handle on these in-
evitable uncertainties, which are, by nature, stochastic.

A statistical inverse problem can be formulated under either the Bayesian or the Fre-
quentist probability framework. This thesis focuses on the Bayesian-based statistical ap-
proach. Instead of interpreting the differences between the observed data and the sim-
ulation data as absolute “distances“, and therefore, producing a definite “best“ result, it
re-defines the problem with conditional probabilities, i.e., given the observed data as evi-
dence, what is the probability of the input parameters being equal to certain values. This
approach leads to a probability density distribution called the posterior distribution in the
parameter space. The posterior distribution is the solution of the statistical inverse prob-
lem, which contains information about the best estimate of the parameter values. Due to
the stochastic nature of this formulation, the statistical approach is capable of accounting
for uncertainties at different stages of the modeling procedure, including the uncertainties
in the observed data and in the forward model itself [2].

To solve an inverse problem, one has to systematically sample from the parameter
space in order to perform forward simulations. When the inverse problem involves high
dimensional parameter space, obtaining parameter values with conventional spatial dis-
cretization methods becomes intractable. In such case, a more efficient sampling method is
needed. Markov Chain Monte Carlo (MCMC) methods are developed for this purpose. The
MCMC methods are developed upon two mathematical concepts: Monte Carlo methods,
which allows for random sampling over the parameter space; and Markov Chains, which
allows for convergence of the sampling procedure to the desired target distribution—the
posterior distribution. There exist a broad variety of MCMC methods. The method that is
used in this thesis is the Metropolis-Hastings algorithm, also known as the basic random
walk algorithm.

1.2 Surrogate Models

As already mentioned, solving an inverse problem relies on performing many forward
simulations with different input parameters. On one hand, if the forward model is com-
plex, carrying out the forward simulation can be very computationally expensive and time
consuming. On the other hand, if the parameter space is high-dimensional, a large number
of forward simulations is required. Therefore, for practical inverse problems, which are in
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1.2 Surrogate Models

most cases large-scale (high-dimensional parameter spaces, large and complex forward
simulation model), it is necessary to employ special techniques for reducing the computa-
tional costs. Generally speaking, there are three ways to achieve this goal: (1) reduce the
dimension of the parameter space, which results in a reduced number of forward simula-
tions; (2) reduce the number of forward simulations by employing more efficient sampling
methods; (3) instead of using a high-fidelity forward model that is computationally ex-
pensive, one can use an approximation to the high-fidelity forward model—the so-called
surrogate model that is much more computationally efficient [2].

There exist different kinds of surrogate models, which, according to Eldred et al., can
be categorized into three different classes: data-fit models, projection-based reduced-order
models, and hierarchical models [2]. The goal of this thesis is to analyze a data-fit surro-
gate model—the sparse grid interpolation-based, or sparse grid interpolants (SGI) surrogate
models—in the Bayesian inference problems. It order to assess their quality, they are ap-
plied to three different inverse problems based on different classes of mathematical mod-
els. For comparison, a different class of surrogate model, i.e., the projection-based reduced-
order model is also applied to the same problems.

The projection-based reduced-order models are derived using a projection frame-
work, which projects the governing equations of the high-fidelity forward model from
its (high dimensional) function space onto a reduced-order (lower dimensional) subspace.
The reduced-order subspace is spanned by a set of basis vectors, which can be constructed
by obtaining a series of snapshots of the system, i.e., the solution field of the forward
model evaluated at selected parameter values and time instants. The construction of the
projection-based models requires knowledge of the full forward model, i.e., the govern-
ing equations that define the evolution of the state of the system in response to the input
parameters. Therefore, they are said to be intrusive.

Data-fit models, on the other hand, are non-intrusive, because they treat the forward
model as a black-box. Data-fit models are generated using interpolation or regression of
the simulation data from the high-fidelity forward model, without the need of knowing
inner structure or the forward model. SGI belong to the data-fit model class. Sparse grid
interpolation, as its name suggests, is interpolation based on sparse grids, which are a spe-
cial discretization technique derived from hierarchical subspace decomposition and tensor
products. Compared to regular “full“ grids, sparse grids contain much less supports (grid
points or basis functions). Their number of supports does not have an exponential depen-
dence on the number of dimensions of the function space. Spaces spanned by sparse grids
can efficiently approximate the function spaces spanned by full grids, in terms of accuracy
and computational costs, assuming certain smoothness conditions are met. Therefore, SGI
can be used as surrogate models in inverse problems with high-dimensional parameter
spaces.

5



1 INTRODUCTION

1.3 Experiments

In this thesis, we apply the SGI and one of the projection-based models (will be specified
below) as surrogate models to three different statistical inverse problems: (1) inference of
heat source locations in a 2-D geometry, (2) inference of obstacle locations in a laminar
flow, and (3) inference of geometric parameters of an acoustic horn.

The first problem is based on a diffusion system, i.e., the Poisson’s equation, whose
solution field is the temperature field. The system is linear in the state but nonlinear in the
parameters. In this experiment, one, two, three and four heat sources are placed in a 2-D
square domain, resulting in 2-D, 4-D, 6-D and 8-D parameter spaces. The observed data set
are obtained by taking a subset of the solution field solved at different time instants with
perturbation. The problem is solved by using the random walk MCMC solver with both
the SGI and POD models. The POD model is a projection-based reduced-order model
constructed with the proper orthogonal decomposition method. Error analysis, runtime
efficiency and the inference results of the two models are compared.

The second problem is based on the 2-D Navier-Stokes equations, which simulate the
motion of a non-stationary incompressible laminar flow in a 2-D channel. The solution
fields of the system include two velocity fields and one pressure field. The system is non-
linear in the velocity fields, and linear in the pressure field. In this experiment, one, two,
three and four obstacles are places in the channel, resulting in 2-D, 4-D, 6-D and 8-D pa-
rameter spaces. The observed data set contains data from only the velocity fields. It is
obtained by taking a subset of the velocity fields solved at different time instants with per-
turbation. The problem is solved by using the random walk MCMC solver with both the
SGI and POD models. Error analysis, runtime efficiency and the inference results of the
two models are compared.

The third problem is based on the Helmholtz linear elliptic model, which is a linear
and time-independent system. An acoustic horn in a 2-D geometry is determined by six
geometric parameters. Once the shape of the acoustic horn is defined, the acoustic pres-
sure field can be solved. Inference of the geometric parameters results in a 6-D parameter
space. The observed data set are obtained by taking a subset of the solution field with
perturbation. The problem is solved by using the MCMC solver with both the SGI and
RB models. The RB model is a projection-based reduced-order model constructed with the
reduced basis greed algorithm. Error analysis, runtime efficiency and the inference results
of the two models are compared.

For all three experiments, the SGI models are constructed by using the sparse grid
interpolation toolbox developed by Andreas Klimke, see [12]. For the last experiment, the
forward model and the RB model is taken from the source code developed by the group
of Professor Dr. Anthony T. Patera, Massachusetts Institute of Technology.
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Chapter 2

DETERMINISTIC INVERSION THEORY

This chapter provides a general review of the deterministic formulation of the inverse
problems. Although the emphasis in this thesis is not on deterministic inverse problems, it
is important to understand the philosophy behind them, because they are an important as-
pect of the inverse problems, and by comparison, it helps to obtain a better understanding
of the advantages and convenience of the statistical approach.

2.1 Data Matching

This section is mainly based on [15] unless otherwise indicated. Consider the following
inverse problem

y = G(x) + η (2.1)

where y ∈ RN represents the observed data with noises,G(·) represents the forward model
that relates parameters to output, x ∈ RM represents a set of unknown parameters, which
defines a solution to the problem, and η represents the noises. To infer the parameters,
a simple and direct way is to define a mismatch function ∆(y,G(x)), which measures the
difference, or “distance“, between the observed data y and the forward model outputG(x)
produced by a parameter set x. A smaller value of ∆(·) indicates a better match of the
forward model output to the observed data. The solution to the inverse problem is then
defined as

x̂ = arg min
x

{∆(y,G(x))} . (2.2)

There are certainly different ways to define the mismatch function. Listed below are
some of the most commonly used ones:

• Least squares (LS):
∆(y,G(x)) = ‖y −G(x)‖2 (2.3)

• Weighted least squares (WLS):

∆(y,G(x)) = ‖y −G(x)‖ 2
Q

= (y −G(x))TQ(y −G(x))
(2.4)

9



2 DETERMINISTIC INVERSION THEORY

• Lp norm:
∆(y,G(x)) = ‖y −G(x)‖p (2.5)

• Kullback-Leibler (KL):
∆(y,G(x)) = y ln

y

G(x)
(2.6)

• Symmetric form of Kullback-Leibler:

∆(y,G(x)) = y ln
y

G(x)
+G(x) ln

G(x)

y
(2.7)

While having simplicity as a main advantage, it is well known that this method does
not provide satisfactory results unless the problem is really simple and well-conditioned.
With this formulation, the solution may or may not exist, or even if the solution exits, it
may not be unique. Additionally, it is very sensitive to errors presented in data. Indeed,
most inverse problems, especially practical ones, are ill-posed, meaning that small pertur-
bation in the data may lead to large error in the inversion estimates [2]. To show all the
mentioned difficulties, a simple example is provided in the following section.

2.2 Ill-posedness of Inverse Problems: A Simple Example

This section is mainly based on [13] unless otherwise indicated. Consider the following
linear inverse problem

y = Ax (2.8)

where A ∈ RN×M , x ∈ RM , and y ∈ RN . Let y∗ be an observed dataset that contains no
error. We then seek to find x such that

Ax = y∗ (2.9)

Note thatM is the number of parameters andN is the number of independent data. When
N > M , the above liner system is over-determined. When N < M the system is under-
determined. To solve for x, consider singular value decomposition (SVD) of A:

A = UΣV T , (2.10)

where U ∈ RN×N is an orthogonal matrix, i.e., UUT = UTU = I , that spans the data space,
i.e., y∗ ∈ span(U), and V ∈ RM×M is an orthogonal matrix, i.e., V V T = V TV = I , that
spans the parameter space, i.e. x ∈ span(V ), and Σ ∈ RN×M is a diagonal matrix with
non-negative entries, i.e.,

Σ =


σ1 0 . . . 0 . . . 0
0 σ2 . . . 0 . . . 0
...

...
. . .

...
...

0 0 . . . σp . . . 0
...

...
...

...

 , where σ1 ≥ σ2 ≥ . . . ≥ σp , p ≤ min (M,N).

10



2.2 Ill-posedness of Inverse Problems: A Simple Example

Supposed there are p non-zero singular values in Σ, then A can be expressed as

A = [Up |U0]

[
Σp 0
0 0

]
[Vp |V0]T

= UpΣpV
T
p ,

(2.11)

where

Up ∈ RN×p, U0 ∈ RN×(N−p), UpU
T
p = UTp Up = I, UpU

T
0 = U0U

T
p = I

Vp ∈ RM×p, V0 ∈ RM×(M−p), VpV
T
p = V T

p Vp = I, VpV
T

0 = V0V
T
p = I

Σp ∈ Rp×p

Thus, the observables can be expressed w.r.t. the basis vectors in U , i.e.,

y∗ = Upyp + U0y0 , (2.12)

and the solution can be expressed w.r.t. the basis vectors in V , i.e.,

x = V pxp + V 0x0 . (2.13)

Hence, we get

Ax = y∗

(UpΣpV
T
p

) (V pxp + V 0x0) = Upyp + U0y0

(UpΣp)xp = Upyp + U0y0

(2.14)

Observe that

• If y0 6= 0, then a solution does not exist.

• If y0 = 0, then (UpΣp)xp = Upyp =⇒ xp = Σ−1
p
yp . However, x0 is indeterminate,

meaning that if p < M =⇒ ∃V0, there are infinitely many solutions.

• If y0 = 0 and p ≥M , i.e., @V0 =⇒ V = Vp , then a unique solution exists:

x∗ = V pxp

= V pΣ−1
p
yp

= V pΣ−1
p
U T

p
y∗

• If y0 = 0 and p ≥M , but the observed data is slightly perturbed, i.e.,

ỹ∗ = Up(yp + ε), |ε| � |yp |

then the unique solution is

x̃∗ = V p x̃p

= V pΣ−1
p

(yp + ε)

= V p(xp + Σ−1
p
ε)

11



2 DETERMINISTIC INVERSION THEORY

Therefore, the sensitivity of this problem to error can be expressed as

|x̃∗ − x∗|
|x∗|

=
|x̃p − xp |
|xp |

=
|Σ−1

p
ε|

|Σ−1
p
yp |
.

Even though condition |ε| � |yp | is satisfied, it is not hard to find a situation where
the above ratio can get very big. Suppose

Σ =


σ1 0 . . . 0
0 σ2 . . . 0
...

...
. . .

...
0 0 . . . σp

 , and yp =


1
0
...
0

 , ε =


0
0
...
ε

 , |ε| � 1

then,
|Σ−1

p
ε|

|Σ−1
p
yp |

=
ε/σp

1/σ1

= |ε|σ1

σp

.

If the condition number K(Σ) is large, i.e., σ1
σp
� 1, the solution x̃∗ can be drastically

different than x∗.

The analysis above can be extended to infinite-dimensional linear inverse problems.
With nonlinear inverse problems, things can get even worse. In conclusion, inverse prob-
lems are ill-posed, because

• solution might not exist; or
• multiple solutions might exist;
• even if there exists a unique solution, the problem can be very sensitive to random

perturbation in the data; and
• it might be impossible to find a perfectly matched data.

2.3 The Deterministic Approach: Regularization Theory

This section is mainly based on [13, 11] unless otherwise indicated. To address the afore-
mentioned issues of the inverse problems, an extra term is introduced to the definition of
the solution, i.e.,

x̂ = arg min
x

{∆1(y,G(x)) + ∆2(x)} . (2.15)

This is a general form of the deterministic formulation of inverse problems. The first term
provides a measure to the degree of matching between the observed data and the output
produced by a solution, and is often referred to as the data term. The second term encodes
additional information or prior knowledge about the solution. It is referred to as the regu-
larization term, or the penalty term, which is usually of the form of a penalty that penalizes
violation of physical constraints or other restrictions. Through this term, extra rules of
the model, such as restrictions for smoothness, or bounds on the vector space norm, or
preferences of some solutions over the other can be imposed.

12



2.3 The Deterministic Approach: Regularization Theory

An example of this regularization scheme is the Tikhonov regularization, a commonly
used regularization method. For the linear problem presented by equation (2.8) , its
Tikhonov regularization formula can be

x∗ = arg min
x

{
‖Ax− y∗‖2 + ‖Γx‖2

}
, (2.16)

where ‖·‖ is the Euclidean norm. The term ‖Ax− y∗‖2 minimizes the residual when
Ax = y∗ is ill-posed, i.e., when Ax 6= y∗. The regularization term ‖Γx‖2 includes a
Tikhonov matrix Γ, which, when suitably chosen, gives preference to a particular solu-
tion with desirable properties. In many cases Γ can be chosen as the identity matrix, and
a balancing parameter, called the regularization constant can be introduced instead, i.e.,
‖Γx‖2 = δ ‖x‖2.

For problem
x∗ = arg min

x

{
‖Ax− y∗‖2 + δ ‖x‖2

}
, (2.17)

it can be shown that it has a unique solution, which is given by

x∗ = (ATA+ δI)−1AT y∗

=

p∑
j=1

σj
σ2
j + δ

(uTj y∗)vj ,
(2.18)

assuming A = UΣV and Σ has p singular values. δ balances the data term with the reg-
ularization term. A larger δ gives more emphasis to the penalty, while a smaller δ gives
more emphasis to the data. An appropriate choice of δ should be based on the noise level
in the data.

While the regularization methods address the issues caused by the ill-posed nature
of the inverse problems, due to their deterministic structure, they lack the ability of ac-
counting for uncertainties, which are inevitably presented in the data, and very often in
the simulation model as well. To deal with uncertainties at different stages of the modeling
and problem solving procedure, it is much easier in a probabilistic approach.
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Chapter 3

STATISTICAL INVERSION THEORY

Statistical inverse problem is the underlying framework of this thesis. This chapter ex-
plains the statistical approach—in particular, the Bayesian approach— towards inverse
problems. It also demonstrates how to assess uncertainties present in the forward model.
In the end, it compares the deterministic and the statistical approach and unfolds the dif-
ferences between them.

3.1 The Statistical Approach: Bayesian Inference

3.1.1 The Bayes’ Theorem

This section is mainly based on [11] unless otherwise indicated. Generally speaking, prob-
ability is a measure of the likelihood of the occurrence of a certain event. There are different
interpretations of the concept of probability. In the Bayesian interpretation, probability is
considered as a degree of belief [13] and conditional to prior assumptions and experience
of the observer. It could be updated in the presence of new evidence. The heart of Bayesian
probability is the Bayes’ Theorem, which is given by:

Theorem 3.1 Bayes’ Theorem

P (A|B) =
P (B|A)P (A)

P (B)
, P (B) > 0

Bayes’ theorem is a simple consequence of manipulating the conditional probability, since
by definition P (A|B) = P (AB)

P (B) , and thus P (AB) = P (A|B)P (B) = P (B|A)P (A) [19].
It is extremely useful for making inferences about phenomena that cannot be observed
directly, because it links the degree of belief in a proposition before and after accounting
for evidence. For event A being the proposition, and event B being the evidence,

• P (A) is the initial degree of belief in A.
• P (B|A) is the belief in B given that A is true.
• P (A|B) is the degree of belief in A having accounted for B.
• P (B) is the marginal probability of B disregarding the degree of belief in A.

15



3 STATISTICAL INVERSION THEORY

3.1.2 Bayesian Inference

This section is mainly based on [11] unless otherwise indicated. The statistical inversion
approach is based on the following principles: (1) All variables included in the inference
framework are modeled as random variables; (2) the randomness describes the observer’s
degree of information concerning the realizations of these variables; (3) the degree of infor-
mation concerning these variables is coded in the probability distributions; (4) The solution
to the inverse problem is the posterior probability distribution.

In Bayesian inference, since all variables are modeled as random variables, the previ-
ously mentioned inverse problem given by equation (2.1) can be expressed as

Y = G(X) +H (3.1)

where the capital letters denote random variables, and X ∈ RM , Y,H ∈ RN . The solution
to equation (3.1) is formulated as

πXY (x | y) =
πXY (y |x)πX (x)

πY (y)
(3.2)

where π(·) is a probability density function (PDF) that describes the relative likelihood for
a random variable to take on a given value. For example, πX (x) denotes the probability of
random variable X takes on value x, i.e., πX (x) = P (X = x). To simplify notations, for the
rest of this thesis, the capital letter subscripts in PDFs will be omitted, since all variables
are known to be random variables.

In equation (3.2) ,

• π(x | y), called the posterior distribution, or simply the posterior, denotes the degree of
belief that the parameter set X is equal to x having accounted for the fact(evidence)
that the observed data Y is equal to y.

• π(x), called the prior, denotes the initial degree of belief of the parameter X being
equal to x prior to the measurements.

• π(y |x), called the likelihood, denotes the degree of belief that the observed data Y is
equal to y given that the parameter X is equal to x.

• π(y), called the marginal likelihood, or the model evidence, denotes the marginal proba-
bility of the observed data Y being equal to y, regardless of what the value of X is. It
is called the model evidence, because it is an indicator of the relative confidence level
of a certain model, when assessing and comparing the reliability of different models.

Notice that, the unknown of interest X does not appear in the model evidence term π(y).
This factor is indeed the same for all possible x values being considered [13]. Therefore,
when not assessing the uncertainty of the simulation model, the solution to equation (3.1)
can be simplified as

π(x | y) ∝ π(y |x)π(x), (3.3)

16
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in which case the posterior distribution is obtained by normalizing the product of the
likelihood and the prior. More precisely, let us define the solution as

πpos(x) := π̃(x | y) = π(y |x)πpr(x), (3.4)

where π̃(x | y) denotes the value of π(x | y) up to a constant, i.e., π̃(x | y) = π(x | y)
c .

3.1.3 Construction of the Likelihood Function

This section is mainly based on [11] unless otherwise indicated. The likelihood function
contains the forward model evaluation, as well as information about the noise—the un-
certainties presented in the observed data. In most cases, the noise is modeled as additive
and mutually independent of the parameters, i.e., as previously mentioned,

Y = G(X) +H,

where X ∈ RM and Y,H ∈ RN . This modeling assumption ensures that the probability
distribution of H remains unaltered regardless of what value X takes on. Therefore, when
fix X = x, one can deduce that the probability of Y conditioned on X = x is equal to the
probability distribution of H , since

π(y |x) = π(G(x) + η |x) = π(G(x) + η |G(x)) ≡ πnoise(η), (3.5)

where πnoise(η) represents the probability distribution of the noise H . The likelihood func-
tion is then

π(y |x) = πnoise(y −G(x)) (3.6)

Hence, the posterior distribution is

πpos(x) = π̃(x | y) = πnoise(y −G(x))πpr(x) (3.7)

However, when the parameter X and the noise H are not mutually independent, the
situation becomes more complicated. In such case, the problem is given by

Y = G(X) +HX , (3.8)

where HX denotes that the random variable H has some dependence on random variable
X , thus HX ∼ πnoise(x, η) = πnoise(η |x)π(x). Therefore, the information of an additional
PDF, i.e., πnoise(η |x) is required. With this information, the likelihood is then given by

π(y |x) =

∫
RM

π(y |x, η)πnoise(η |x)dη (3.9)

When both X = x and H = η are fixed, Y is completely specified, therefore,

π(y |x, η) = π(y −G(x)− η). (3.10)

Substituting equation (3.10) into equation (3.9) yields

π(y |x) = πnoise(y −G(x) |x). (3.11)

Hence, the posterior distribution is

πpos(x) = π̃(x | y) = πnoise(y −G(x) |x)πpr(x) (3.12)
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3.1.4 Construction of the Prior Function

The majority of research in Bayesian inference has been on finding ways to sample from
the posterior distribution, and deriving better priors. Indeed, some argue that “the con-
struction of the prior density is the most crucial step and often also the most challenging
part of the solution“ [11]. The major problem with constructing a good prior function usu-
ally lies in the nature of the prior information. For example, the prior knowledge of the
unknown can be qualitative rather than quantitative, which is often the case in practical
inverse problems. In such cases, the construction of the prior function then consists of
transforming qualitative information into a quantitative form that can be coded into the
prior distribution [11]. There are various ways, methods and techniques for constructing
the prior distribution. Covering all these methods in detail is out of the scope of this the-
sis. In this section, we will have a brief discussion on different kinds of prior functions
commonly being used.

The rest of this section is mainly based on [13] unless otherwise indicated. In general,
the prior functions can be categorized into the informative or the uninformative families.
The informative priors express or convey some specific information about the parameters.
This information can be based on historical data, insight, or personal beliefs. Typically,
conjugate priors, non-conjugate priors such as the exponential families1and the maximum
entropy priors are the subgroups of the informative priors.

If the posterior distribution is in the same distribution family as the prior function,
the prior is called a conjugate prior for the likelihood. For example, the Gaussian family is
conjugate to itself with respect to a Gaussian likelihood function. If the likelihood func-
tion is Gaussian, choosing a Gaussian prior will ensure that the posterior distribution is
also Gaussian. Some will choose a conjugate prior when they can, to make calculation
of the posterior distribution easier, because conjugate priors offer analytical tractability.
However, in many practical cases, conjugate prior is not applicable.

The exponential families form an important class of probability distributions sharing
a certain form, which is chosen for mathematical convenience. The exponential families
include many of the most common distributions, such as normal, exponential, gamma,
beta, Dirichlet, Bernoulli, Poisson and many others. The exponential families provide a
framework for parameterizing the distribution in terms of natural parameters, as well as
defining useful sample statistics (natural sufficient statistics).

A maximum entropy probability is the probability distribution whose entropy H , de-
fined as

H(X) = −
∫ ∞
−∞

p(x) log p(x)dx,

is the largest all other members of the same family. According to the principle of maximum

1Probability density distributions are commonly parameterized, i.e., characterized by unspecified parame-
ters. A distribution family is a collection of PDFs sharing the same form and same set of parameters. For
instance, the most common one is the normal or Gaussian distribution. Other commonly used distributions
include uniform, Beta, Bernoulli, Exponential, Binomial, Poisson and many others.
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entropy, if nothing about a distribution but the class is known, then the distribution with
the largest entropy in the class should be chosen as default. An entropy can be viewed
as a rough measure of information. A distribution with large entropy carries the fewest
constraints.

In contrast to the informative priors, uninformative priors express vague or general
information about the parameters. Sometimes they are also referred to as objective priors,
because they are not subjectively elicited. They can be considered as reference or default
priors when the prior information is missing. They can also express“objective“ informa-
tion such as “the variable is positive“ or “the variable is less than some limit“. The simplest
rule for determining an uninformative prior is the principle of indifference, which assigns
equal probabilities to all possibilities.

3.2 Bayesian Inference for Model Validation

This section is mainly based on [13] unless otherwise indicated. As mentioned previously,
the statistical approach is capable of accounting for uncertainties in the simulation model,
which is one of the advantages of the statistical approach over the deterministic approach.
If one is uncertain about a model or wants to compare different models, it is possible to
assess the reliability of the models. The following demonstrates how to achieve this goal.

Suppose there are two modelsM1 andM2, each of which is associated with a set of
parameters x1 and x2. Incorporating the model in the solution framework, the solution is
then given by:

π(xi | y,Mi) =
π(y |xi,Mi)π(xi,Mi)

π(y |Mi)
, i = {1, 2} (3.13)

The best model is the one that is more probable to have generated the data we observed. In
other words, given the observed data y, the best model should have a higher probability.
Therefore, the better model of the two is determined by π(M1 | y)

π(M2 | y) . If this ratio is greater
than 1, it meansM1 is more probable, otherwiseM2 is more probable. Since, according to
the Bayes’ theorem

π(Mi | y) =
π(y |Mi)π(Mi)

π(y)
, (3.14)

and

π(y |Mi) =

∫
π(y |xi,Mi)π(xi |Mi)dxi, (3.15)

we then have

π(M1 | y)

π(M2 | y)
=
π(y |M1)π(M1)

π(y |M2)π(M2)

=

∫
π(y |x1,M1)π(x1 |M1)dx1∫
π(y |x2,M2)π(x2 |M2)dx2

π(M1)

π(M2)
,

(3.16)

19



3 STATISTICAL INVERSION THEORY

where
∫
π(y |x1,M1)π(x1 |M1)dx1∫
π(y |x2,M2)π(x2 |M2)dx2

is called the Bayes factor, and π(M1)
π(M2) is called the model prior,

representing the prior knowledge or preference of the models.

Here is an example. In a coin flipping experiment, let X be the probability of getting
heads. There are two models: M1 represents a fair model, in which X ∼ Beta(100, 100);
M2 represents an unfair model, in which X ∼ Beta(0.5, 0.5). The observed data is two
heads and 3 tails, i.e., Y = y = {H,T,H, T, T}. Then the Bayes factor is given by∫

x2(1− x)3x99(1− x)99/Beta(100, 100)dx∫
x2(1− x)3x−0.5(1− x)−0.5/Beta(0.5, 0.5)dx

=
0.031

0.012
. (3.17)

Thus, the model validation ratio is
π(M1 | y)

π(M2 | y)
= 2.58

π(M1)

π(M2)
. (3.18)

If the model prior is 0.5
0.5 , meaning that both models are equally probable, thenM1 is the

best model of the two.

Note that model validation is given by a ratio, which represents the relative confi-
dence level of one model in comparison to another. It makes no sense to perform model
validation when there is only one model, because there is no reference for determining if
the model is good or bad.

3.3 Comparison: Deterministic Approach vs. Statistical Approach

In summary, the differences between the deterministic and statistical inverse problems are:

• From the solution point of view, the deterministic approach produces a single esti-
mate; while the statistical approach produces a probability distribution that can be
used for obtaining estimates.

• From the formulation point of view, to cope with the ill-posedness of the inverse
problems, the deterministic approach relies on a more or less ad hoc removal of the
ill-posedness; while the statistical approach re-states the inverse problems as a well-
posed extension in a large space of probability distributions [2].

• In the deterministic approach, the prior information of the parameters and any other
knowledge regarding the modeling procedure are implicitly included in the regu-
larization term; while in the statistical approach, these information are explicitly,
transparently coded into the prior function.

• Due to the nature of the two approaches, it is much easier and more convenient in
the statistical approach to handle uncertainties in different stages of the modeling
and problem solving procedure. It is worth mentioning that the statistical approach
is capable of assessing uncertainties in the simulation model, while the deterministic
approach is not.
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3.3 Comparison: Deterministic Approach vs. Statistical Approach

The stochastic structure of the statistical approach is a clear advantage, because in-
verse problems require statistical characterization due to uncertainties in the data and
model, and/or that the prior information are modeled as random. However, in certain
cases, it is still advantageous for choosing the deterministic approach. Especially for large-
scale inverse problems, the choice of algorithms depends on the problem formulation and
a balance of computational resources and a complete statistical characterization of the in-
version estimates [2]. If time to solution is the priority, the deterministic approach offers
a computationally efficient strategy but at a cost of statistical inflexibility. If a complete
statistical characterization is required, the statistical approach is the choice, but it might
require large computational resources [2].
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Chapter 4

MARKOV CHAIN MONTE CARLO METHODS

Markov Chain Monte Carlo (MCMC) methods are typically used for drawing samples
from the posterior distribution in statistical inverse problems. The MCMC methods rely
on repeated random sampling, which decouples dimensionality of the parameter space
from the sampling process. Such feature makes it a standard solver for inference problems
with high-dimensional parameter spaces. This chapter explains the theory and philosophy
behind the MCMC methods, and introduces a specific MCMC algorithm that is used in this
thesis—the random walk Metropolis-Hastings algorithm.

4.1 Monte Carlo Integration

This section is mainly based on [14] unless otherwise indicated. Monte Carlo integration,
as its name suggests, is a method for computing integrals based on random sampling. In
contrast to other algorithms that evaluate the integrand at a regular grid, Monte Carlo in-
tegration randomly choose the points at which the integrand is evaluated. Specifically, if
the variables of a function are distributed according to some distribution, it draws random
samples from this distribution and estimates the integral by averaging function evalua-
tions at these sample points.

Let Ω ⊂ Rd and π : Ω → [0,∞) be a probability distribution over domain Ω, i.e.,∫
Ωπ(x)dx = 1. Then,

Iπ(f) =

∫
Ω
f(x)π(x)dx = Eπ(f). (4.1)

Theorem 4.1 Strong Law of Large Numbers
Let (Xn)n>0 be a series of n independent identically distributed (i.i.d.) random variables distributed
according to π. Then,

P

(
lim
x→∞

1

n

n∑
i=1

f(Xi) = Eπ(f)

)
= 1.

According to the strong law of large numbers, which basically states that the function
evaluation average converges almost surely to its expected value as the number of sam-
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ples increases, it is possible to approximate the integral in equation (4.1) by drawing a
sufficiently large number of samples from π and computing the average of evaluations of
f(·) at these samples, i.e.,

Eπ(f) ≈ 1

n

n∑
i=1

f(xi), xi ∼ π(x) (4.2)

In this procedure, analytic integration is replaced with summation over a set of random
samples. Higher accuracy of the approximation can be achieved by increasing n. It is
important to note that the independence of the samples affects the precision of the approx-
imation. Correlation of the samples decreases the effective sample size.

4.2 Markov Chains

This section is mainly based on [4, 13, 18] unless otherwise indicated. Markov chains
are a mathematical model that transitions from one state to another [18]. In the context
of sampling, a first order Markov chain is defined to be a series of random variables
X1, X2, . . . , XN distributed according to p(x) such that the following property holds for
all n ∈ {1, . . . , N − 1}

p(xn+1 |x1, . . . , xn) = p(xn+1 |xn). (4.3)

The series of random variables are the “states“ that the chain goes through. From the
definition, we can see that the value of the next state is only dependent on the current
state. This local dependency of the procedure is often referred to as “memorylessness“.

The probability distribution that transfers the chain from one state xn to the next state
xn+1 is called the transition kernel, denoted as T (xn, xn+1). It is indeed the conditional
probability for the subsequent variable, i.e.,

T (xn, xn+1) ≡ p(xn+1 |xn). (4.4)

Definition 4.2 Invariant distribution
A distribution p(x) is called invariant w.r.t. a Markov chain if and only if∫

T (x, y)p(x)dx = p(y)

With an invariant distribution, the transition kernel of the Markov chain does not depend
on the state index, i.e.,

T (xn, xn+1) = T (xn + k, xn+k+1), (4.5)

in which case the chain is said to be stationary. Invariant distributions are also referred to
as stationary, or equilibrium distributions. Note that a Markov chain may have more than
one invariant distributions.
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In the statistical inference framework, we want to employ Markov chains in the sam-
pling process. Note that, we can achieve the goal of sampling from the posterior distribu-
tion, if we choose a chain whose invariant distribution is exactly the posterior distribution.
Therefore, we are interested in under what circumstances will a Markov chain converge
and how to ensure that it converges to a desired distribution. Listed below are some prop-
erties of Markov chains that are related to convergence:

• Irreducibility [13]: A Markov chain is irreducible if

T k(xi, xj) > 0 ∀ i, j ∈ {1, . . . , N} , k <∞,

where k represents the number of steps(transitions). Simply put, a Markov chain is
irreducible if it is possible to get to any state from any state in a finite number of
steps. This is easily satisfied if

∀y : p(y) > 0→ T (x, y) = p(y |x) > 0 ∀x.

• Aperiodicity [13]: The period of a state d(x) = g.c.d.
{
k ≥ 1 : T k(x, x) > 0

}
, where

g.c.d. is the greatest common divisor and k denotes the number of steps(transitions).
A chain is aperiodic if d(x) = 1 ∀x. This is usually satisfied because in sampling,
states X are random variables subjected to stochastic processes, hence not periodic.

• Reversibility [13]: A Markov chain is reversible if its transition kernel satisfies the
detailed balance condition, given by

p(xn)T (xn, xn+1) = p(xn+1)T (xn+1, xn)

Reversibility implies that the chain is stationary, i.e., p-invariant, because∫
p(xn)T (xn, xn+1)dxn =

∫
p(xn+1)T (xn+1, xn)dxn

= p(xn+1)

∫
T (xn+1, xn)dxn

= p(xn+1)

Indeed, detailed balance is a sufficient but not necessary condition for ensuring that
p(x) is an invariant distribution [4].

Theorem 4.3 Markov Chain Convergence Theorems [10]
For any irreducible and aperiodic Markov chain,

• there exists at least one invariant distribution (Existence).
• there exists exactly one invariant distribution (Uniqueness).
• let p∗(x) be the invariant distribution, for any initial distribution p(x0), p(xn)

n→∞−−−→ p∗(x)
(Ergodicity).
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The complete proof of the above theorems is rather long and would not fit in a review
section like this. The proof can be found in [9, 10]. The convergence theorems state that if
a Markov chain is irreducible and aperiodic, it will surely converge to a unique invariant
distribution regardless of its initial state.

In summary, a Markov chain can be ensured to converge to a desired distribution p(x)
by satisfying these conditions [4, 13]:

• Irreducibility
• Aperiodicity
• Reversibility

4.3 Markov Chain Monte Carlo: Metropolis-Hastings Algorithm

This section is mainly based on [13] unless otherwise indicated. The MCMC methods,
which are a combination of the Monte Carlo integration and Markov chains, draw random
samples from the posterior distribution asymptotically. This means: they draw samples ac-
curately from the the posterior distribution not from the beginning, but after a significant
number of steps after the Markov chain converges. To achieve this goal, we have to con-
struct the Markov chain in such a way that it will surely converge to exactly the posterior
distribution (target distribution).

The first successful attempt was the Metropolis algorithm, proposed by N. Metropolis
in 1953. It can be summarized as the following:

Algorithm 4.4 Metropolis Algorithm
Let p(x) be the target distribution and q(a | b) a symmetric distribution, i.e., q(a | b) = q(b | a).
Given state xn at step n:

1. Draw a proposal x∗ from q(x∗ |xn)
2. Calculate acceptance ratio:

a(xn, x
∗) = min

{
1,

p(x∗)

p(xn)

}
3. Update the next state by setting

xn+1 =

{
x∗ with probability a(xn, x

∗)
xn with probability 1− a(xn, x

∗)

Note that in the above algorithm, the proposal distribution q is required to be sym-
metric. A more generalized algorithm without such constraint is called the Metropolis-
Hastings algorithm, with the following major steps:

Algorithm 4.5 Metropolis-Hastings Algorithm
Let p(x) be the target distribution and q(a | b) any (symmetric or asymmetric) distribution. Given
state xn at step n:
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1. Draw a proposal y from q(x∗ |xn)
2. Calculate acceptance ratio:

a(xn, x
∗) = min

{
1,

p(x∗)

p(xn)

q(xn |x∗)
q(x∗ |xn)

}
3. Update the next state by setting

xn+1 =

{
x∗ with probability a(xn, x

∗)
xn with probability 1− a(xn, x

∗)

It can be shown that, in this algorithm, the transition kernel T (xn |xn+1) satisfies the
detailed balance condition and that the Markov chain is irreducible and aperiodic [13],
guaranteeing convergence towards the target distribution. However, the convergence rate
depends on the choice of proposal distribution and the updating strategy.

In this thesis, the MCMC solver is implemented according to algorithm 4.5 with a
normal proposal distribution and a component-wise updating strategy. The proposal dis-
tribution is given by

q(x∗ |xn) = N (xn, σ)

where σ, referred to as the random walk step size, is chosen to be 1/20 of the domain
size of the specific problem. With component-wise updating strategy, we update only one
dimension of X ∈ RM at each step, e.g.,

X(n) =



x
(n)
1
...

x
(n)
i
...

x
(n)
M


→ X(n+1) =



x
(n)
1
...

x
(n+1)
i

...
x

(n)
M


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Chapter 5

PROJECTION-BASED REDUCED-ORDER
MODELS

Although projection-based reduced-order models are not the focus of this thesis, they are
employed in every experiment, as a reference for analyzing the sparse grid interpolation-
based surrogate models. Therefore, this chapter provides a brief review of the general
projection-based model reduction framework, as well as the specific methods that are used
in this thesis—the proper orthogonal decomposition (POD) method and the reduced basis
(RB) greedy algorithm.

5.1 Projection-Based Model Reduction

Projection-based model reduction methods derive a reduced model by projecting the gov-
erning equations from its function space onto a subspace spanned by a set of basis vectors.
This is possible because in many cases, trajectories of high-fidelity models are contained in
low dimensional subspaces. Amongst all available methods of computing the basis vec-
tors, the POD method is a very commonly used method, which is applicable to both linear
and nonlinear systems. Before diving into the method, let us first review the full forward
models and formalize the notations.

5.1.1 The Full-Order Forward Model

This section is mainly based on [2] unless otherwise indicated. This section focuses on
breaking down the full-order forward model into more defined elements, which will be
used in the projection-based model reduction framework. For inverse problem

y = G(x) + η, (5.1)

the forward model G can be broken into two elements: the state equation that describes the
evolution of the state u of the system in response to the input parameters x, and the output
equation that maps the system state u to the system output y∗.
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5 PROJECTION-BASED REDUCED-ORDER MODELS

A general nonlinear model, which might result from spatial discretization of partial
differential equations, can be written as

u̇ = f(u, x, t), (5.2a)
y∗ = h(u, x, t), (5.2b)

u(x, 0) = u0(x). (5.2c)

In this system, u(x, t) ∈ RN is the discretized state vector of N unknowns. The expression
u(x, t) emphasizes the dependence of the state vector u on the input parameters x and time
t. x ∈ Ω ⊆ RM is the vector of M input parameters in the parameter space Ω. y∗ denotes
the output produced by the forward model in the absence of measurement noises. Vector
u0(x) is the initial state of the system.

If the governing equations are linear with respect to the system state, then the system
can be written as

u̇ = A(x)u+ g(x, t), (5.3a)
y∗ = H(x)u, (5.3b)

u(x, 0) = u0(x). (5.3c)

In equation (5.3a) , A(x) ∈ RN×N is a matrix that possibly depends on the parameters
but not on the state, and the general nonlinear function g : RM × [0,∞) → RN represents
the direct contributions of the parameters, boundary conditions and any possible source
terms. In equation (5.3b) , H(x) is a matrix that maps states to outputs. Equation (5.3c)
represents the initial condition.

Note that in both systems (5.2) and (5.3), the output vector y∗ is continuous in time.
In most practical cases, the actual observations y is a union of y∗ evaluated at a finite set of
time instants {t1 , . . . , tn}with measurement noises, i.e.,

y = (y∗(t1) ∪ · · · ∪ y∗(tn)) + η, y, η ∈ RN
′

(5.4)

Let D denote the output space, i.e., y ∈ D. Then, the full-order forward model is denoted
as G : Ω→ D.

5.1.2 General Projection Framework and Model Reduction

This section is mainly based on [1, 2] unless otherwise indicated. In creating a projection-
based reduced order model, the first step is to approximate theN -dimensional state u(x, t)
by a linear combination of n basis vectors, i.e.,

u ≈
n∑
i=1

uriφi, φi ∈ RN , uri ∈ R (5.5)

or in matrix form
u ≈ Φur, (5.6)
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5.1 Projection-Based Model Reduction

where u ∈ RN , ur ∈ Rn and n � N . n is the reduced state dimension, and is usually re-
ferred to as the number of modes of the reduced-order model. The basis matrix Φ ∈ RN×n
contains the basis vectors φi as its columns, which span a subspace Vn := span {Φ} =
span {φ1 . . . φn}. The reduced state vector ur contains the corresponding modal ampli-
tudes.

Substituting equation (5.6) into the nonlinear system (5.2) yields

Φu̇r = f(Φur, x, t), and
yr = h(Φur, x, t).

The residual, defined as r := u − Φur, accounts for the fact that Φur is not exactly equal
to the full-order state u. The residual is then constrained to be orthogonal to a subspace
W . Let Ψ = [ψ1 . . . ψn] be the basis vectors that span subspace W , then, ΨT r = 0. Left
multiplying the above state equation by ΨT leads to the Petrov-Galerkin projection-based
equation

ΨTΦu̇r = ΨT f(Φur, x, t) + 0

u̇r = (ΨTΦ)−1ΨT f(Φur, x, t).

If Ψ is chosen in a way such that ΨTΦ = I , then the reduced model for the nonlinear
system (5.2) is given by

u̇r = ΨT f(Φur, x, t), (5.7a)
yr∗ = h(Φur, x, t), (5.7b)

ur(x, 0) = ΨTu0(x). (5.7c)

Applying the same procedure to the linear system (5.3) yields a reduced model given by

u̇r = Ar(x)ur + ΨT g(x, t), (5.8a)
yr∗ = Hr(x)ur, (5.8b)

ur(x, 0) = ΨTu0(x), (5.8c)

where Ar(x) = ΨTA(x)Φ and Hr(x) = H(x)Φ.

In POD methods (more details in section 5.2 ), since the basis matrix Φ is orthogo-
nal, i.e., ΦTΦ = I , it is common to choose Ψ = Φ, in which case the projection is called
Galerkin projection. Other choices for Ψ are also possible. When Ψ = Φ, the transforma-
tions between the reduced-order and the full-order state are given by

u = Φur (5.9a)

ur = ΦTu (5.9b)

We denote the reduced forward model with n modes by GnROM : Ω→ D.
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5 PROJECTION-BASED REDUCED-ORDER MODELS

5.2 POD Methods for Basis Construction

This section is mainly based on [2] unless otherwise indicated. In POD methods, the basis
matrix is formed as the span of a set of state solutions, commonly referred to as the snap-
shots. These snapshots are computed by solving the system (5.2) or (5.3) for selected values
of the parameters x and time t. They are collected as the columns in a Matrix S, i.e.,

S =
[
u1, u2, . . . , uns

]
∈ RN×ns (5.10)

where ui is the ith snapshot and ns is the total number of snapshots taken. Consider
singular value decomposition (SVD) of the snapshot matrix S, i.e.,

S = UΣV T , (5.11)

where U ∈ RN×N and V ∈ Rns×ns are both unitary (orthogonal) matrices, and Σ ∈ RN×ns

is a non-negative diagonal matrix containing p ≤ min {N,ns} singular values σi, i =
1, . . . , p. Assuming σi ≥ σj if i < j ∀i, j, which means the first k vectors in U correspond
to the first k greatest singular values in Σ. The basis matrix is given by left singular vectors
of the matrix S, i.e.,

Φ = {φ1 φ2 . . . φn} = {u1 u2 . . . un} ,

where {u1 . . . un} are the first n columns in U .

The least squares error of the snapshots representation in the n-dimensional reduced
basis (subspace spanned by Φ) is given by the sum of the squares of the singular values
corresponding to those left singular vectors that are not included in the basis, i.e.,

ns∑
i=1

∥∥ui − ΦΦTui
∥∥2

2
=

ns∑
j=n+1

σ2
j (5.12)

It can be shown that the POD methods are optimal in minimizing the above least squares
error. However, this error in general does not provide a rigorous error bound on the re-
sulting reduced order model.

5.3 Reduced Basis (RB) Greedy Algorithm

This section is mainly based on [3] unless otherwise indicated. The RB greedy algorithm
is another basis construction approach that differs slightly from the POD methods. While
POD methods give complete freedom in selecting parameters for snapshot generation, the
RB greedy algorithm forms a reduced basis with a specific step-by-step parameter selection
/ snapshot generation approach, in which a new snapshot is generated in each step by
estimating the approximation error of the current step based on the existing snapshots.
As the algorithm proceeds, the reduced basis it forms should achieve higher and higher
accuracy. For a n-modes reduced model, while the POD methods take ns (typically ns > n)
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5.4 Projection-Based Models as Surrogate Models

snapshots with complete freedom of parameter selection, the RB greedy algorithm takes
exactly n snapshots with a more or less definite parameter selection. It can be shown that,
the greedy selection of snapshots as the reduced basis provides essentially the best possible
accuracy attained by n-dimensional subspaces.

The RB greedy algorithm for generating the reduced basis
{
u1, u2, . . .

}
proceeds as

follows. First, it chooses the first parameter x1 ∈ Ω such that

u1 = u(x1) = max
u∈V
‖u‖ ,

where V is the compact space that contains all (full-order) states, and ‖·‖ is the norm on
a Hilbert space H induced by inner product 〈·, ·〉. The space V1 := span

{
u1
}

is the first
subspace used to approximate the elements in V . The approximation error is defined as

ε1 := max
u∈V
‖u− P1u‖ ,

where P1 is the projector (projection matrix) onto V1.

Then, at a general subsequent step n, given that
{
u1, . . . , un−1

}
have been chosen,

subspace Vn−1 := span
{
u1, . . . , un−1

}
, Pn−1 is the projector onto Vn−1, and the error in

approximating V using elements in Vn−1 is

εn−1 := max
u∈V
‖u− Pn−1u‖ ,

the algorithm chooses the n-th parameter xn such that

un = u(xn) := arg max
u∈V
‖u− Pn−1u‖ .

Algorithm 5.1 Reduced Basis Greedy Algorithm
Set n = 1, choose x1 ∈ Ω:

1. Compute u(xn)
2. Set Vn = span {Vn−1, u(xn)}
3. Find xn+1 such that u(xn+1) = arg max

u∈V
‖u− Pnu‖

4. Set n = n+ 1 and go to 1. while εn := max
u∈V
‖u− Pnu‖ > Tolerance

5.4 Projection-Based Models as Surrogate Models

Projection-based models can be applied as surrogate models in Bayesian inference prob-
lems. Based on a projection framework, their construction rely on projecting the governing
equations onto a subspace of reduced dimensions. This requires knowledge of the inner
structure of the full forward model, i.e., knowing the exact governing equations which
solves for the state of the system. For this reason, these models are considered as intrusive,
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5 PROJECTION-BASED REDUCED-ORDER MODELS

which is one big disadvantage as compared to the non-intrusive models such as data-fit
models. In order to construct a projection-based model, one has to first obtain a number of
snapshots of the system state by evaluating the full model at selected parameter sets and
time instants. This step should be done before solving the inverse problem.

In summary, employing a projection-based model as a surrogate model, the problem
solving procedure can be split into two phases, i.e., to solve problem

y = G(x) + η, where G(x) =

[
u̇ = f(u, x, t)
y∗ = h(u, x, t)

]
• Offline Phase: obtain a reduced forward model by

1. Solve u̇ = f(u, xs, ts), xs, ts ∈ {selected values} → [u1, . . . , uns ]→ Φ

2. Construct GnROM(x) =

[
u̇r = ΦT f(Φur, x, t)
yr∗ = h(Φur, x, t)

]
, where n denotes the number of

modes of the projection-based reduced model.

• Online Phase: solve the inverse problem by computing the posterior for many dif-
ferent sets of input parameters

πpos(xi) = πnoise(y −GnROM(xi))πpr(xi), ∀xi ∈ Ω̄,

where Ω̄ denotes the discretized parameter space.

Note that depending on the complexity of the full model and the number of snapshots ns
needed, the offline phase can be computationally expensive.
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Chapter 6

SPARSE GRID INTERPOLATION BASED
REDUCED MODELS

This chapter provides a detailed review of the sparse grid theory, since it is the heart of
this thesis. The main goal of this chapter is to derive the sparse grid discretization method
and explain why are the function spaces spanned by sparse grids efficient approximations
of the function spaces spanned by the conventional “full“ grids, in terms of accuracy and
computational costs. For these purposes, a few lemmas are introduced throughout the dis-
cussion without proofs, as the proofs can be found in many literatures that are dedicated to
this topic. In the end of the chapter, we discuss the application of sparse grid interpolants
as data-fit surrogate models in the context of Bayesian inference problems.

6.1 Sparse Grid Theory

The sparse grid discretization method is a special technique that was originally developed
for the solution of partial differential equations. It is now also successfully used for in-
tegration, interpolation and approximation [7]. Comparing to full grids, whose number
of grid points has an exponential dependence on the domain dimensions, sparse grids
contain much fewer grid points, yet still represent the domain with an acceptable accu-
racy, assuming certain smoothness conditions are met. As the sparse grid discretization
methods break the curse of dimensionality to a certain extent, they can be used for higher
dimensional problems.

Constructions of sparse grids are based on a hierarchical basis and a sparse tensor
product construction [7]. Therefore, before approaching to sparse grids, it is necessary to
discuss the decomposition of the hierarchical subspaces. And before that, we will first
introduce some notation for describing the conventional piecewise linear finite element
basis.
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6 SPARSE GRID BASED REDUCED MODELS

6.1.1 Piecewise Linear Finite Element Basis

This section is mainly based on [7] unless otherwise indicated. For simplicity, consider
a d-dimensional unit cube as our domain of investigation, i.e., Ω = [0, 1]d. Let a multi-
index l = [l1, l2, . . . , ld] ∈ Nd denote the level of discretization resolution. We define the
anisotropic grid Ωl on Ω with mesh size

hl := [hl1 , . . . , hld ] = [2−l1 , . . . , 2−ld ].

This grid has different but equidistant mesh sizes in each coordinate direction k. The grid
consists of the points

xl,j := [xl1,j1 , . . . , xld,jd ],

with xlk,jk := jk · hlk = jk · 2−lk and jk = 0, 1, . . . , 2lk . Multi index j ∈ Nd, representing
the position index in each dimension, together with l ∈ Nd, representing the discretization
level in each dimension, give the position of a grid point xl,j or the corresponding basis
function φl,j .

For grid Ωl, the associated space Vl of piecewise d-linear functions is defined as

Vl := span
{
φl,j | jk = 0, . . . , 2lk , k = 1, . . . , d

}
, (6.1)

which is spanned by the usual basis of d-dimensional piecewise d-linear hat functions

φl,j :=

d∏
k=1

φlk,jk(xk),

where the one-dimensional functions φl,j(x) with support [xl,j − hl, xl,j + hl] ∩ [0, 1] =
[(j − 1)hl, (j + 1)hl] ∩ [0, 1] are defined as

φl,j(x) =

{
1− | xhl − j|, x ∈ [(j − 1)hl, (j + 1)hl] ∩ [0, 1];

0, otherwise.

6.1.2 Hierarchical Subspace Decomposition

This section is mainly based on [7, 16] unless otherwise indicated. We are interested in a
hierarchical decomposition of Vl. First, let us consider the one-dimensional case, in which
l = l1. If we define a hierarchical incrementWl such that Vl is a direct sum ofWl, i.e.,

Vl = Vl−1

⊕
Wl =

d⊕
k=0

Wk, (6.2)

then, Wl is indeed the space difference between Vl and Vl−1. It should contain all basis
that are in Vl but not included in Vl−1, i.e.,

Wl := Vl\Vl−1. (6.3)

38



6.1 Sparse Grid Theory

(a)

(b)

Figure 6.1 (a) 1-D hierarchical subspaces decomposition, source from [16]. (b) Comparison of 1-D function interpolation
with hierarchical basis to normal basis, source from [16].

Figure 6.1 (a) shows the hierarchical subspace decomposition up to level 3 of the one-
dimensional case, assuming zero boundary conditions, i.e., no basis functions defined on
the boundary. It could be seen that the basis functions in spaceW1

⊕
W2

⊕
W3 also sup-

port V3. In other words, V3 ≡ W1
⊕
W2

⊕
W3.

Extend equation (6.3) to the d-dimensional case, in which l = [l1, . . . , ld], we have

Wl := Vl\
d⊕

k=1

Vl−ek , (6.4)

where ek is the k-th unit vector. To complete the definition, we also set Vl := 0, if lk = −1
for at least one k ∈ {0, . . . , d}. From equation (6.1) and (6.4), the definition of the index
set

Bl :=

{
j ∈ Nd

∣∣∣∣ jk = 1, . . . , 2lk − 1, jk odd, k = 1, . . . , d, if lk > 0,
jk = 0, 1, k = 1, . . . , d, if lk = 0.

}
(6.5)

leads to
Wl = span {φl,j | j ∈ Bl} . (6.6)

Therefore, we can write Vl as a direct sum of subspaces

Vl :=

l1⊕
k1=0

· · ·
ld⊕

kd=0

Wk =
⊕
k≤l
Wk, (6.7)

where “≤“, here and in the rest of the chapter, refers to the element-wise relation in the
multi-indices context. Figure 6.2 shows a hierarchical subspace decomposition example
for the two-dimensional case, assuming zero boundary conditions.

Now each function f ∈ Vn can be represented as

f(x) =
∑
|l|∞≤n

∑
j∈Bl

αl,j · φl,j(x), (6.8)
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(a) (b)

Figure 6.2 (a) 2-D full grid function spaces Vl, source from [16]. (b) Hierarchical subspaces decomposition of function
space V3,3, source from [16].

where |l|∞ := max
1≤k≤d

{lk}, and αl,j ∈ R are the coefficients of the representation in the

hierarchical tensor product basis. The number of basis functions is (2n + 1)d, assuming
non-zero boundary conditions. For example, with a resolution of 17 points (including
boundary) in each dimension, i.e., n = 4, a ten-dimensional problem then needs 1710 ≈
2 · 1012 coefficients. We encounter the curse of dimensionality.

6.1.3 Properties of the Hierarchical Subspaces

This section is mainly based on [7, 16] unless otherwise indicated. Our goal is to obtain
a much smaller support of the function space spanned by the full grid. Now that we
have defined a way to decompose the full grid function space into a set of hierarchical
subspaces, it is possible to construct an approximation to the full grid function space by
selecting only those subspaces that have “greater contribution“ than the others. Therefore,
the main goal of this section is to examine the properties of the hierarchical subspaces,
in order to gain insights for the subspaces selection, which is used for the sparse grid
construction.

Hierarchical Surpluses αl,j

Consider the d-linear interpolation of a function f ∈ V by a fn ∈ Vn representation as
in equation (6.8) . The following holds for the one-dimensional hierarchical coefficients
αl,j :

αl,j = f(xl,j)−
f(xl,j − h) + f(xl,j + h)

2

= f(xl,j)−
f(xl,j−1)− f(xl,j+1)

2
, l ≥ 1

(6.9)

The αl,j are also called the hierarchical surplus, because they specify what has to be added
to the hierarchical representation from level l− 1 to obtain the one of level l. Figure 6.1 (b)
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illustrates this concept. equation (6.9) can be rewritten in the following operator form

αl,j =

[
−1

2
1 − 1

2

]
l,j

f,

and with that generalize to the d-dimensional case

αl,j =

(
d∏

k=1

[
−1

2
1 − 1

2

]
lk,jk

)
f. (6.10)

Let us define a Sobolev-spaceHsmix with up to s-th order mixed derivative, i.e.,

Hsmix :=
{
f : Ω→ R : ‖f‖2Hs

mix
<∞

}
,

in which the norm is defined as

‖f‖2Hs
mix

=
∑

0≤k≤s

∣∣∣∣∣∂|k|1f∂xk

∣∣∣∣∣
2

2

=
∑

0≤k≤s

∣∣∣Dkf ∣∣∣2
2
,

where |k|1 :=
∑d

i=1 ki is the L1-norm of the multi-index k. Furthermore, the semi-norm is
defined as

|f |Hkmix
:=
∣∣∣Dkf ∣∣∣2

2
, (6.11)

Continuous function spaces Hsmix, such as Vl, have a tensor product structure and can be
represented as a tensor product of one dimensional spaces:

Hsmix = Hs
⊗
· · ·
⊗
Hs. (6.12)

From equation (6.10) , we can see that fn lives inH2
mix. Let f ∈ H2

mix be in hierarchical
basis representation as shown in equation (6.8) , it can be proven (see [5]) that

Lemma 6.1 For any piecewise d-linear basis function φl,j holds

‖φl,j‖2 ≤ C(d) · 2
−|l|1

2

Lemma 6.2 For any hierarchical coefficient αl,j of f it holds

αl,j =

d∏
k=1

−hk
2

∫
Ω
φl,j ·D2f(x)dx, D2f :=

∂2df

∂2x1 . . . ∂2xd
.

Lemma 6.3 For any hierarchical coefficient αl,j of f it holds

|αl,j | ≤ C(d) · 2−
3
2
|l|1 ·

∣∣∣f |supp(φl,j)

∣∣∣
H2

mix

.
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Lemma 6.4 For components fl ∈ Wl of f it holds

‖fl‖2 ≤ C(d) · 2−2|l|1 · |f |H2
mix

(6.13)

Cost-Contribution Analysis of SubspacesWl

Considering the whole hierarchical incrementsWl, the selection of subspaces should
be “efficient“, meaning that it should minimize the cost and maximize the contribution. To
quantify this abstract property, let us define a cost-contribution ratio c(l)

s(l) , in which the cost
function is defined in terms of number of grid points (degrees of freedom), i.e.,

c(l) := 2|l|1−d, (6.14)

and the contribution function is given by

s(l) := 2−2|l|1 . (6.15)

The reason why the contribution function is defined this way is as follows: Let L ⊂ Nd be
the set of indices of all selected subspaces, we obtain

f ≈ fL :=
∑
l∈L

∑
j∈Bl

αl,jφl,j(x) =
∑
l∈L

wl,

and thus
f − fL =

∑
l 6∈L

wl.

From lemma (6.4), we can deduce that ‖wl‖2 ≤ c · 2−2|l|1 · |f |H2
mix

. Therefore,

‖f − fL‖2 ≤
∑
l 6∈L
‖wl‖2 ≤ c ·

∑
l∈Nd

2−2|l|1 −
∑
l∈L

2−2|l|1

 |f |H2
mix
,

justifying that 2−2|l|1 can be interpreted as the benefit/contribution of subspaceWl.

From equation (6.14) and (6.15), we can observed that the cost-contribution ratio is
dependent on a constant |l|1 for a given l. A smaller value of |l|1 leads to a smaller cost-
contribution ratio. It is a useful insight for selecting the “efficient“ subspaces. Indeed, it
could be shown that (see [8, 20]), with zero boundary conditions, the optimal selection is
given by

L0,n optimal := {l : |l|1 ≤ n+ d− 1} , lk > 0 ∀lk ∈ l. (6.16)

And with non-zero boundary conditions, the optimal selection is given by

Ln optimal := {l : |l|1 ≤ n} , lk ≥ 0 ∀lk ∈ l. (6.17)
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6.1 Sparse Grid Theory

Figure 6.3 Sparse grid hierarchical subspace selection with non-zero boundary, source from [7]

(a)
(b)

Figure 6.4 (a) Two-dimensional sparse grid with non-zero boundary, source from [7]. (b) Three-dimensional sparse grid
with non-zero boundary, source from [7]
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6.1.4 Sparse Grids

This section is mainly based on [7] unless otherwise indicated. The function space of a
sparse grid is the direct sum of the hierarchical subspaces from the optimal selection given
by equation (6.16) or (6.17). It can be formally defined as

Vs0,n :=
⊕

|l|1≤n+d−1

Wl ⊂ Vn, lk > 0 ∀lk ∈ l, or (6.18)

Vsn :=
⊕
|l|1≤n

Wl,⊂ Vn, lk ≥ 0 ∀lk ∈ l (6.19)

respectively, where Vn denotes the function space supported by a full grid with meth size
hn = 2−n in each direction. Every f ∈ Vs0,n or Vsn can be represented as

fs0,n(x) =
∑

|l|1≤n+d−1

∑
j∈Bl

αl,jφl,j(x). or (6.20)

fsn(x) =
∑
|l|1≤n

∑
j∈Bl

αl,jφl,j(x). (6.21)

respectively. The resulting grids corresponding to the approximation space are called
sparse grids. Figure 6.3 shows a two-dimensional example of the subspace selection for
n = 3, with the non-zero boundary conditions. Subspaces that contribute to the sparse
grid are in black, while the ones that are not included are in grey. Figure 6.4 shows level
n = 5 sparse grids in the two-dimensional and three-dimensional cases, with non-zero
boundary conditions.

Approximation Error

Let us examine the sparse grid approximation quality. Again, let Vn ⊂ H2
mix be the

function space supported by a regular (full) grid with mesh size hn = 2−n in each direction.
The approximation error of a function f ∈ H2

mix in the sparse grid space Vsn is given by,
based on L2-norm,

‖f − fsn‖2 ≤
∑
|l|1>n

‖fl‖2 ≤ C(d) · 2−2|l|1 · |f |H2
mix

≤ C(d) · 2−2n · |f |H2
mix
·
(

nd−1

(d− 1)!
+O(nd−2)

)
.

Therefore,
‖f − fsn‖2 = O(h2

n log(h−1
n )d−1) (6.22)

Computational Cost

The computational cost of a grid presentation is given by its number of grid points.
For a full grid, its number of (inner) grid points is bounded by O((2n − 1)d) ≈ O((2n)d).
While for a sparse grid, its number of (inner) grid points is bounded by O(2n · nd−1),
because
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6.2 Sparse Grid Interpolants as Surrogate Models

Lemma 6.5 The dimension of the sparse grid space V2
0,n, i.e., the number of inner grid points, is

given by
|V2

0,n| = O(2n · log(2n)d−1) = O(2n · nd−1)

For full proof of this lemma see [7].

d V5 Vs5
1 31 31
2 961 129
3 29,791 351
4 923,521 769
5 28,629,151 1,471
6 887,503,681 2,561
7 27,512,614,111 4,159
8 852,891,037,441 6,401
9 26,439,622,160,671 9,439

10 819,628,286,980,801 13,441

This table (source from [16]) shows the number of grid point of the level n = 5 full
grids and sparse grids for different dimensions. We can see that the higher the dimension,
the more the sparse grid pays off.

6.2 Sparse Grid Interpolants as Surrogate Models

Sparse grid interpolants (SGI) can be applied as surrogate models in Bayesian inference
problems. As a data-fit model, they are non-intrusive, which is one of their main advan-
tages compared to the intrusive models such as the projection-based model class. The
SGI models treat the full forward model as a black-box, i.e., they interpolate the forward
model without the need of knowing or interfering with the inner structure of the forward
model. Given the forward model function along with its domain, it constructs a sparse
grid and computes the corresponding surpluses. This step should be done before solving
the inverse problem.

In summary, employing a SGI as a surrogate model, the problem solving procedure
can be split into two phases, i.e., to solve problem

y = G(x) + η

• Offline Phase: Obtain a reduced forward model via sparse grid interpolation, i.e.,

G(x) ≈ GlvSGI(x) :=
∑
|l|1≤n

∑
j∈Bl

αl,jφl,j(x),

where lv denotes the discretization level.
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6 SPARSE GRID BASED REDUCED MODELS

• Online Phase: solve the inverse problem by computing the posterior for many dif-
ferent sets of input parameters

πpos(xi) = πnoise(y −GlvSGI(xi))π(xi), ∀xi ∈ Ω̄,

where Ω̄ denotes the discretized parameter space.

Note that interpolating the forward model could be very computationally expensive, be-
cause the procedure relies on evaluating the full model at each grid point of the sparse
grid. Therefore, depending on the complexity of the full model itself and the size of the
sparse grid (dependent on dimension of the domain d and discretization level lv), the of-
fline phase might take a long time.

This thesis uses the Sparse Grid Interpolation Toolbox developed by Andreas Klimke (see
[12]) for the construction of all SGI surrogate models.
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Part IV

Experiments
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Chapter 7

INFERENCE OF HEAT SOURCE LOCATIONS IN
2-D GEOMETRY

This chapter presents an experiment on applying the sparse grid interpolants (SGI) as
surrogate models to inverse problems of inferring the locations of multiple heat sources
in a two-dimensional geometry. For comparison, the projection-based model via proper
orthogonal decomposition (POD) is also employed. The first part of the chapter is ded-
icated to the formulation of the inverse problem and construction of the full, POD and
SGI forward model. The second part of the chapter presents the experimental results and
discussions.

7.1 Problem Setup

7.1.1 Full Model

This section is mainly based on [2]. Consider a dimensionless diffusion equation on a
square domain Ω = [0, 1]2 with Neumann boundary conditions:

∂u

∂t
= ∇2u+

s

2πγ2
exp

(
−|θ − x|

2

2γ2

)
[1−H(t− T )] , (7.1a)

∇u · n = 0 on ∂Ω, (7.1b)
u(x, 0) = 0 in Ω, (7.1c)

where x ≡ (x, y) represents the two-dimensional point coordinate, θ ≡ (θx, θy) repre-
sents the location of a heat source, and n denotes the normal vector with respect to the
boundaries ∂Ω. Equations in (7.1) represent a heat diffusion system and its solution u(x, t)
represents the temperature of point x at time t. H(t) denotes the unit step function. Thus,
the source term comprise a single heat source, which is active on the interval t ∈ [0, T ] and
centered at location θ ∈ Ω with strength s and width γ.

In the full model, the governing equations in (7.1) are discretized on a 69×69 uniform
spatial grid (mesh size h = 1

70 in each direction), using a second order (error = O(h2))
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7 INFERENCE OF HEAT SOURCE LOCATIONS IN 2-D GEOMETRY

finite difference scheme. This spatial discretization lead to a semi-discrete system of the
form (5.3), i.e.,

u̇(x, t) = Au(x, t) + g(θ,x, t),

which is linear in the state u but nonlinear in the parameters θ. The state vector contains
temperatures u(x, t) evaluated at N = 71 × 71 (including boundaries) grid points. The
sparse matrix A ∈ RN×N reflects the spatial discretization and includes the Neumann
boundary conditions. g(θ,x, t) is a nonlinear function representing the source term. u(x, t)
is solved by backward Euler solver with time step size ∆t = 0.01.

7.1.2 Formulation of Inverse Problem

This section is mainly based on [2]. In the inverse problem, suppose we can obtain some
noisy temperature measurements through a few sensors placed across the domain. They
can take measurements at different time instants. Given these data, we wish to infer the
source location θ = (θx, θy), i.e.,

d = G(θ) + η.

Here the system input and output are denoted as θ and d, instead of x and y as shown in
previously chapters, in order to avoid confusion with the 2-D coordinate x = (x, y).

In this problem, we assume all other source parameters are known to us: source shut-
off time T = 0.2, strength s = 2, width γ = 0.05, as well as the noise distribution πnoise. We
also assume that the measurements are taken at these three time instants

t = {0.1, 0.2, 0.3}

at these nine locations

x ∈


(0.17 0.17), (0.17 0.50), (0.17 0.83),
(0.50 0.17), (0.50 0.50), (0.50 0.83),
(0.83 0.17), (0.83 0.50), (0.83 0.83)

 .

The forward model G(θ) is thus a map from the source location θ ∈ Ω ⊂ R2 to noise-free
observations d∗ ∈ D ⊂ R27. Lastly, suppose we have no specific prior information, which
means a uniform (constant) prior distribution across the parameter space, i.e.,

π(θ) = UΩθ = c, c ∈ R.

We produce the “noisy observations“ by obtaining simulation data with a source lo-
cated at θ = (0.6, 0.9) and perturbing the data with additive Gaussian noise, which is
drawn from a normal distribution with zero mean and standard deviation σ = 0.2, i.e.,

d = G(θ̃) + η, θ̃ = (0.6, 0.9), η ∼ N (0, σ2I)
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7.1 Problem Setup

Note, the components of η are i.i.d. (independent identically distributed). Given the range
of the simulation data, setting σ = 0.2 introduces noise of roughly 20%− 40% of the data.
From equation (3.7) and knowing the noise distribution, we can derive the solution as

πpos(θ) = πnoise(d−G(θ))πpr(θ)

∝ exp

(
− 1

2σ2
(d−G(θ))T (d−G(θ))

)
.

(7.2)

Figure 7.1 Solution field u(x, t) of the full forward model at three time instants t = {0.1, 0.2, 0.3} for source parameters
θ = (0.6, 0.9), T = 0.20, s = 2, γ = 0.05.

Figure 7.1 shows the forward solution at time instants t = {0.1, 0.2, 0.3}, with a sin-
gle source located at θ = (0.6, 0.9). The black dots indicate the locations at which sensors
are placed. The solution field at the earlier time steps peaks around the source location
and thus contains more useful information for the inverse problem. After the shutoff time,
however, the field tends to flatten out due to diffusion, therefore, contains less useful in-
formation.

In order to test the SGI model for higher-dimensional problems, we also extend system
(7.1) to a multi-source system by superposing multiple source terms, i.e.,

∂u

∂t
= ∇2u+

nsrc∑
i=1

g(θi,x, t), (7.3a)

∇u · n = 0 on ∂Ω, (7.3b)
u(x, 0) = 0 in Ω, (7.3c)

where g(θi,x, t) = s
2πγ2 exp

(
− |θi−x|

2

2γ2

)
[1−H(t− T )]. For simplicity, let us assume in each

source term, all source parameters except for the source location are known and have the
same values as previously specified. Figure 7.2 shows forward simulations of two, three
and four superposed heat sources at time instant t = 0.2 with all other parameter settings
same as previously mentioned.

In this experiment, we will solve the inverse problems with one, two, three and four
heat sources with the SGI and POD models. Since each source location contains 2-dimensional
information, the inverse problem then have a 2-D, 4-D, 6-D and 8-D parameter space re-
spectively.

51



7 INFERENCE OF HEAT SOURCE LOCATIONS IN 2-D GEOMETRY

(a) (b) (c)

Figure 7.2 (a) Full forward simulation at t = 0.2 with two heat sources θ = {(0.6, 0.9), (0.1, 0.5)}. (b) Full forward
simulation at t = 0.2 with three heat sources θ = {(0.6, 0.9), (0.1, 0.5), (0.2, 0.3)}. (c) Full forward simulation
at t = 0.2 with four heat sources θ = {(0.6, 0.9), (0.1, 0.5), (0.2, 0.3), (0.8, 0.1)}.

7.1.3 Construction of the POD Model

For the POD model, we take ns = 2000 snapshots with randomly selected heat source
locations inside the domain Ω and randomly selected time instants on interval [0, 0.3]. The
basis matrix Φ is then constructed with the first n left singular vectors (corresponding to
the greatest n singular values) of the snapshot matrix.

7.1.4 Construction of the SGI Model

For the SGI model, we use the MATLAB Sparse Grid Interpolation Toolbox developed by
Andreas Klimke for construction. More specifically, the toolbox provides functions

z = spvals(G, d,Ω) (7.4a)
dr∗ = spinterp(z,θ) (7.4b)

Function spvals() interpolates, i.e., computes the hierarchical surpluses for, the provided
function G—which, in our case, would be the full forward model—with a d-dimensional
sparse grid (discretization level can be specified via options) in domain Ω. The output z
is the surpluses correspond to each sparse grid points. Function spinterp() then computes
an approximation of G(θ) via sparse grid interpolation of G with z. Our SGI model is
constructed mainly based on these two functions from the toolbox, i.e.,

G(θ) ≈ GlvSGI(θ) = spinterp(z,θ), z = spvals(G, d,Ω)
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7.2 Results and Discussions

7.2 Results and Discussions

7.2.1 Error Analysis

In inverse problems, it is common to evaluate the accuracy of surrogate models by a prior-
weighted L2 error, defined as

e =

∫
Ωθ

‖G(θ)−Gr(θ)‖2 πpr(θ)dθ.

However, this requires evaluating the full forward model over the entire parameter space,
which is not feasible for this and the other two experiments in this thesis, due to the com-
plexity of the forward models, the dimension of the parameter spaces, as well as limitation
of computational resources and time. Therefore, we define a simpler error estimator for
our experiments, i.e.,

e :=
1

m

m∑
i=1

‖G(θi)−Gr(θi)‖2
‖G(θi)‖2

, θi ∼ UΩθ . (7.5)

The purpose of introducing the denominator term is to reflect the error in a range with
respect to the simulation data, rather than in its absolute value. In other words, we take
a set of m samples from the parameter space, and compute the average L2 error with
respect to the data generated by the full model. Note that, this error estimator only reflects
the approximation error of the surrogate model in a single forward simulation.

Figure 7.3 Left: Approximation error of the POD model vs. modes n. Right: Approximation error of the SGI model vs.
the sparse grid discretization level.

Figure 7.3 shows the surrogate model approximation error given by equation (7.5)
for the POD and SGI model. For the POD model, most of the cases, the approximation
errors are within 2% of the simulation data. The error decreases as the number of modes
n increases. Based on ns = 2000 snapshots. the error demonstrates a quadratic decease
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in the region of n ∈ [0, 100]. When n > 100, the error decreases linearly with a very flat
slope. For the same number of modes, there are very slight differences between the cases
of different number of heat sources, which means the approximation quality of the POD
model is not affected by the problem dimension.

For the SGI model, most of the errors are within 6% of the simulation data. Note
that, due to the high computational costs of the offline phase, we could only construct SGI
models up to discretization level 8 for the cases of one and two heat sources, and up to
level 6 for the cases of three and four heat sources. The error decreases quadratically as the
discretization level lv increases. For lv ≥ 6, the SGI model achieves accuracy of 2% error.
The dimension of the problem also does not affect the approximation quality of the SGI
model much, as we can see, the error differences between the cases with different number
of heat sources are not large.

7.2.2 Runtime Efficiency

We evaluate the surrogate model runtime efficiency by computing the runtime average of
several forward simulations with the surrogate model at random samples drawn from the
parameter space, i.e.,

t :=
1

m

m∑
i=1

ti, ti := runtime measurement of Gr(θi), θi ∼ UΩθ . (7.6)

Figure 7.4 Left: Runtime average in seconds of of the POD model vs. modes n. Right: Runtime average in seconds of the
SGI model vs. the sparse grid discretization level.

Figure 7.4 shows the runtime average given by equation (7.6) for the POD and SGI
model. The full model runtime for all cases are around 20 seconds. For the POD model,
we can see that the runtime increases as the number of modes n increases. For the same
number of modes, there are almost no difference between the cases of different number of
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heat sources, because the size of the problem is fixed at n × n and is independent of the
dimensions of the parameter spaces.

For the SGI model, we also observe that the runtime increases as the sparse grid dis-
cretization level lv increases. However, for the same discretization level, there are big
differences between the cases of different number of heat sources. This is because the size
of the sparse grid is dependent on not only the discretization level, but also the dimensions
of the parameter space.

Comparing two models, for reaching the same approximation accuracy of e = 2%,
the POD model needs n = 60 modes considering all cases, which has an average runtime
around 0.005 seconds; while the SGI model needs discretization level of lv = 6, with the
average runtime ranging from 0.02 seconds (with 2-D parameter space) to 2.58 seconds
(with 8-D parameter space). Therefore, we can conclude that for higher dimensional prob-
lems, the POD model is more efficient because its runtime is decoupled from the problem
dimension. However, one has to be careful with the parameter selection for snapshot gen-
eration, because this directly affects the accuracy of the model.

7.2.3 Inference Results

We solve the inverse problems with one, two, three and four heat sources. For the SGI
model, the highest discretization level available is used. That is, for the case of one and
two heat sources lv = 8, and for the case of three and four heat sources lv = 6. The
approximation errors are e2D = 0.3%, e4D = 0.2%, e6D = 1.6% and e8D = 1.4% respectively.
For the POD model, n = 100 modes is used, and the approximation errors are e2D = 0.8%,
e4D = 0.6%, e6D = 0.5%, and e8D = 0.5% respectively.

Figure 7.5 and 7.6 shows the inference results of the first heat source location out of
4 heat sources, with the SGI and POD model respectively. All other inference results are
listed in appendix A . The figures are arranged in a manner for easy comparison of the
two models, i.e., for the same case and the same heat source, the inference results with the
SGI model is listed on top, and the results with the POD model are list on the bottom of
the same page.

It is important to note that, the inference results contain not only the error from the
surrogate model, but also the noise (20% − 40%) that present in the observed data. It
would be useful to quantitatively measure the posterior error with the Kullback-Leibler
(KL) divergence from the true posterior (computed with the full model) to the approximate
posterior (computed with a surrogate model). However, for all the experiments in this
thesis, it is infeasible to computer the posterior with the full model given the limitation
of time and computational resources. Therefore, we mainly rely on our observation and
judgement for analyzing the inference results.

For all four cases, most of the inference results of both models are good, as the ex-
pected values converge to values that are close to the “true“ source locations, i.e., the
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Figure 7.5 Surrogate model: SGI level=6. Total number of sources: 4. First source location: (0.6, 0.9).

Figure 7.6 Surrogate model: POD n=100. Total number of sources: 4. First source location: (0.6, 0.9).
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values of θ̃ from which the observed data is produced. Note, the expected values will
not converge to exactly the true value due to noise in the observed data. Most of the
marginal distributions, except for certain individual dimensions, demonstrate a Gaussian
shape with a single peak around the true value indicated by the red line marker.

With three heat sources, the results of θy2 (in figure A.9 and A.10) and θy3 (in figure
A.11 and A.12), and with four heat sources, the results of θy2 (in figure A.13 and A.14)
and θy4 (in figure A.17 and A.18) display two Gaussian peaks, with one of them being
close to the true value, for both models. This is because, in each case respectively, two heat
sources, located at (0.1, 0.5) and (0.2, 0.3), are very close to each other, see figure 7.7 . They
have mutual influences, which are reflected in the posterior distribution.

Figure 7.7 Left: Locations of three heat sources. Right: Locations of four heat sources.

In summary, comparing the results from both surrogate models side-by-side, we con-
clude that both models work well for the inverse problems based on the heat equation. In
terms of runtime efficiency, the POD model is more preferable for problems with higher
dimensional parameter spaces.
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Chapter 8

INFERENCE OF OBSTACLE LOCATIONS IN
LAMINAR FLOW

This chapter presents an experiment on applying the SGI surrogate model on an inverse
problem of inferring the locations of multiple obstacles in an incompressible laminar flow.
For comparison, the POD model is also employed. The first half of this chapter explains
the inverse problem formulation and the construction of the full, POD and SGI forward
models, the second half presents experimental results and discussions.

8.1 Problem Setup

8.1.1 Full Model

This section is mainly based on [17]. Consider a channel, whose domain is a 10× 2 rectan-
gular, i.e., Ω = [0, 10] × [0, 2], filled with non-stationary incompressible viscous fluid that
is described by the Navier-Stokes equations, i.e.,

∂u

∂t
+
∂(u2)

∂x
+
∂(uv)

∂y
= −∂p

∂x
+

1

Re

(
∂2u

∂x2
+
∂2u

∂y2

)
+ gx, (8.1a)

∂v

∂t
+
∂(uv)

∂x
+
∂(v2)

∂y
= −∂p

∂y
+

1

Re

(
∂2v

∂x2
+
∂2v

∂y2

)
+ gy, (8.1b)

∂u

∂x
+
∂v

∂y
= 0, (8.1c)

where x and y denote the two dimensions (horizontal and vertical respectively) of the
domain, t denotes time, u and v represent velocities of the fluid in the x- and y-direction
respectively, and p represents pressure. Re ∈ R is a dimensionless quantity called the
Reynolds number, which characterize the “stickiness“ (freedom of movement) of the flow.
The lower the Re value, the more viscous is the fluid. gx and gy denote external forces
in the x- and y-direction respectively, for example, gravity or other body forces acting
throughout the bulk of the system. In this system, velocities u, v and the pressure p are the
unknowns. Other quantities are given parameters. Equations (8.1a) and (8.1b) are called
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8 INFERENCE OF OBSTACLE LOCATIONS IN LAMINAR FLOW

the momentum equations, which reflect conservation of momentum. Equation (8.1c) is called
the continuity equation, which reflects conservation of mass.

At the initial moment t = 0, initial conditions u0 = u(x, y, 0) and v0 = v(x, y, 0) sat-
isfying equation (8.1c) are given. For the boundary conditions, we have inflow condition
on the left boundary and outflow condition on the right boundary, and no-slip conditions
on the top and bottom boundaries. This setting represents a flow entering a horizontal
channel (represented by the top and bottom boundaries) from the left and exiting from the
right.

Spatial Discretization

Figure 8.1 Staggered grid for u, v and p, source from [17]

For spatial discretization, we employ the finite difference method based on staggered
grid, in which the unknown variables u, v and p lie at different positions in a reference grid,
see figure 8.1 . That is, in each cell, the horizontal velocity u lies at the center of the right
edge, the vertical velocity v lies at the center of the top edge, and the pressure p lies at the
center of the cell. We discretize the domain with a 100× 20 staggered grid, with mesh size
equal to hx = 0.1, hy = 0.1. Each spatial derivatives in system (8.1) can be approximated
by a finite difference formula (for details see [17]).

Time discretization

For the time discretization of the momentum equations, we employ the forward Euler
scheme, which results in

u
(n+1)
i,j = F

(n)
i,j −

ht
hx

(p
(n+1)
i+1,j − p

(n+1)
i,j ), (8.2a)

v
(n+1)
i,j = G

(n)
i,j −

ht
hy

(p
(n+1)
i,j+1 − p

(n+1)
i,j ), (8.2b)
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where F (n)
i,j and G(n)

i,j are given by

Fi,j := ui,j + ht

(
1

Re

([
∂2u

∂x2

]
i,j

+

[
∂2u

∂y2

]
i,j

)
−
[
∂(u2)

∂x

]
i,j

−
[
∂(uv)

∂y

]
i,j

+ gx

)
, (8.3a)

Gi,j := vi,j + ht

(
1

Re

([
∂2v

∂x2

]
i,j

+

[
∂2v

∂y2

]
i,j

)
−
[
∂(uv)

∂x

]
i,j

−
[
∂(v2)

∂y

]
i,j

+ gx

)
. (8.3b)

To compute u(n+1) and v(n+1), we need to solve for p(n+1). From the continuity equa-
tion we have [

∂u

∂x

](n+1)

i,j

+

[
∂v

∂y

](n+1)

i,j

= 0, where (8.4a)

[
∂u

∂x

](n+1)

i,j

:=
u
(n+1)
i,j − u(n+1)

i−1,j

hx
, (8.4b)

[
∂v

∂y

](n+1)

i,j

:=
v
(n+1)
i,j − v(n+1)

i,j−1

hy
, (8.4c)

Note that equation (8.4b) and (8.4c) are based on the spatial discretization finite difference
scheme. By substituting equation (8.2a) into equation (8.4b) and (8.2b) into (8.4c), system
(8.4) then results in the pressure equation

p
(n+1)
i+1,j − 2p

(n+1)
i,j + p

(n+1)
i−1,j

h2
x

+
p

(n+1)
i,j+1 − 2p

(n+1)
i,j + p

(n+1)
i,j−1

h2
y

=
1

ht

(
F

(n)
i,j − F

(n)
i−1,j

hx
+

G
(n)
i,j −G

(n)
i,j−1

hy

)
, (8.5)

which is in the form of the discretized Poisson’s equation, and can be solved linearly by

Ap = b. (8.6)

Here, sparse matrix A reflects the discretized Laplace operator, and b denotes the right
hand side of equation (8.5) . Note that this is the only step we need to actually solve a
linear system.

In order to ensure the stability of the numerical algorithm and avoid oscillations, the
following stability condition is imposed on the time step size ht:

ht := τ min

{
Re

2

(
1

h2
x

+
1

h2
y

)−1

,
hx
|umax|

,
hy
|vmax|

}
, (8.7)

where |umax| and |vmax| are the maximal absolute values of the respective velocities, and
the coefficient τ ∈ [0, 1] is a safety factor.

Implementation of Obstacles

In order to allow realization of arbitrary number of obstacles, the obstacles are not
hard coded into the geometry setup, as in conventional CFD simulation scenarios. Instead,
they are realized by artificially setting to zero the velocities and pressure values inside the
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obstacles, and imposing no-slip boundary condition on all edges of the obstacles. In other
words, matrix A in equation (8.6) always contains all cells inside domain Ω, including
cells of the obstacles, as if they were all fluid cells. p is solved in a manner that as if there
were no obstacles inside the channel. Then afterwards, the u, v and p values inside and on
the edge of all obstacles are updated accordingly.

It is important to note that, in CFD simulation, modeling the obstacles this way is not
physically correct. However, in the context of a statistical inverse problem, this would
be theoretically possible, because the error introduced by such “incorrect modeling“ can
somehow be accommodated by the stochastic structure, e.g., by including the modeling
error in the likelihood function, which contains information about noises in the data. Ad-
ditionally, in this specific experiment, since our “observed data“ is produced by such mod-
eling in the first place, therefore, such the modeling error will not be carried to the inference
results.

The Solver

Finally, summarizing all elements described above, we get the following algorithm:

Algorithm 8.1 Navier-Stokes Forward Simulation

1. Set n = 0.
2. Initialize u = u0, v = v0, p = p0

3. While n < nmax

a) Seleted ht according to equation (8.7)
b) Update values of u, v and p on boundary and in obstacles
c) Compute F (n) and G(n) according to equation (8.3a) and (8.3b)
d) Solve for p according to equation (8.5)
e) Compute u, v according to equation (8.2a) and (8.2b)

4. Output u, v, p

8.1.2 Formulation of Inverse Problem

In this experiment, suppose we can obtain some velocity measurements via a few sensors
placed across the channel. This sensors measure the magnitude of the fluid velocity at
different time steps. From these data, we wish to infer the locations of the obstacles. The
inverse problem can be expressed as:

d = G(θ) + η,

where d denotes the magnitude of fluid velocity measured at different locations and dif-
ferent time steps, θ denotes the locations (x- and y-coordinates) of the obstacles, i.e., θ :=
{(θx1 , θy1), (θx2 , θy2), . . .}. Of course, obstacles have volumn, and they occupy certain ar-
eas in the channel. For simplicity, assume we know the shapes and sizes of all obstacles,
which are all 0.4× 0.4 squares. θi := (θxi , θyi) denotes the lower-left corner of an obstacle.
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8.1 Problem Setup

Assume all parameters involved in the forward model are known, specifically, the
Reynolds number, which characterizes the flow to be laminar, is Re = 100. The body
forces gx, gy are zero. The initial velocities of the flow are u0 = 1.0 and v0 = 0; and the
intial pressure is p0 = 0. We also assume that the measurements are taken at these four
time steps

n = {250, 500, 750, 1000}

at these ten locations

x ∈
{

(0.7 1.6), (0.7 3.2), (0.7 4.8), (0.7 6.4), (0.7 8.0)
(1.4 1.6), (1.4 3.2), (1.4 4.8), (1.4 6.4), (1.4 8.0)

}
.

The forward modelG(θ) is thus a map from the obstacles’ coordinates θ ∈ Ωθ to noise-free
measurements of the fluid velocity d∗ ∈ D ⊂ R40. Lastly, suppose we have no specific prior
information, which means a uniform (constant) prior distribution across the parameter
space, i.e.,

π(θ) = UΩθ = c, c ∈ R.

We produce the “noisy observations“ by obtaining simulation data d∗ with θ̃ and per-
turbing the data with additive Gaussian noise, which is drawn from a normal distribution,

d = G(θ̃) + η, η ∼ N (0, σ2I),

where θ̃ ⊆ {(1.0, 0.8), (3.0, 1.5), (5.5, 0.2), (8.2, 1.0)}. σ is defined as σ = 0.2 · d̄∗, in which
d̄∗ denotes the average value of the simulation data. Setting the σ this way, we ensure
the noise is roughly within 20% of the data. From equation (3.7) and knowing the noise
distribution, we can derive the solution as

πpos(θ) = πnoise(d−G(θ))πpr(θ)

∝ exp

(
− 1

2σ2
(d−G(θ))T (d−G(θ))

)
.

(8.8)

Figures 8.2 shows the forward solution of velocity magnitude of the fluid at time step
n = 1000 with one, two, three and four obstacles. In this experiment, we will infer the
locations of one, two, three and four obstacles, with both the SGI and POD models.

8.1.3 Construction of Surrogate Models

For the POD model, we take ns = 4000 snapshots with randomly selected obstacle loca-
tions inside the channel and randomly selected time steps on interval [0, 1000]. The basis
matrix Φ is constructed with the first n left singular vectors (corresponding to the greatest
n singular values) of the snapshot matrix. Construction of the SGI model is similar to the
procedure described in section 7.1.4 .
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8 INFERENCE OF OBSTACLE LOCATIONS IN LAMINAR FLOW

(a)

(b)

(c)

(d)

Figure 8.2 Forward simulation of laminar flow (Re = 100), velocity magnitude at time step n = 1000, with: (a)
one obstacle, θ̃ = {(1.0, 0.8)}, (b) two obstacles, θ̃ = {(1.0, 0.8), (3.0, 1.5)}, (c) three obstacles, θ̃ =
{(1.0, 0.8), (3.0, 1.5), (5.5, 0.2)}, (d) four obstacles θ̃ = {(1.0, 0.8), (3.0, 1.5), (5.5, 0.2), (8.2, 1.0)}.
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8.2 Results and Discussions

8.2 Results and Discussions

8.2.1 Error Analysis

We define the approximation error of a surrogate model as shown in equation (7.5) , for the
reasons mentioned in section 7.2.1 . Figure 8.3 shows the surrogate model approximation
error for the POD and the SGI models. Note that, the range of the approximation errors of
both the SGI and POD model in this experiment are significantly larger than that in the heat
source inference experiment. This is because the heat equation is completely linear in its
solution state (i.e., the temperature field), while the Navier-Stokes equations are partially
linear, i.e., linear in the pressure field and non-linear in the velocity fields, which makes
the whole system non-linear. It is in generally more difficult to approximate a non-linear
system.

Figure 8.3 Left: Approximation error of the POD model vs. modes n. Right: Approximation error of the SGI model vs.
sparse grid discretization level.

For the POD model, most of the errors fall in the 20% range. The error decreases as
the number of modes n increases. Based on ns = 4000 snapshots, the error decreases at a
higher rate in the region of n ∈ [0, 100]. When n > 100, the error decreases linearly with a
very flat slope. We observe that the problem dimensions do not affect the approximation
quality of the POD model in this experiment.

The SGI model, however, demonstrates a very different behavior in this experiment.
The approximation error decreases as the the discretization level increases. With the same
discretization level, there are very big differences for the cases of different number of ob-
stacles. It has much larger approximation error with problems of higher dimensional pa-
rameter spaces. For lv = 6, the error is about 50% with four obstacles, while it is around
10% for one obstacle.
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8.2.2 Runtime Efficiency

Figure 8.4 shows the runtime average given by equation (7.6) for the POD and SGI models.
The full model runtime for all cases are around 115 to 120 seconds. For the POD model, we
can see that the runtime increases (non-linearly) as the number of modes n increases. For
the same number of modes, there are almost no difference between the cases of different
number of heat sources. Again, this is because the size of the problem in the POD model
depends on only the number of modes, but not the dimensions of the parameter spaces.

Figure 8.4 Left: Runtime average in seconds of the POD model vs. modes n. Right: Runtime average in seconds of the
SGI model vs. sparse grid discretization level.

For the SGI model, we also observe that the runtime increases as the sparse grid dis-
cretization level lv increases. Indeed, the runtime of a SGI model depends on both the
discretization level and the dimensions of the parameter space. Therefore, as the number
of obstacle increases, the runtime increases dramatically for the same discretization level.

The runtime of the SGI model in most cases falls under 1 second, while all the runtime
measurements of the POD model are between 1 to 3 seconds. Therefore, we can conclude
that in this experiment, the POD and SGI models are on the same scale in terms of runtime
efficiency. Indeed, with lower dimensional parameter spaces, the SGI model is slightly
more efficient.

8.2.3 Inference Results

We solve the inverse problems with one, two, three and four obstacles. For the SGI model,
the highest discretization level available is used, i.e., lv = 8 for one and two obstacles, and
lv = 6 for three and four obstacles. The approximation errors are e2D = 2.5%, e4D = 6.1%,
e6D = 24.8% and e8D = 47.6% respectively. For the POD model, n = 100 modes is used,
and the approximation errors are e2D = 10.8%, e4D = 10.8%, e6D = 11.0%, and e8D = 13.4%
respectively.
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8.2 Results and Discussions

Figure 8.5 Surrogate model: SGI level=6. Total number of obstacles: 4. First obstacle location: (1.0, 0.8).

Figure 8.6 Surrogate model: POD n=100. Total number of obstacles: 4. First obstacle location: (1.0, 0.8).
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8 INFERENCE OF OBSTACLE LOCATIONS IN LAMINAR FLOW

Figure 8.5 and 8.6 shows the inference results of the first obstacle location out of 4
obstacles, with the SGI and POD model respectively. All other inference results are listed
in appendix B . The figures are arranged in a manner that for the same case and the same
obstacle, the inference results with the SGI model is listed on top, and the results with the
POD model are list on the bottom of the same page.

The inference results reflect both the error from the surrogate model—which is quite
large in this experiment—and the noise (20%) that present in the observed data. As already
mentioned, since it is not feasible to compute the posterior error with the KL divergence,
we analyze the inference results based on our observation and judgement.

For all four cases, most of the inference results are good, except for some individual
dimensions. Most of the expected values would converge to values that are close, but not
exactly equal to the “true“ obstacle locations, i.e., the values of θ̃ from which the observed
data is produced, as the MCMC step progresses. Most of the marginal distributions, al-
though some are not in a nice Gaussian shape, peak around the “true value“, which is
indicated by the red line marker. Note that in this experiment, some results has a bigger
distance away from their “true value“, as compared to the last experiment, because the ap-
proximation errors of the surrogate models (both SGI and POD models) are significantly
larger. Despite this factor, the overall quality of the results is still in the acceptable range.

One thing worth mentioning is that, in this experiment, the MCMC solver sometimes
will get trapped in a local region and do not converge to somewhere close to the “true
value“, if the initial step of the MCMC chain is far away from the “true value“. This is
indeed due to the fact that the posterior distribution has local maxima, and it is known
that the basic random walk algorithm (Metropolis-Hastings) is incapable of escaping from
a local region if the posterior distribution has disconnected supports. To overcome this
problem, more sophisticated MCMC variations are needed, but this is out of the scope of
this thesis.

In summary, comparing the results from both surrogate models side-by-side, we can
conclude that both models work fine for the inverse problems based on Navier-Stokes
equations. In terms of runtime efficiency, both models have roughly the same scale. How-
ever, for problems with higher dimensional parameter spaces, it is easier to achieve higher
accuracy with the POD model.
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Chapter 9

INFERENCE OF GEOMETRY PARAMETERS OF
ACOUSTIC HORN

This chapter presents an experiment on applying the SGI surrogate model to inverse prob-
lems of inferring the geometric parameters of an acoustic horn. For comparison, the re-
duced basis (RB) model described in section 5.3 is also used. Different from the previous
experiments, in this experiment, the forward model and the RB model is given. Ascribed
to its non-intrusive feature, the SGI model could be easily contructed by treating the full
model as a black-box.

9.1 Problem Setup

9.1.1 Full Model

Figure 9.1 2-Dimensional acoustic horn, source from [6].

Consider a parameter dependent acoustic horn inside a truncated circular domain Ω.,
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9 INFERENCE OF GEOMETRY PARAMETERS OF ACOUSTIC HORN

as shown in figure 9.1 . The horn consists of a straight channel followed by a flared section.
The straight channel has length l1 and width a. The flared section has a total length of l2
and an outlet of width 2b. The flared section is divided into M + 1 subsections; the heights
of these subsections {b1, · · · , bM } are considered as the geometric parameters. As shown
in figure 9.1 , the flared section is divided into 3 subsections and {b1, b2} are the geometric
parameters. The forward simulation, based on a Helmholtz linear elliptic model problem,
which is time independent, takes the geometric parameters as input, and solves for the
pressure field inside domain Ω.

In this experiment, we adopt an existing full forward model developed by the group
of Professor Dr. Anthony T. Patera from Massachusetts Institute of Technology. This source
code also includes a reduced model based on the reduced basis (RB) greedy algorithm.
For details of the theory and construction of the full and RB model for the above described
problem, see [6]. Slightly differ from the case shown in figure 9.1 , this full forward model
(and so the RB model) takes 6 geometric parameters for defining the shape of the flared
section. We denote them by µ := (µ1, . . . , µ6). Figure 9.2 shows examples of the full
forward simulation with different geometric parameter inputs.

Figure 9.2 Magnitude of the pressure field in Ω for different geometric parameters
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9.1 Problem Setup

9.1.2 Formulation of Inverse Problem

In the inverse problem, suppose we can obtain some noisy measurements of the pressure
magnitude at different locations across the domain. Note that this problem is time inde-
pendent, therefore, the measurements do not involve different time instants. Given these
data, we wish to infer the six geometric parameters, which define the shape of the acoustic
horn, i.e.,

d = G(µ) + η.

Assume we can obtain 100 measurements mainly located inside the acoustic horn and
the open region next to its outlet, i.e., we have d ∈ R100 containing useful information
(non-zero pressure) for the inverse problem. The forward model G(µ) is a map from the
geometric parameters µ ∈ R6 to noise-free observations of pressure magnitude d∗ ∈ R100.
The range of µ is given. Assume we have no specific prior information, which means a
uniform (constant) prior distribution across the parameter domain, i.e.,

π(µ) = UΩµ = c, c ∈ R.

We produce the “noisy observations“ by obtaining simulation data with µ̃ = (1.0478,
1.5024, 1.5946, 2.3389, 2.6385, 1.3195) and perturbing the data with additive Gaussian
noise, which is drawn from a normal distribution, i.e.,

d = G(µ̃) + η, η ∼ N (0, σ2I) · .

The σ is defined as σ = 0.1 · d̄∗, where d̄∗ denotes the average value of the simulation data,
introducing roughly 10% − 40% noise to the data. From equation (3.7) and knowing the
noise distribution, we can thus derive the solution as

πpos(µ) = πnoise(d−G(µ))πpr(µ)

∝ exp

(
− 1

2σ2
(d−G(µ))T (d−G(µ))

)
.

(9.1)

9.1.3 Construction of Surrogate Models

The given RB model is constructed based on algorithm 5.1. This RB model initializes each
geometric parameter with its mean value, i.e., the value at the center of its range. The
resulting RB model has 96 reduced basis, i.e., modes n = 96. For the SGI model, taking
full advantage of its non-intrusive nature, we can easily construct the surrogate model
by using the Klimke toolbox (see section 7.1.4 ), without investigating the inner struc-
ture/construction of the given full forward model.
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9.2 Results and Discussions

9.2.1 Surrogate Model Error

Figure 9.3 shows the surrogate model approximation error given by equation (7.5) for
the RB and SGI model. Note, the given RB model has only one resulting modes. Its ap-
proximation error is indicated by the red line in figure 9.3 . The errors for both models are
within the range of 1%, meaning that both models work very well for this problem. For the
SGI model, due to high computational costs of the offline phase, we are able to construct
the SGI model with up to level lv = 6, which achieve an error of 0.2%. The error of the RB
model is about 0.06%. Comparing the error of the two models, we see that the RB model
achieves better accuracy for this problem.

Figure 9.3 Approximation error of the RB model (indicated by the red line). And approximation error of the SGI model
vs. sparse grid discretization level (indicated by the red line).

9.2.2 Surrogate Model Runtime Efficiency

Figure 9.4 shows the runtime average given by equation (7.6) for the full, RB and the
SGI model. The full model runtime is 4.65 seconds, which is indicated by the black line.
The runtime average of the RB model is 0.62 seconds, which is indicated by the red line.
For the SGI model, we observe that the runtime increases significantly as the sparse grid
discretization level lv increases, which reflects the fact that the size a sparse grid grows as
the discretization level increases. The SGI model runtime reaches 3 seconds with lv = 6,
which is comparable to the runtime of the full model.
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9.2 Results and Discussions

Figure 9.4 Runtime average in seconds of the Full model (indicated by the black line), RB model (indicated by the red
line), and the SGI model vs. sparse grid discretization level (indicated by the red line).

9.2.3 Inference Results

Figure 9.5 and 9.6 shows the inference results of µ3 and µ4 for the SGI and RB model
respectively. The rest of the inference results of this experiment are listed in appendix C .
The figures are arranged in a way that for the same parameters, the inference results with
the SGI model is listed on top, and the results with RB model are list on the bottom of the
same page.

For the SGI model, the highest discretization level available lv = 6 is used. The ap-
proximation error is e6D = 0.2%. For the RB model, which has n = 96 modes, the approxi-
mation error is e6D = 0.06%. The inference results contain both the error from the surrogate
model and the noise (10%− 40%) that present in the observed data.

Overall, inference results with both models are good, because the expected values
would converge to values that are close, but not exactly equal to true values of the geo-
metric parameters, i.e., the values from which the observed data is produced. All of the
marginal distributions, display a Gaussian shape with a single peak around the true value.

In summary, we conclude that for the acoustic horn problem, both the SGI and RB
model work well and achieve very good accuracy. However, in terms of runtime efficiency,
the RB model is more preferable, because the runtime reduction of the SGI model is very
limited.
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9 INFERENCE OF GEOMETRY PARAMETERS OF ACOUSTIC HORN

Figure 9.5 Surrogate model: SGI level=6. Total number of parameters: 6. Parameter value: µ3 = 1.5946, µ4 = 2.3389.

Figure 9.6 Surrogate model: RB mode=96. Total number of parameters: 6. Parameter value: µ3 = 1.5946, µ4 = 2.3389.
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Chapter 10

SUMMARY & OUTLOOK

10.1 Summary

In this thesis, we experiment with applying the sparse grid interpolants (SGI) as surrogate
models in three different Bayesian inference problems. For comparison, in each experi-
ment, we also solve the same problems with another surrogate model, i.e., the projection-
based reduced-order model based on either the proper orthogonal decomposition (POD)
method or the reduced basis (RB) greedy algorithm.

In the first experiment, we infer the locations of multiple heat sources in a two dimen-
sional geometry. The forward system is based on the Poisson’s equation, which is linear in
its solution state. The approximation error of both models for this problem is in the range
of a few percent, e.g., for the SGI model, with discretization level 6 and higher, the error is
under 2% for the cases of 2-D, 4-D, 6-D and 8-D parameter space; for the POD model, with
modes of 40 and higher, the error is under 2% for all cases. For the runtime, the full model
has an average runtime of 20 seconds. The POD model reduces the average runtime of the
forward simulation to a 10−2 second scale for all cases, while the SGI model reduces the
runtime to a 10−1 second scale for most cases. The runtime of the POD model increases as
the number of modes increase, but is not affected by the dimensions of the problem. How-
ever, the runtime of the SGI model is influenced by both the discretization level and the
number of dimensions of the problem. In this regard, the POD model is a more efficient
surrogate model for problems with higher dimensional parameter spaces. In terms of in-
ference results, both models demonstrate good ability to recover the heat source locations
from a set of observed data containing roughly 20%− 40% noise.

In the second experiment, we infer the locations of multiple obstacles in a two di-
mensional channel filled with non-stationary incompressible viscous fluid. The forward
system is based on the two-dimensional Navier-Stokes equations, which comprise a non-
linear system that is linear in its pressure field and non-linear in its velocity fields. The
approximation error of the POD model is in the range of 10%−35% with under 100 modes,
and below 10% with more than 100 modes. It is not influenced by the problem dimensions.
The error of the SGI model, however, is affected both by the discretization level and the
problem dimensions. The error is in the range of 45%− 70% for 8-D parameter space (four
obstacles), 25%− 35% for 6-D parameter space (three obstacles), 5%− 20% for 4-D param-
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eter space (two obstacles), and under 10% for 2-D parameter space (one obstacle). For the
runtime, the full model has an average runtime of 120 seconds. The POD model reduces
the average runtime to the range of 1− 3 seconds, while the SGI model reduces to below 1
second for the cases of one, two and three obstacles, and 0.5−4 seconds for the case of four
obstacles. Again, runtime of the POD model is not affected by the problem dimensions but
the runtime of the SGI model is. Despite the dramatic increase of the approximation error
of both models, as compared to the error range in the first experiment, the inference results
of both models still possess acceptable quality.

In the third experiment, we infer six geometric parameters of a two-dimensional acous-
tic horn. The forward system is based on the Helmholtz linear elliptic model, which is, as
its name suggests, linear. The approximation error the SGI model decreases from above
1% to under 0.2%, and the error for the RB model, which has 96 modes, is 0.06%. For the
runtime, the full model has an average runtime of 4.5 seconds. The RB model reduces the
average runtime to 0.6 seconds, while the runtime for the SGI model ranges from 0.6 to 3
seconds, which is comparable to the full model runtime. Therefore, in terms of runtime
efficiency, the RB model is a more efficient surrogate model for this problem. The inference
results of both models have very good quality.

Comparing the results of all three experiments, we can conclude that, both the projec-
tion based (POD and RB) models and the SGI models perform well as surrogate models in
the Bayesian inference framework. Generally speaking, they approximate linear systems
much better than non-linear systems. The approximation quality and runtime efficiency
of the projection based models are mainly affected by the number of modes and not the
problem dimensions. While for the SGI model, the approximation quality and runtime
efficiency are influenced by both the sparse grid discretization level and the problem di-
mensions. In this regard, the projection based models scale better for higher dimensional
problems. However, the SGI models have one big advantage, that is, it is non-intrusive. In
many cases, when the knowledge of a forward model is lacking, or the inner structure of a
system is unclear, it is impossible to employ the projection-based reduce models. In such
situations, the SGI model is a very good choice.

10.2 Outlook

In these experiments, due to the complexity of the problems and the limitation of time and
computational resources, neither the prior-weighted error nor the KL divergence posterior
error could be computed. For the surrogate model error analysis, we used the averaged
normed L2 error instead, and for the inference error analysis, we relied solely on our ob-
servation and judgement. For future investigations of this topic, more quantitative error
analysis should be done.

To ensure good inference results, more invulnerable and robust MCMC solver should
be employed, as the posterior distributions might have multiple disconnected or barely
connected dense regions, and the basic random walk algorithm is incapable of discovering
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different dense regions. Using a good solver can separate the inference error from the error
introduced by the surrogate models, which would enable us to better assess the quality of
the surrogate models.
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Appendix A: Inference of Heat Source Locations Results

Figure A.1 Surrogate model: SGI level=8. Total number of sources: 1. First source location: (0.6, 0.9).

Figure A.2 Surrogate model: POD n=100. Total number of sources: 1. First source location: (0.6, 0.9).
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Figure A.3 Surrogate model: SGI level=8. Total number of sources: 2. First source location: (0.6, 0.9).

Figure A.4 Surrogate model: POD n=100. Total number of sources: 2. First source location: (0.6, 0.9).
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Figure A.5 Surrogate model: SGI level=8. Total number of sources: 2. Second source location: (0.1, 0.5).

Figure A.6 Surrogate model: POD n=100. Total number of sources: 2. Second source location: (0.1, 0.5).
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Figure A.7 Surrogate model: SGI level=6. Total number of sources: 3. First source location: (0.6, 0.9).

Figure A.8 Surrogate model: POD n=100. Total number of sources: 3. First source location: (0.6, 0.9).
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Figure A.9 Surrogate model: SGI level=6. Total number of sources: 3. Second source location: (0.1, 0.5).

Figure A.10 Surrogate model: POD n=100. Total number of sources: 3. Second source location: (0.1, 0.5).
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Figure A.11 Surrogate model: SGI level=6. Total number of sources: 3. Third source location: (0.2, 0.3).

Figure A.12 Surrogate model: POD n=100. Total number of sources: 3. Third source location: (0.2, 0.3).
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Figure A.13 Surrogate model: SGI level=6. Total number of sources: 4. Second source location: (0.1, 0.5).

Figure A.14 Surrogate model: POD n=100. Total number of sources: 4. Second source location: (0.1, 0.5).
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Figure A.15 Surrogate model: SGI level=6. Total number of sources: 4. Third source location: (0.8, 0.1).

Figure A.16 Surrogate model: POD n=100. Total number of sources: 4. Third source location: (0.8, 0.1).
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Figure A.17 Surrogate model: SGI level=6. Total number of sources: 4. Fourth source location: (0.2, 0.3).

Figure A.18 Surrogate model: POD n=100. Total number of sources: 4. Fourth source location: (0.2, 0.3).
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Appendix B: Inference of Obstacle Locations Results

Figure B.1 Surrogate model: SGI level=8. Total number of obstacles: 1. Obstacle location: (1.0, 0.8).

Figure B.2 Surrogate model: POD n=100. Total number of obstacles: 1. Obstacle location: (1.0, 0.8).
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Figure B.3 Surrogate model: SGI level=8. Total number of obstacles: 2. First obstacle location: (1.0, 0.8).

Figure B.4 Surrogate model: POD n=100. Total number of obstacles: 2. First obstacle location: (1.0, 0.8).
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Figure B.5 Surrogate model: SGI level=8. Total number of obstacles: 2. Second obstacle location: (3.0, 1.5).

Figure B.6 Surrogate model: POD n=100. Total number of obstacles: 2. Second obstacle location: (3.0, 1.5).
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Figure B.7 Surrogate model: SGI level=6. Total number of obstacles: 3. First obstacle location: (1.0, 0.8).

Figure B.8 Surrogate model: POD n=100. Total number of obstacles: 3. First obstacle location: (1.0, 0.8).
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Figure B.9 Surrogate model: SGI level=6. Total number of obstacles: 3. Second obstacle location: (3.0, 1.5).

Figure B.10 Surrogate model: POD n=100. Total number of obstacles: 3. Second obstacle location: (3.0, 1.5).
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Figure B.11 Surrogate model: SGI level=6. Total number of obstacles: 3. Third obstacle location: (5.5, 1.2).

Figure B.12 Surrogate model: POD n=100. Total number of obstacles: 3. Third obstacle location: (5.5, 1.2).
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Figure B.13 Surrogate model: SGI level=6. Total number of obstacles: 4. Second obstacle location: (3.0, 1.5).

Figure B.14 Surrogate model: POD n=100. Total number of obstacles: 4. Second obstacle location: (3.0, 1.5).
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Figure B.15 Surrogate model: SGI level=6. Total number of obstacles: 4. Third obstacle location: (5.5, 1.2).

Figure B.16 Surrogate model: POD n=100. Total number of obstacles: 4. Third obstacle location: (5.5, 1.2).
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Figure B.17 Surrogate model: SGI level=6. Total number of obstacles: 4. Fourth obstacle location: (8.2, 1.0).

Figure B.18 Surrogate model: POD n=100. Total number of obstacles: 4. Fourth obstacle location: (8.2, 1.0).
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Appendix C: Inference of Geometry Parameters Results

Figure C.1 Surrogate model: SGI level=6. Total number of parameters: 6. Parameter value: µ1 = 1.0478, µ2 = 1.5024.

Figure C.2 Surrogate model: RB mode=96. Total number of parameters: 6. Parameter value: µ1 = 1.0478, µ2 = 1.5024.
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Figure C.3 Surrogate model: SGI level=6. Total number of parameters: 6. Parameter value: µ5 = 2.6385, µ6 = 1.3195.

Figure C.4 Surrogate model: RB mode=96. Total number of parameters: 6. Parameter value: µ5 = 2.6385, µ6 = 1.3195.
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