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Motivation/Introduction

Random numbers are required in many fields
• Cryptography
• Monte Carlo methods
• Simulating stochastic processes
• Stochastic/Random differential equations
• . . .

Generation of random numbers on a computer
• Determined by a deterministic rule
• Such random numbers are not really “random”

but satisfy certain statistical criteria (pseudo random numbers)
• In general, such rules determine a uniformly distributed random number

uuniform
integer ∈ {0, . . . , ULONG MAX } and uuniform

float ∈ [0, 1[, resp.
• A transformation function transforms this number to desired distribution,

e.g. normal distribution unormal , by “imitating” the inverse CDF

⇒ Ziggurat method [MT00]
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Definition of the Ziggurat: Gaussian bell function

f (x) = e− x2
2
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Definition of the Ziggurat: Approximation by strips

x0

x7 =ry6

R6

x6y5
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x5y4

R4

x4y3

R3

x3y2

R2

x2y1

R1

x1y0

R0

y7

R7 =RB

Ri strip
N number of strips

(xi , yi) right bottom corner of all rectangular strips R0, . . . ,RN−2

v common area of all strips R0, . . . ,RN−1

r = xN−1 right-most edge of a rectangular strip
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Definition of the Ziggurat: Four different regions
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central region rectangle totally under bell function
tail region remainder of strip under bell function

cap region remainder of strip over bell function
base strip non-rectangular strip RN−1
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Algorithmic description

The Ziggurat is stored by saving x1, . . . , xN−1 in a lookup table

x1 = 0.738368917976448

x2 = 1.027386371780228

x3 = 1.262970198530832

x4 = 1.485358675643293

x5 = 1.716508125776779

x6 = 1.981904936400510

x7 = 2.338371698247252

How the Ziggurat method works

1. Generate a uuniform
integer and its corresponding uuniform

float

2. To transform uuniform to unormal

select the k -th strip of the Ziggurat by k = uuniform
integer &(2N − 1)

3. Depending on k , the transformation is done as follows. . .
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Algorithmic description: Central region

x2x3

R1

A central region is hit if

• k 6= N − 1
• uuniform

float ≤ xk+1/xk

Then, transformation is done by

unormal = uuniform
float · xk+1

⇒ great, because cheap
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Algorithmic description: Central region
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Algorithmic description: Tail region

x2x3

R1

A tail region is hit if

• k 6= N − 1
• the central region is not hit
• uuniform

float · (f (xk+1)− f (xk )) <
f (uuniform

float · xk+1)− f (xk+1)

Then, transformation is done by

unormal = uuniform
float · xk+1

⇒ great, because cheap
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Algorithmic description: Tail region
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Algorithmic description: Cap region

x2x3

R1

A cap region is hit if

• k 6= N − 1
• neither the central nor tail region

are hit

Then, transformation is done by

Restart the Ziggurat method with new
uuniform

⇒ bad, because expensive
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Algorithmic description: Base strip

R7 =RB

The base strip is hit if

• k = N − 1

Then, transformation is done by

x =
(
v · uuniform

float

)
/f (r)

• If x < r , then unormal = x
• If x ≥ r , then [Mar64]

⇒ bad, because expensive
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Influence of the number of strips
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Number of strips % of covered area

2 = 21 0.0%
4 = 22 ∼ 42.98%
8 = 23 ∼ 69.75%

16 = 24 ∼ 84.13%
32 = 25 ∼ 91.71%
64 = 26 ∼ 95.64%

128 = 27 ∼ 97.71%
256 = 28 ∼ 98.80%
512 = 29 ∼ 99.37%

1024 = 210 ∼ 99.67%
2048 = 211 ∼ 99.83%
4096 = 212 ∼ 99.91%
8192 = 213 ∼ 99.95%
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HPC aspects of number of used strips

• The more strips are used for the
Ziggurat, the bigger the ratio of
the sum of all central regions to
the sum of all strips gets

• The bigger this ratio gets, the
higher the likelihood to hit a
(cheap) central region gets

• In addition, on GPUs, this
reduces the likelihood for warp
divergence

• So runtime can be reduced by
using more strips which results in
larger lookup tables
⇒ runtime/memory trade-off

#strips likelihood of warp div.

2 = 21 1− 0.032 = 100.0%
4 = 22 1− 0.429832 ≈ 99.9%
8 = 23 1− 0.697532 ≈ 99.9%

16 = 24 1− 0.841332 ≈ 99.9%
32 = 25 1− 0.917132 ≈ 93.7%
64 = 26 1− 0.956432 ≈ 76.0%
128 = 27 1− 0.977132 ≈ 52.3%
256 = 28 1− 0.988032 ≈ 32.0%
512 = 29 1− 0.993732 ≈ 18.3%

1024 = 210 1− 0.996732 ≈ 10.0%
2048 = 211 1− 0.998332 ≈ 5.3%
4096 = 212 1− 0.999132 ≈ 2.8%
8192 = 213 1− 0.999532 ≈ 1.6%
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Setup

GPUs

GPU architecture Fermi Kepler Maxwell
Model M2090 Tesla K40m GTX 750 Ti

Compute capability 2.0 3.5 5.0
#Processing elements 16× 32 15× 192 5× 128

Size of shared memory (KB) 48 48 48
SP peak performance (TFLOPS) 1.3312 3.84192 1.6384

Setup

• For every run, 228 float numbers are generated
• Each thread produces 212 random numbers
• All floating point operations are done in single precision
• Uniform input uuniform

integer is generated by cuRAND XORWOW [Mar03]

• Execution times contain generation of uuniform
integer and time for transformation
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Influence of the number of strips
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2.5 GTX 750 Ti (Maxwell)

local 25 ×211

shared 25 ×211

local 26 ×210

shared 26 ×210

local 27 ×29

shared 27 ×29

local 28 ×28

shared 28 ×28

local 29 ×27

shared 29 ×27

• States for XORWOW can be stored in local or shared memory
• Value of interest is giga pseudo random numbers per second (GPRNs/s)
• For most configurations, a single peak of performance is observable
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Influence of the number of strips: Warp divergence

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0
ra

tio
 o

f d
iv

er
gi

ng
 w

ar
ps

expected observed

⇒ For low strip numbers, performance is limited by high warp divergence

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 20



Technische Universität München

Influence of the number of strips: Occupancy
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local 25 ×211

shared 25 ×211

local 26 ×210

shared 26 ×210

local 27 ×29

shared 27 ×29

local 28 ×28

shared 28 ×28

local 29 ×27

shared 29 ×27

⇒ For large strip numbers, performance is limited by low occupancy
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Comparison with alternative PRNGs
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• For Ziggurat, best configuration (in terms of used strips) is used
• Wichura [Wic88] is a direct generator for random numbers,

inverse CDF uses normcdfinvf(), and
Box/Muller [BM58] is the most popular transformation function

• Ziggurat shows better performance then all other methods
on Fermi (+19.9%) and Kepler (+24.3%), but not on Maxwell (−35.8%)
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Conclusion

• The Ziggurat method is a rejection method to transform uniformly
distributed random numbers to normally distributed random numbers

• A runtime/memory trade-off allows reducing the execution time of the
transformation by spending more memory for larger lookup tables

• Especially GPUs benefit from this trade-off
since it leads to lower warp divergence

• While an implementation for CPUs typically uses 128 or 256 strips,
a flat recommendation for GPUs is not possible

• Our Ziggurat implementation is up to 19.9% faster on Fermi
and up to 24.3% faster on Kepler
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Final slide
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