

HPCS'2015

A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

Christoph Riesinger, Tobias Neckel
Technische Universität München
July 21, 2015

Topics

Motivation/Introduction

The Ziggurat method

Definition of the Ziggurat Algorithmic description

Memory/runtime trade-off

Results

Influence of the number of strips Comparison with alternative PRNGs

Conclusion

Topics

Motivation/Introduction

The Ziggurat method

Memory/runtime trade-off

Results

Comparison with alternative PRNGs

Conclusion

Motivation/Introduction

Random numbers are required in many fields

- Cryptography
- Monte Carlo methods
- Simulating stochastic processes
- Stochastic/Random differential equations
- . .

Motivation/Introduction

Random numbers are required in many fields

- Cryptography
- Monte Carlo methods
- Simulating stochastic processes
- Stochastic/Random differential equations
- ..

Generation of random numbers on a computer

- Determined by a deterministic rule
- Such random numbers are not really "random" but satisfy certain statistical criteria (pseudo random numbers)
- In general, such rules determine a uniformly distributed random number $u_{integer}^{uniform} \in \{0, ..., ULONG_MAX\}$ and $u_{finat}^{uniform} \in [0, 1]$, resp.
- A transformation function transforms this number to desired distribution, e.g. normal distribution u^{normal}, by "imitating" the inverse CDF
- ⇒ Ziggurat method [MT00]

Topics

Motivation/Introduction

The Ziggurat method

Definition of the Ziggurat Algorithmic description

Memory/runtime trade-off

Results

Comparison with alternative PRNGs

Conclusion

Definition of the Ziggurat: Gaussian bell function

$$f(x)=e^{-\frac{x^2}{2}}$$

Definition of the Ziggurat: Approximation by strips

 R_i strip

N number of strips

 (x_i, y_i) right bottom corner of all rectangular strips R_0, \ldots, R_{N-2} v common area of all strips R_0, \ldots, R_{N-1}

 $r = x_{N-1}$ right-most edge of a rectangular strip

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs
HPCS'2015, July 21, 2015

Definition of the Ziggurat: Four different regions

central region tail region cap region base strip rectangle totally under bell function remainder of strip under bell function remainder of strip over bell function non-rectangular strip R_{N-1}

Algorithmic description

The Ziggurat is stored by saving x_1, \ldots, x_{N-1} in a lookup table

 $x_1 = 0.738368917976448$

 $x_2 = 1.027386371780228$

 $x_3 = 1.262970198530832$

 $x_4 = 1.485358675643293$

 $x_5 = 1.716508125776779$

 $x_6 = 1.981904936400510$

 $x_7 = 2.338371698247252$

Algorithmic description

The Ziggurat is stored by saving x_1, \ldots, x_{N-1} in a lookup table

```
x_1 = 0.738368917976448

x_2 = 1.027386371780228

x_3 = 1.262970198530832

x_4 = 1.485358675643293

x_5 = 1.716508125776779

x_6 = 1.981904936400510

x_7 = 2.338371698247252
```

How the Ziggurat method works

- **1.** Generate a $u_{integer}^{uniform}$ and its corresponding $u_{float}^{uniform}$
- 2. To transform $u^{uniform}$ to u^{normal} select the k-th strip of the Ziggurat by $k = u_{integer}^{uniform} \& (2^N 1)$
- **3.** Depending on k, the transformation is done as follows...

Algorithmic description: Central region

A central region is hit if

- $k \neq N 1$
- $u_{float}^{uniform} \leq x_{k+1}/x_k$

Algorithmic description: Central region

A central region is hit if

- $k \neq N 1$
- $u_{float}^{uniform} \leq x_{k+1}/x_k$

Then, transformation is done by

$$u^{normal} = u_{float}^{uniform} \cdot x_{k+1}$$

 \Rightarrow great, because cheap

Algorithmic description: Tail region

A tail region is hit if

- $k \neq N 1$
- · the central region is not hit
- $u_{float}^{uniform} \cdot (f(x_{k+1}) f(x_k)) < f(u_{float}^{uniform} \cdot x_{k+1}) f(x_{k+1})$

Algorithmic description: Tail region

A tail region is hit if

- $k \neq N 1$
- · the central region is not hit
- $u_{float}^{uniform} \cdot (f(x_{k+1}) f(x_k)) < f(u_{float}^{uniform} \cdot x_{k+1}) f(x_{k+1})$

Then, transformation is done by

$$u^{normal} = u_{float}^{uniform} \cdot x_{k+1}$$

 \Rightarrow great, because cheap

Algorithmic description: Cap region

A cap region is hit if

- $k \neq N 1$
- neither the central nor tail region are hit

Algorithmic description: Cap region

A cap region is hit if

- $k \neq N 1$
- neither the central nor tail region are hit

Then, transformation is done by

Restart the Ziggurat method with new $u^{uniform}$

⇒ bad, because expensive

Algorithmic description: Base strip

The base strip is hit if

•
$$k = N - 1$$

Algorithmic description: Base strip

The base strip is hit if

•
$$k = N - 1$$

Then, transformation is done by

$$x = (v \cdot u_{float}^{uniform}) / f(r)$$

• If
$$x < r$$
, then $u^{normal} = x$

• If
$$x \ge r$$
, then [Mar64]

⇒ bad, because expensive

Topics

Motivation/Introduction

The Ziggurat method

Memory/runtime trade-off

Results

Comparison with alternative PRNGs

Conclusion

Influence of the number of strips

Influence of the number of strips

Number of strips	% of covered area		
$2 = 2^1$	0.0%		
$4 = 2^2$	\sim 42.98%		
$8 = 2^3$	\sim 69.75%		
$16 = 2^4$	\sim 84.13%		
$32 = 2^5$	~ 91.71%		
$64 = 2^6$	\sim 95.64%		
$128 = 2^7$	~ 97.71%		
$256 = 2^8$	\sim 98.80%		
$512 = 2^9$	$\sim 99.37\%$		
$1024 = 2^{10}$	\sim 99.67%		
$2048 = 2^{11}$	$\sim 99.83\%$		
$4096 = 2^{12}$	\sim 99.91%		
$8192 = 2^{13}$	\sim 99.95%		

HPC aspects of number of used strips

- The more strips are used for the Ziggurat, the bigger the ratio of the sum of all central regions to the sum of all strips gets
- The bigger this ratio gets, the higher the likelihood to hit a (cheap) central region gets
- In addition, on GPUs, this reduces the likelihood for warp divergence

HPC aspects of number of used strips

- The more strips are used for the Ziggurat, the bigger the ratio of the sum of all central regions to the sum of all strips gets
- The bigger this ratio gets, the higher the likelihood to hit a (cheap) central region gets
- In addition, on GPUs, this reduces the likelihood for warp divergence

#strips	likelihood of warp div.
$2 = 2^1$	$1 - 0.0^{32} = 100.0\%$
$4 = 2^2$	$1 - 0.4298^{32} \approx 99.9\%$
$8 = 2^3$	$1 - 0.6975^{32} \approx 99.9\%$
$16 = 2^4$	$1 - 0.8413^{32} \approx 99.9\%$
$32 = 2^5$	$1 - 0.9171^{32} \approx 93.7\%$
$64 = 2^6$	$1 - 0.9564^{32} \approx 76.0\%$
$128 = 2^7$	$1-0.9771^{32}\approx 52.3\%$
$256 = 2^8$	$1-0.9880^{32}\approx 32.0\%$
$512 = 2^9$	$1 - 0.9937^{32} \approx 18.3\%$
$1024 = 2^{10}$	$1 - 0.9967^{32} \approx 10.0\%$
$2048 = 2^{11}$	$1 - 0.9983^{32} \approx 5.3\%$
$4096 = 2^{12}$	$1-0.9991^{32}\approx 2.8\%$
$8192 = 2^{13}$	$1 - 0.9995^{32} \approx 1.6\%$

HPC aspects of number of used strips

- The more strips are used for the Ziggurat, the bigger the ratio of the sum of all central regions to the sum of all strips gets
- The bigger this ratio gets, the higher the likelihood to hit a (cheap) central region gets
- In addition, on GPUs, this reduces the likelihood for warp divergence
- So runtime can be reduced by using more strips which results in larger lookup tables
 - ⇒ runtime/memory trade-off

#strips	likelihood of warp div.
$2 = 2^1$	$1 - 0.0^{32} = 100.0\%$
$4 = 2^2$	$1 - 0.4298^{32} \approx 99.9\%$
$8 = 2^3$	$1 - 0.6975^{32} \approx 99.9\%$
$16 = 2^4$	$1 - 0.8413^{32} \approx 99.9\%$
$32 = 2^5$	$1-0.9171^{32}\approx 93.7\%$
$64 = 2^6$	$1 - 0.9564^{32} \approx 76.0\%$
$128 = 2^7$	$1-0.9771^{32}\approx 52.3\%$
$256 = 2^8$	$1 - 0.9880^{32} \approx 32.0\%$
$512 = 2^9$	$1 - 0.9937^{32} \approx 18.3\%$
$1024 = 2^{10}$	$1 - 0.9967^{32} \approx 10.0\%$
$2048 = 2^{11}$	$1 - 0.9983^{32} \approx 5.3\%$
$4096 = 2^{12}$	$1-0.9991^{32}\approx 2.8\%$
$8192 = 2^{13}$	$1 - 0.9995^{32} \approx 1.6\%$

Topics

Motivation/Introduction

The Ziggurat method

Memory/runtime trade-off

Results

Influence of the number of strips Comparison with alternative PRNGs

Conclusion

Setup

GPUs

GPU architecture	Fermi	Kepler	Maxwell
Model	M2090	Tesla K40m	GTX 750 Ti
Compute capability	2.0	3.5	5.0
#Processing elements	16 × 32	15 × 192	5 × 128
Size of shared memory (KB)	48	48	48
SP peak performance (TFLOPS)	1.3312	3.84192	1.6384

Setup

GPUs

GPU architecture	Fermi	Kepler	Maxwell
Model	M2090	Tesla K40m	GTX 750 Ti
Compute capability	2.0	3.5	5.0
#Processing elements	16 × 32	15 × 192	5 × 128
Size of shared memory (KB)	48	48	48
SP peak performance (TFLOPS)	1.3312	3.84192	1.6384

Setup

- For every run, 2²⁸ float numbers are generated
- Each thread produces 2¹² random numbers
- All floating point operations are done in single precision
- Uniform input u^{uniform} is generated by cuRAND XORWOW [Mar03]
- Execution times contain generation of $u_{integer}^{uniform}$ and time for transformation

Influence of the number of strips

- States for XORWOW can be stored in local or shared memory
- Value of interest is giga pseudo random numbers per second (GPRNs/s)
- For most configurations, a single peak of performance is observable

Influence of the number of strips: Warp divergence

⇒ For low strip numbers, performance is limited by high warp divergence

Influence of the number of strips: Occupancy

⇒ For large strip numbers, performance is limited by low occupancy

Comparison with alternative PRNGs

- For Ziggurat, best configuration (in terms of used strips) is used
- Wichura [Wic88] is a direct generator for random numbers, inverse CDF uses normcdfinvf(), and Box/Muller [BM58] is the most popular transformation function
- Ziggurat shows better performance then all other methods on Fermi (+19.9%) and Kepler (+24.3%), but not on Maxwell (-35.8%)

Topics

Motivation/Introduction

The Ziggurat method

Memory/runtime trade-off

Results

Comparison with alternative PRNGs

Conclusion

Conclusion

- The Ziggurat method is a rejection method to transform uniformly distributed random numbers to normally distributed random numbers
- A runtime/memory trade-off allows reducing the execution time of the transformation by spending more memory for larger lookup tables
- Especially GPUs benefit from this trade-off since it leads to lower warp divergence
- While an implementation for CPUs typically uses 128 or 256 strips, a flat recommendation for GPUs is not possible
- Our Ziggurat implementation is up to 19.9% faster on Fermi and up to 24.3% faster on Kepler

Bibliography

George Edward Pelham Box and Mervin Edgar Muller.

A Note on the Generation of Random Normal Deviates.

The Annals of Mathematical Statistics, 29(2):610–611, 1958.

George Marsaglia.

Generating a variable from the tail of the normal distribution.

Technometrics, 6(1):101-102, 1964.

George Marsaglia.

Xorshift RNGs.

Journal of Statistical Software, 8:1–6, 2003.

George Marsaglia and Wai Wan Tsang.

The Ziggurat Method for Generating Random Variables.

Journal of Statistical Software, 5(8):1-7, 2000.

Michael J. Wichura.

Algorithm AS241: The percentage points of the normal distribution.

Applied Statistics, 37:477–484, 1988.

Final slide

