
Technische Universität München

HPCS’2015

A Runtime/Memory Trade-off of the Continuous Ziggurat
Method on GPUs

Christoph Riesinger, Tobias Neckel

Technische Universität München

July 21, 2015

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 1



Technische Universität München

Topics

Motivation/Introduction

The Ziggurat method
Definition of the Ziggurat
Algorithmic description

Memory/runtime trade-off

Results
Influence of the number of strips
Comparison with alternative PRNGs

Conclusion

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 2



Technische Universität München

Topics

Motivation/Introduction

The Ziggurat method
Definition of the Ziggurat
Algorithmic description

Memory/runtime trade-off

Results
Influence of the number of strips
Comparison with alternative PRNGs

Conclusion

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 3



Technische Universität München

Motivation/Introduction

Random numbers are required in many fields
• Cryptography
• Monte Carlo methods
• Simulating stochastic processes
• Stochastic/Random differential equations
• . . .

Generation of random numbers on a computer
• Determined by a deterministic rule
• Such random numbers are not really “random”

but satisfy certain statistical criteria (pseudo random numbers)
• In general, such rules determine a uniformly distributed random number

uuniform
integer ∈ {0, . . . , ULONG MAX } and uuniform

float ∈ [0, 1[, resp.
• A transformation function transforms this number to desired distribution,

e.g. normal distribution unormal , by “imitating” the inverse CDF

⇒ Ziggurat method [MT00]

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 4



Technische Universität München

Motivation/Introduction

Random numbers are required in many fields
• Cryptography
• Monte Carlo methods
• Simulating stochastic processes
• Stochastic/Random differential equations
• . . .

Generation of random numbers on a computer
• Determined by a deterministic rule
• Such random numbers are not really “random”

but satisfy certain statistical criteria (pseudo random numbers)
• In general, such rules determine a uniformly distributed random number

uuniform
integer ∈ {0, . . . , ULONG MAX } and uuniform

float ∈ [0, 1[, resp.
• A transformation function transforms this number to desired distribution,

e.g. normal distribution unormal , by “imitating” the inverse CDF

⇒ Ziggurat method [MT00]
Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 4



Technische Universität München

Topics

Motivation/Introduction

The Ziggurat method
Definition of the Ziggurat
Algorithmic description

Memory/runtime trade-off

Results
Influence of the number of strips
Comparison with alternative PRNGs

Conclusion

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 5



Technische Universität München

Definition of the Ziggurat: Gaussian bell function

f (x) = e− x2
2

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 6



Technische Universität München

Definition of the Ziggurat: Approximation by strips

x0

x7 =ry6

R6

x6y5

R5

x5y4

R4

x4y3

R3

x3y2

R2

x2y1

R1

x1y0

R0

y7

R7 =RB

Ri strip
N number of strips

(xi , yi) right bottom corner of all rectangular strips R0, . . . ,RN−2

v common area of all strips R0, . . . ,RN−1

r = xN−1 right-most edge of a rectangular strip

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 7



Technische Universität München

Definition of the Ziggurat: Four different regions

x0

x7 =ry6

R6

x6y5

R5

x5y4

R4

x4y3

R3

x3y2

R2

x2y1

R1

x1y0

R0

y7

R7 =RB

central region rectangle totally under bell function
tail region remainder of strip under bell function

cap region remainder of strip over bell function
base strip non-rectangular strip RN−1

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 8



Technische Universität München

Algorithmic description

The Ziggurat is stored by saving x1, . . . , xN−1 in a lookup table

x1 = 0.738368917976448

x2 = 1.027386371780228

x3 = 1.262970198530832

x4 = 1.485358675643293

x5 = 1.716508125776779

x6 = 1.981904936400510

x7 = 2.338371698247252

How the Ziggurat method works

1. Generate a uuniform
integer and its corresponding uuniform

float

2. To transform uuniform to unormal

select the k -th strip of the Ziggurat by k = uuniform
integer &(2N − 1)

3. Depending on k , the transformation is done as follows. . .

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 9



Technische Universität München

Algorithmic description

The Ziggurat is stored by saving x1, . . . , xN−1 in a lookup table

x1 = 0.738368917976448

x2 = 1.027386371780228

x3 = 1.262970198530832

x4 = 1.485358675643293

x5 = 1.716508125776779

x6 = 1.981904936400510

x7 = 2.338371698247252

How the Ziggurat method works

1. Generate a uuniform
integer and its corresponding uuniform

float

2. To transform uuniform to unormal

select the k -th strip of the Ziggurat by k = uuniform
integer &(2N − 1)

3. Depending on k , the transformation is done as follows. . .

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 9



Technische Universität München

Algorithmic description: Central region

x2x3

R1

A central region is hit if

• k 6= N − 1
• uuniform

float ≤ xk+1/xk

Then, transformation is done by

unormal = uuniform
float · xk+1

⇒ great, because cheap

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 10



Technische Universität München

Algorithmic description: Central region

u
uniform
float

u
uniform
float ·x2

x3 x2

A central region is hit if

• k 6= N − 1
• uuniform

float ≤ xk+1/xk

Then, transformation is done by

unormal = uuniform
float · xk+1

⇒ great, because cheap

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 10



Technische Universität München

Algorithmic description: Tail region

x2x3

R1

A tail region is hit if

• k 6= N − 1
• the central region is not hit
• uuniform

float · (f (xk+1)− f (xk )) <
f (uuniform

float · xk+1)− f (xk+1)

Then, transformation is done by

unormal = uuniform
float · xk+1

⇒ great, because cheap

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 11



Technische Universität München

Algorithmic description: Tail region

u
uniform
float

u
uniform
float ·x2

x3 x2

A tail region is hit if

• k 6= N − 1
• the central region is not hit
• uuniform

float · (f (xk+1)− f (xk )) <
f (uuniform

float · xk+1)− f (xk+1)

Then, transformation is done by

unormal = uuniform
float · xk+1

⇒ great, because cheap

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 11



Technische Universität München

Algorithmic description: Cap region

x2x3

R1

A cap region is hit if

• k 6= N − 1
• neither the central nor tail region

are hit

Then, transformation is done by

Restart the Ziggurat method with new
uuniform

⇒ bad, because expensive

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 12



Technische Universität München

Algorithmic description: Cap region

u
uniform
float

x3 x2

A cap region is hit if

• k 6= N − 1
• neither the central nor tail region

are hit

Then, transformation is done by

Restart the Ziggurat method with new
uuniform

⇒ bad, because expensive

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 12



Technische Universität München

Algorithmic description: Base strip

R7 =RB

The base strip is hit if

• k = N − 1

Then, transformation is done by

x =
(
v · uuniform

float

)
/f (r)

• If x < r , then unormal = x
• If x ≥ r , then [Mar64]

⇒ bad, because expensive

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 13



Technische Universität München

Algorithmic description: Base strip

R7 =RB

The base strip is hit if

• k = N − 1

Then, transformation is done by

x =
(
v · uuniform

float

)
/f (r)

• If x < r , then unormal = x
• If x ≥ r , then [Mar64]

⇒ bad, because expensive

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 13



Technische Universität München

Topics

Motivation/Introduction

The Ziggurat method
Definition of the Ziggurat
Algorithmic description

Memory/runtime trade-off

Results
Influence of the number of strips
Comparison with alternative PRNGs

Conclusion

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 14



Technische Universität München

Influence of the number of strips

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Number of strips % of covered area

2 = 21 0.0%
4 = 22 ∼ 42.98%
8 = 23 ∼ 69.75%

16 = 24 ∼ 84.13%
32 = 25 ∼ 91.71%
64 = 26 ∼ 95.64%

128 = 27 ∼ 97.71%
256 = 28 ∼ 98.80%
512 = 29 ∼ 99.37%

1024 = 210 ∼ 99.67%
2048 = 211 ∼ 99.83%
4096 = 212 ∼ 99.91%
8192 = 213 ∼ 99.95%

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 15



Technische Universität München

Influence of the number of strips

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

0.0 0.5 1.0 1.5 2.0 2.5 3.0 3.5
0.0

0.2

0.4

0.6

0.8

1.0

Number of strips % of covered area

2 = 21 0.0%
4 = 22 ∼ 42.98%
8 = 23 ∼ 69.75%

16 = 24 ∼ 84.13%
32 = 25 ∼ 91.71%
64 = 26 ∼ 95.64%

128 = 27 ∼ 97.71%
256 = 28 ∼ 98.80%
512 = 29 ∼ 99.37%

1024 = 210 ∼ 99.67%
2048 = 211 ∼ 99.83%
4096 = 212 ∼ 99.91%
8192 = 213 ∼ 99.95%

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 15



Technische Universität München

HPC aspects of number of used strips

• The more strips are used for the
Ziggurat, the bigger the ratio of
the sum of all central regions to
the sum of all strips gets

• The bigger this ratio gets, the
higher the likelihood to hit a
(cheap) central region gets

• In addition, on GPUs, this
reduces the likelihood for warp
divergence

• So runtime can be reduced by
using more strips which results in
larger lookup tables
⇒ runtime/memory trade-off

#strips likelihood of warp div.

2 = 21 1− 0.032 = 100.0%
4 = 22 1− 0.429832 ≈ 99.9%
8 = 23 1− 0.697532 ≈ 99.9%

16 = 24 1− 0.841332 ≈ 99.9%
32 = 25 1− 0.917132 ≈ 93.7%
64 = 26 1− 0.956432 ≈ 76.0%
128 = 27 1− 0.977132 ≈ 52.3%
256 = 28 1− 0.988032 ≈ 32.0%
512 = 29 1− 0.993732 ≈ 18.3%

1024 = 210 1− 0.996732 ≈ 10.0%
2048 = 211 1− 0.998332 ≈ 5.3%
4096 = 212 1− 0.999132 ≈ 2.8%
8192 = 213 1− 0.999532 ≈ 1.6%

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 16



Technische Universität München

HPC aspects of number of used strips

• The more strips are used for the
Ziggurat, the bigger the ratio of
the sum of all central regions to
the sum of all strips gets

• The bigger this ratio gets, the
higher the likelihood to hit a
(cheap) central region gets

• In addition, on GPUs, this
reduces the likelihood for warp
divergence

• So runtime can be reduced by
using more strips which results in
larger lookup tables
⇒ runtime/memory trade-off

#strips likelihood of warp div.

2 = 21 1− 0.032 = 100.0%
4 = 22 1− 0.429832 ≈ 99.9%
8 = 23 1− 0.697532 ≈ 99.9%

16 = 24 1− 0.841332 ≈ 99.9%
32 = 25 1− 0.917132 ≈ 93.7%
64 = 26 1− 0.956432 ≈ 76.0%
128 = 27 1− 0.977132 ≈ 52.3%
256 = 28 1− 0.988032 ≈ 32.0%
512 = 29 1− 0.993732 ≈ 18.3%

1024 = 210 1− 0.996732 ≈ 10.0%
2048 = 211 1− 0.998332 ≈ 5.3%
4096 = 212 1− 0.999132 ≈ 2.8%
8192 = 213 1− 0.999532 ≈ 1.6%

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 16



Technische Universität München

HPC aspects of number of used strips

• The more strips are used for the
Ziggurat, the bigger the ratio of
the sum of all central regions to
the sum of all strips gets

• The bigger this ratio gets, the
higher the likelihood to hit a
(cheap) central region gets

• In addition, on GPUs, this
reduces the likelihood for warp
divergence

• So runtime can be reduced by
using more strips which results in
larger lookup tables
⇒ runtime/memory trade-off

#strips likelihood of warp div.

2 = 21 1− 0.032 = 100.0%
4 = 22 1− 0.429832 ≈ 99.9%
8 = 23 1− 0.697532 ≈ 99.9%

16 = 24 1− 0.841332 ≈ 99.9%
32 = 25 1− 0.917132 ≈ 93.7%
64 = 26 1− 0.956432 ≈ 76.0%
128 = 27 1− 0.977132 ≈ 52.3%
256 = 28 1− 0.988032 ≈ 32.0%
512 = 29 1− 0.993732 ≈ 18.3%

1024 = 210 1− 0.996732 ≈ 10.0%
2048 = 211 1− 0.998332 ≈ 5.3%
4096 = 212 1− 0.999132 ≈ 2.8%
8192 = 213 1− 0.999532 ≈ 1.6%

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 16



Technische Universität München

Topics

Motivation/Introduction

The Ziggurat method
Definition of the Ziggurat
Algorithmic description

Memory/runtime trade-off

Results
Influence of the number of strips
Comparison with alternative PRNGs

Conclusion

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 17



Technische Universität München

Setup

GPUs

GPU architecture Fermi Kepler Maxwell
Model M2090 Tesla K40m GTX 750 Ti

Compute capability 2.0 3.5 5.0
#Processing elements 16× 32 15× 192 5× 128

Size of shared memory (KB) 48 48 48
SP peak performance (TFLOPS) 1.3312 3.84192 1.6384

Setup

• For every run, 228 float numbers are generated
• Each thread produces 212 random numbers
• All floating point operations are done in single precision
• Uniform input uuniform

integer is generated by cuRAND XORWOW [Mar03]

• Execution times contain generation of uuniform
integer and time for transformation

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 18



Technische Universität München

Setup

GPUs

GPU architecture Fermi Kepler Maxwell
Model M2090 Tesla K40m GTX 750 Ti

Compute capability 2.0 3.5 5.0
#Processing elements 16× 32 15× 192 5× 128

Size of shared memory (KB) 48 48 48
SP peak performance (TFLOPS) 1.3312 3.84192 1.6384

Setup

• For every run, 228 float numbers are generated
• Each thread produces 212 random numbers
• All floating point operations are done in single precision
• Uniform input uuniform

integer is generated by cuRAND XORWOW [Mar03]

• Execution times contain generation of uuniform
integer and time for transformation

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 18



Technische Universität München

Influence of the number of strips

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5

gi
ga

 p
se

ud
o 

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d

Tesla M2090 (Fermi)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5 Tesla K40m (Kepler)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.5

1.0

1.5

2.0

2.5 GTX 750 Ti (Maxwell)

local 25 ×211

shared 25 ×211

local 26 ×210

shared 26 ×210

local 27 ×29

shared 27 ×29

local 28 ×28

shared 28 ×28

local 29 ×27

shared 29 ×27

• States for XORWOW can be stored in local or shared memory
• Value of interest is giga pseudo random numbers per second (GPRNs/s)
• For most configurations, a single peak of performance is observable

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 19



Technische Universität München

Influence of the number of strips: Warp divergence

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0
ra

tio
 o

f d
iv

er
gi

ng
 w

ar
ps

expected observed

⇒ For low strip numbers, performance is limited by high warp divergence

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 20



Technische Universität München

Influence of the number of strips: Occupancy

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

oc
cu

pa
nc

y

Tesla M2090 (Fermi)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

Tesla K40m (Kepler)

24 25 26 27 28 29 210 211 212 213

number of strips

0.0

0.2

0.4

0.6

0.8

1.0

GTX 750 Ti (Maxwell)

local 25 ×211

shared 25 ×211

local 26 ×210

shared 26 ×210

local 27 ×29

shared 27 ×29

local 28 ×28

shared 28 ×28

local 29 ×27

shared 29 ×27

⇒ For large strip numbers, performance is limited by low occupancy

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 21



Technische Universität München

Comparison with alternative PRNGs

25 ×211 26 ×210 27 ×29 28 ×28 29 ×27

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0

gi
ga

 p
se

ud
o 

ra
nd

om
 n

um
be

rs
 p

er
 s

ec
on

d

Tesla M2090 (Fermi)

25 ×211 26 ×210 27 ×29 28 ×28 29 ×27

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0 Tesla K40m (Kepler)

25 ×211 26 ×210 27 ×29 28 ×28 29 ×27

grid configuration

0.0

0.5

1.0

1.5

2.0

2.5

3.0 GTX 750 Ti (Maxwell)

Ziggurat local
Ziggurat shared

Wichura
Inverse CDF

Box/Muller
cuRAND

XORWOW

• For Ziggurat, best configuration (in terms of used strips) is used
• Wichura [Wic88] is a direct generator for random numbers,

inverse CDF uses normcdfinvf(), and
Box/Muller [BM58] is the most popular transformation function

• Ziggurat shows better performance then all other methods
on Fermi (+19.9%) and Kepler (+24.3%), but not on Maxwell (−35.8%)

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 22



Technische Universität München

Topics

Motivation/Introduction

The Ziggurat method
Definition of the Ziggurat
Algorithmic description

Memory/runtime trade-off

Results
Influence of the number of strips
Comparison with alternative PRNGs

Conclusion

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 23



Technische Universität München

Conclusion

• The Ziggurat method is a rejection method to transform uniformly
distributed random numbers to normally distributed random numbers

• A runtime/memory trade-off allows reducing the execution time of the
transformation by spending more memory for larger lookup tables

• Especially GPUs benefit from this trade-off
since it leads to lower warp divergence

• While an implementation for CPUs typically uses 128 or 256 strips,
a flat recommendation for GPUs is not possible

• Our Ziggurat implementation is up to 19.9% faster on Fermi
and up to 24.3% faster on Kepler

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 24



Technische Universität München

Bibliography

George Edward Pelham Box and Mervin Edgar Muller.
A Note on the Generation of Random Normal Deviates.
The Annals of Mathematical Statistics, 29(2):610–611, 1958.

George Marsaglia.
Generating a variable from the tail of the normal distribution.
Technometrics, 6(1):101–102, 1964.

George Marsaglia.
Xorshift RNGs.
Journal of Statistical Software, 8:1–6, 2003.

George Marsaglia and Wai Wan Tsang.
The Ziggurat Method for Generating Random Variables.
Journal of Statistical Software, 5(8):1–7, 2000.

Michael J. Wichura.
Algorithm AS241: The percentage points of the normal distribution.
Applied Statistics, 37:477–484, 1988.

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 25



Technische Universität München

Final slide

Christoph Riesinger: A Runtime/Memory Trade-off of the Continuous Ziggurat Method on GPUs

HPCS’2015, July 21, 2015 26


	Motivation/Introduction
	The Ziggurat method
	Definition of the Ziggurat
	Algorithmic description

	Memory/runtime trade-off
	Results
	Influence of the number of strips
	Comparison with alternative PRNGs

	Conclusion

