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1 Introduction

Scientific computing has become a significant part of engineering and physics. It is the
connection between a theoretical mathematical model and real world applications. Real
test rigs should and cannot be replaced completely, but scientific computing is cheaper,
faster, and allows to optimize and analyze the design, properties, and behavior of a
product which is in development. This includes the possibility to examine different setups
at the same time, and picking out the best. Sometimes it is not even possible to build a
test rig under certain physical conditions — e.g., when investigating a core meltdown in a
nuclear power plant.

One typical field of application of scientific computation is fluid dynamics such as
aerodynamics of cars and airplanes, meteorology, and internal flow through pipelines.
They all deal with fluid flow, the natural science of fluids in motion. This is the main
subject of this thesis. A flow can be described by laws of conservation for mass, momentum
and energy — leading to a system of mathematical equations. The flow of several kinds of
fluids are examined, ranging from water through honey to air. Note that fluid and flow
are dependent on each other, but both have their own properties:

e Different types of flows are represented by a modified set of partial differential
equations. Typical examples for flow properties are: steady vs. non-steady flow,
laminar vs. turbulent flow, compressible vs. incompressible flow, flow with or
without friction, single- and two-phase flow.

e The mechanical and thermodynamical fluid properties are described by an equation
of state and constitutive laws just as, e.g., Fourier’s law for heat conduction, the
behavior of Newtonian fluids under shear stresses, or compressibility.

Be aware of compressibility and incompressibility being a property of both the flow
and the fluid. The fluid’s compressibility is a prerequisite for a compressible flow, but
incompressible flows of compressible fluids are possible.

The Chair of Scientific Computing (SCCS) at the Technische Universitit Minchen
(TUM) provides a framework for efficient calculation of partial differential equations
(PDE) called Peano, developed by Tobias Weinzierl [15] and Tobias Neckel [11]. A
component dealing with fluid dynamics on regular and adaptively refined Cartesian grids
is already implemented in Peano. However Peano does not yet support the treatment of
thermal energy. This is what this thesis is about: the derivation of the corresponding
mathematical equation — the energy equation — and its implementation in Peano.

We simulate viscous, incompressible, laminar, single-phase flow of incompressible, Newto-
nian fluids with constant fluid parameters. We show that the thermal energy equation



1 Introduction

describes the energy of the system using these assumptions exhaustively. Thus, we
introduce the temperature as a degree of freedom and are able to simulate and visualize
the distribution and impacts of temperature differences. The Boussinesq approximation
is used as a modification to approximate density differences that result in buoyancy
forces. The model and the implementation are validated using natural convection and
driven flow scenarios. Besides promising results we present an application to safety in
nuclear power plants.

This thesis arose in close collaboration of the SCCS and the Gesellschaft fiir Anlagen-
und Reaktorsicherheit (GRS) mbH.

GRS carries out safety analyses of nuclear facilities such as nuclear power plants, research
reactors, and fuel cycle and waste disposal facilities in Germany and abroad. In particular
scientific software is developed and assessed for the simulation of nuclear power plant
behavior under accident conditions. In the future, Peano shall be applied for the detailed
simulation of complex, multidimensional flow phenomena in the cooling circuit of a
pressurized water reactor (PWR). Of particular interest is the simulation of boron-
dilution and temperature transients that can occur after loss-of-coolant accidents (LOCA)
associated with the injection of emergency coolant necessary for the cooling of the reactor
core. The imperfect mixing of cold safety injection water (30 °C) with the hot inventory of
the primary circuit (300 °C) leads to significant temperature gradients which are essential
for the analysis of the thermal shock related fracture of the reactor pressure vessel
(RPV). To cope with these mixing phenomena with Peano satisfactorily, the provided
implementation of an energy equation in combination with the Boussinesq-approximation
is an essential prerequisite.

The fluid-fluid mixing was experimentally investigated in the frame of the Transient and
Accident Management (TRAM) test series C1 and C2, carried out at the Upper Plenum
Test Facility (UPTF) in Karlsruhe (Germany). These tests provide extensive data for
the assessment and further validation of Peano and the models and methods used.

In Chapter 2 we take a look at the mathematical model, the Navier-Stokes equations.
These are modified to use the flow and fluid properties we assume. Chapter 3 gives a
short introduction to Peano and a discussion on implementation details. A short guide
on how to use Peano is included as well. Chapter 4 is about the validation of both the
mathematical model and the implementation. The validation happens both qualitatively
and quantitatively, where Griebel’s book [6] provides a good guideline. An application
of Peano for the simulation of safety scenarios in nuclear power plants is discussed in
Chapter 5. We conclude this thesis with an overview of achieved results and possible
further enhancements for the further development of Peano.



2 Fluid Dynamics

Fluid dynamics is a field of fluid mechanics where the flow of a fluid is of particular interest.
The flow and the fluid each have their own properties, which have been introduced in
Chapter 1. The fluid dynamic equations are introduced for three-dimensional flows.
These equations can easily be transformed into their two-dimensional equivalent.

We are interested in calculating the degrees of freedom at every point of the domain
Q) C R? and at every time t € [tg, tenq]. Typically one has tq = 0 for the start time .
tend € R with £y < t.,q is the end time. The flow itself is described by a time dependent
vector field @ — the velocity. The Peano solution variables that we are interested in are
the velocity , the pressure p and the temperature 7"

i@ QX [t tend) +— R,
p o QX [to, tena) — R,
T Q x [t()’tend] — R.

Since we will often need the components of @ separately, we will use the common
abbreviations instead of w,, i, and ,:

w,v,w QX [to, tena) — R, (2.1)
u(x.t)

u(z,t) = v(x,t) | . (2.2)
w(z,t)

Our goal is to compute these functions using a mathematical model, that describes the
flow — dependent on its properties, the domain, the boundary and the fluids properties of
course. Regarding compressible, viscous flows the Navier-Stokes equations (NSE) are the
underlying set of partial differential equations (PDE). The present report will investigate
lamina, single phase flows of Newtonian, incompressible fluids.

In this Chapter we first derive the equations that are implemented in Peano using the
mentioned assumptions. Afterwards, we take a look at boundary conditions that will be
used in the simulations. At last we will state the dimensionless equations that can be
useful in some cases.
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2.1 Navier-Stokes Equations

The Navier-Stokes equations are a set of coupled, nonlinear partial differential equations
based on the conservation laws for mass, momentum and energy. They will be introduced
and modified, using assumptions concerning the flow’s and fluid’s properties.

2.1.1 Continuity Equation

The first law we will take a look at is the conservation of mass. Considering a closed
system without any mass sources, the total mass inventory stays constant for all time.
The continuity equation in its conservative form, where no additional assumptions are
made for the density p (e.g., it does not need to be constant), reads (see [9, 11])

dp

— (pu) = 0. 2.3
2 (i) 23)

The second term on the left hand side can be written as
V- (pu) = pVu+u-Vp. (2.4)

A thermal equation of state describing the thermodynamical properties of a fluid, says
that the density p is solely dependent on the pressure p and the temperature 7

p = o(pT) = plple,t), T(x,1)). (2.5)

For liquids incompressibility can be assumed and thus <g—g> ’ = 0. The negligence
T=const.

of (g—:‘;) ‘pzaonst. is as well a realistic assumption for liquids. Therefore, we assume a
constant density at all times and at every point in the domain:

p(.T) = pos T, (2.6)
where p,, € RT. Thus, we can simplify equation (2.3) by using
dp
— =0 2.7
at ) ( )
Vp = 0, (2.8)

and get the continuity equation for incompressible fluids,

V-u = 0. (2.9)
For the sake of completeness the equation is given explicitly as well,
du ov ow
%(I7t)+a—y($,t>+§(l'7t) =0 V(I,t) € ) x [to,tend]. (210)

A derivation using the integral form of the continuity equation can be found in [9, 11].
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2.1.2 Momentum Equation

The momentum equation postulates that the momentum of a (fluid) particle is a conserved
quantity, which may only be changed by acting surface forces (e.g., pressure) and body
forces (e.g., gravity). Momentum is the product of mass and velocity and is often referred
to as linear momentum. The momentum equation often is considered to be the central
equation of the NSE since it reflects the convective transport of flow. It is a direct
application of Newton’s second law of motion. This law states that the acceleration —
and therefore the total movement — of an object is solely dependent on the net force and
the mass of the object.

As before we start with the equation that does not assume a constant density. The
gravity g € R? is the only surface force that we consider. Thus, the momentum equation
reads (see |9, 11]):

0

ot
The stress tensor o has to be chosen appropriately to the assumed material properties.
Since we deal with viscous flows of Newtonian fluids o takes the form (see [4])

(pil) + (@~ V) (pid) + (V- @) (pil) =V -0 = pg. (2.11)

o = —pl+T
2
= (—p - guV ~ ﬁ) I+ 2496, (2.12)

where p is the dynamic viscosity, 7 is the viscous part of the stress tensor, ¢ is the strain
tensor and I € R3*3 is the identity tensor.

The strain tensor & can be written as:

ou ou dv  Ou ow
1 82%6 iydg% ?+aa_x
o = 3 g—;—i-g—z 828—28 Fzga_z ) (2.13)
ox To: oy To: 2%
The divergence of o,
Vo = =Vp+ AV (V- 1)+ 2uV -4, (2.14)

appears in the momentum equation (2.11) where

1

Vo = §AJ+V(V-1I) (2.15)
can be obtained by using Schwarz’ theorem (symmetry of second derivatives):
021 021;
= - Vi, j, ke {1,2,3}. 2.16
o7om ~ omor, ThhREiLZ3) (2.16)
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By assuming assuming incompressible fluids with constant density p = p, we can use
the continuity equation (2.9) so that V - @ vanishes. Therefore, the momentum equation
(2.11) — inserting the stress tensor o (Eq. (2.14)) and the strain tensor (Eq. (2.15)) —
can be written as follows:

ou

Poogr oo (U V)T =~ pAT+ VD = pocg. (2.17)

In |9, 11] the reader can find a derivation using the integral form of the momentum
equation.

2.1.3 Energy Equation

Similar to the balance equation for momentum and mass, there exists an empirical law
saying that the total energy is conserved in an isolated system — total energy remains
constant over time. By constant we mean, that energy can only be transformed from
one form into the other, but neither can energy be created nor deleted. As it turns out
throughout this Section, the conservation equation for energy can be simplified under
certain conditions, resulting in a convection-diffusion equation for the temperature 7T'.

There exist many formulations of the law of conservation of energy (see [8]. We derive
the energy equation that is used in Peano from the general energy equation, which can
be found in [7]:

DH

0
5 = RAT+pi-g+ 5 +D. (2.18)

ot

For easier notation we introduce the material derivative for functions and vector fields,

D o

H is the total specific enthalpy;,
]- — —
H = h+ 5 (u . u)
1
= h+ 3 (v + 0+ w?), (2.20)

where % (¢ - 1) is the specific kinetic energy of the system. h is the specific enthalpy,

h = e+l (2.21)
P
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where e is the specific internal energy. The diffusion D comprises the viscous transport
of the kinetic energy and its dissipation into heat due to friction. It can be written as:

D=V-(ru), (2.22)
where 7 is the viscous part of the stress tensor o (see Eq. (2.12)).

Using the definition of the total specific enthalpy (2.20) in the energy equation (2.18) we
get:

D 0
p— + o= (VP + v +w?) = /sAT+pﬁ-g+a—]Z+D, (2.23)

where the thermal conductivity x — describing the ability to conduct heat — is used.

For constant fluid parameters we can simplify the material derivate of the specific enthalpy
as follows (see [7]):

Dh _ DT Dy
"Dt~ "Dt " Dt
DT (9p
= 2.24
Py g T VP (2.24)
The second term of equation (2.23) can be rewritten:
p D . Du
— e 2.2
2Dt(u +0* + w?) Pl o (2.25)

using %t 2u2%. These equations ((2.24) and (2.25)) are inserted into (2.23) providing
the energy equatlon for constant fluid parameters:

—

DT . Du . .
pcpﬁ—mAT—i—pzwﬁ = —u-Vp+pi-g+D. (2.26)

2.1.3.1 Thermal Energy Equation

The energy equation that is presented in Eq. (2.26) contains contributions that are related
to the mechanical energy, e.g., the kinetic energy and gravity contributions. As it will
turn out, we can derive a pure thermal energy equation from the general energy equation
by using the assumption of constant fluid parameters, still preserving the mechanical
energy. Therefore we will rewrite the diffusion D from Eq. (2.22):

0 [ou? ou  Ov ow  Ju
T e ()

Lo (o (o0 ou\ (0 ow

Oy | Oy “\ oz dy E dy

9: 9. ""\ar Ta:) T8 oy
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Applying the usual rules for derivation, e.g.,

d [ u? u ou\

and Schwarz’ theorem (see Eq. (2.16)) to Eq. (2.27), we get:
u\” ov\> ow\?
D = 2 — — — 2.2
“KM)+QJ+(&” (229
du ou\', (w9 (O ouY’
or Oy oy 0z or 0z

—{—u(Au—i—g[au v 8w})

+

or oy oz
+v | Av+ 9 |Ou + ov + Ow
oxr Oy 0z
+w | Aw + 9 |Ou + ov + ow
0z |0x Oy 0=z '
Now we can insert the continuity equation (2.10) and simplify (2.29):
ou\” o\’ ow\’
D = 2u K%) + (a_y> + (@) ] (2.30)
ov Ou\' L (Dw o0\ (0w 0w’
or 0Oy dy 0z or 0z

+pi - A

+i

Note that we automatically assume constant density p = p., by using the continuity
equation. Nevertheless, we denote the density with p instead of p,, from now on. The
dissipation ®, which represents the part of the kinetic energy, that is transformed into
heat due to viscous friction, reads (see [7]):

2 2 2
o = 2 [(%) + (%) + (Z—Z) ] (2.31)
e () (2]
Jdxr Oy dy 0z or 0z
Thus, we can rewrite the diffusion D in Eq. (2.30):
D = &+ pii- Al (2.32)

i
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In order to simplify the energy equation (2.26) we need the three-dimensional momentum
equation (2.17). It is multiplied by # from the left to result in a one-dimensional equation:

—

D
pﬁ-D—ZL—pﬂ-AﬁjLﬁ-Vp = pu-g. (2.33)

This equation is then subtracted from the energy equation (2.26):

DT Du
0 = pch—t—/@AT—I—pﬁ-D—ltL—I—ﬁ-Vp—pﬁ-g—D
Dit
—pﬁ-D—?—ﬁ-Vp—i—pﬁ-g—i—,uﬁ-Aﬁ
; T
(232 perryy — RAT — puil - A — ®
+ pid - Au
DT
P KAT — O, (2.34)
resulting in the thermal energy equation,
DT
Porpy ~ RAT = &. (2.35)
Finally, using the thermal diffusivity «,
K
a = —, (2.36)
PCp
we get:
orT 1
— +u-VT —aAT = —O, (2.37)
ot PCp

which is a classical convection-diffusion equation stating that temperature is convected
with the flow (@ - VT') but also diffuses («AT") uniformly in all directions.

2.1.3.2 Mechanical Energy Equation

By subtracting the momentum equation from the energy equation, we actually showed
that the mechanical energy equation,

Du
and the momentum equation (2.33) — multiplied with @ from the left — coincide for
constant fluid parameters. Thus, Eq. (2.38) is not an independent equation, in contrast
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Table 2.1: Equations and degrees of freedom with dimension.

Equation Name Equation Dimension
continuity equation (2.9) 1
momentum equation (2.17) 3

thermal energy equation (2.37) 1
mechanical energy equation  (2.38) 1

Degree of Freedom Notation Dimension

Velocity u 3
Pressure P 1
Temperature T 1

to Eq. (2.37). The latter describes the energy for a fluid with constant parameters
erhaustively. Note that there are 5 degrees of freedom and 6 equations, where the
mechanical energy equation is included in the momentum equation (Table 2.1).

Also note that — by assuming constant fluid properties — both the mass and momentum
equation become independent from temperature and thus decouple from the thermal
energy equation. The thermal energy equation represents a transport equation for the
temperature and is convected by @, which is calculated from the mass and momentum
equation.

2.1.4 Boussinesq Approximation

In order to deal with the temperature in our equations we still need to modify our model.
First of all note that there is not yet a coupling of the temperature with the momentum
equation, so that the temperature does not have an influence on the flow. In general,
the density is dependent on the temperature and pressure as is described in Section
2.1.1. Since we deal with incompressible fluids the pressure does not influence the fluid’s
properties and thus the density is not dependent on the pressure any more — but note
that the pressure itself is not constant.

The Boussinesq approximation is a common approach to accomplish this modification.
The following assumptions are made:

e The density is constant except in buoyancy terms. Therefore, we take into
account that heated fluid rises due to decreasing density (and increasing specific
volume) and cooled fluid drops down since it is more dense. On the other hand the
density in the convective part of the momentum equation remains constant.

10



2.1 Navier-Stokes Equations

e There is a linear relation between density and temperature in the buoyancy
term.

e All other fluid parameters are constant at all points in the domain and at all
times (e.g., the viscosity p and the thermal diffusivity «).

e The viscous dissipation is negligibly small; hence, we do not take into account
that viscous friction leads to thermal energy.

Since buoyancy forces are inherently linked to gravity, the first assumption results in a
modification of the momentum equation (see Eq. (2.17)):

ou

P ot

The second Boussinesq assumption then specifies the temperature dependent density
p(T) more precisely:

+p(U-V)i—puAi+Vp = p(T)g. (2.39)

p(T) = po(l=B(T(z,t) - Tx)). (2.40)
T, is a reference quantity and f is the coefficient of thermal expansion,
1 [ 0p
B=—= <—) : 2.41
P aT p=const. ( )

which is assumed to be constant as well (according to the third assumption of the
Boussinesq approximation). For some ¢ € RT we have p(Ty + ¢) [|9]| < poo ||g]| sO
that the gravity has less influence on a heated fluid and thus models the occurrence of
Buoyancy forces.

The very final version of the momentum equation using the Boussinesq approximation
and p = ps reads:
ou
Por
where the temperature T'= T'(x,t) is dependent on both the point in the domain x and
the time ¢ of course.

+p(@- V)i —pAi+Vp = p(1-8(T-Tx))g, (2.42)

The continuity equation (2.9) already made heavy use of the assumption that the density
is constant and therefore remains as is.

The last simplification affects the thermal energy equation (2.37). Neglecting the viscous

dissipation ® results in:
oT
— 4+ u-VT —aAT = 0. (2.43)
ot
The Boussinesq approximation is adequate for moderate temperature and density differ-
ences (see [6]). We have now finished all mathematical modifications for the Peano set of

the Navier-Stokes equations.

11



2 Fluid Dynamics

2.1.5 Summary

Following, we give a summary of all equations that are used in Peano and need to be
discretized. As the density is assumed to be constant, we will no longer use p., for the
density and use p throughout the rest of this and all following chapters.

The continuity equation (2.9) is a one-dimensional equation for conservation of mass:
V.-u = 0.
The three-dimensional momentum equation (2.17) conserves momentum and takes Buoy-
ancy forces into account:
ou

"ot
And finally, the (thermal) energy equation (2.43) for conservation of energy is one-
dimensional again:

+p(U-V)i—pAi+Vp = p(1-6(T—-Tx))g.

or
E—FU'VT—O(AT = 0.

2.2 Boundary Conditions and Initial Values

Since we want to solve a partial differential equation in the domain €2 starting at time
to we need to specify initial values and boundary conditions. There are two types of
boundary conditions — Dirichlet and Neumann boundaries — each of which tries to
simulate some kind of real world boundary.

2.2.1 Initial Values

The initial values are separately defined functions for each degree of freedom,
ur @ Q — Rg,
T[ Q= R,
which are then set for the degrees of freedom at time ty:
w(Z, ty) = ur(2) VT e Q,
T(Z,ty) = Ti(2) VT e Q.
Note that the pressure p does not have an initial value. This is because the pressure is
the solution of a linear system in Peano — the pressure Poisson equation. The derivation
of this equation can be found in [11]. Nevertheless, it is possible to set pressure boundary

conditions, e.g., at the inlet and outlet of a channel — using additional forces, which is
also described in [11].

12
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2.2.2 Dirichlet Boundary Condition

We need to specify a boundary condition for each degree of freedom at every point & € T’
and every time ¢ € [tg, tng]. Therefore, we define

' =TI, and I'T = T,
to differentiate between the velocity boundary and the temperature boundary.

A Dirichlet boundary (subscripted with D, e.g, I'L) is the most intuitive boundary
condition, since it sets the values explicitly. It is described by the functions

ﬁD : F% X [to,tend} — R37
Tp : Pg X [to,tend} — R,

and is set appropriately:

ﬁ(.’l_f, t) = aD(fa t) V(f, t) S F% X [tﬂytend]a
T(fv t) = TD(fu t) V(f, t) € Fg X [thtend] .

For a wall typically @p = 0 is used so that a fluid moving along this wall will be slowed
down due to its viscosity. This special kind of Dirichlet boundary is often called no-slip
boundary for obvious reasons. Most scenarios have an inlet, where some kind of pump
pushes the fluid into the domain — typically using a special inflow profile that is constant
over time (such as a parabolic velocity profile). The same holds for the temperature,
we will often have a heated wall or a heated inflow, so that we need to use Dirichlet
boundaries for the temperature there.

2.2.3 Neumann Boundary Condition

For a Neumann boundary (subscripted with N, e.g., I'Y;) not everything is as set as for
the Dirichlet boundary. They are often used to simulate open boundaries where the
program simply does not know what happens outside of the domain. We want that
the flow is not at all influenced by this boundary and adjusts appropriately to the flow.
Mathematically, we want the partial derivative to vanish in both the normal and the
tangential direction:

a_‘n — — T
SAEL) = 0 V(@) € T x [to, tend]
a_'T — — h
S(E ) = 0 V(@) €TF x [to, tend]

where n is the outer normal and 7 is the tangential direction. These conditions are
often used in pipes where we have an inflow using Dirichlet boundary conditions and the
outflow getting a Neumann boundary. For the temperature these are used to simulate,
for example, adiabatic (insulated) walls.

13



2 Fluid Dynamics

2.2.4 Slip-Wall Boundary Condition

For multidimensional degrees of freedoms like the velocity the former two boundary
condition types can be mixed up and result in the so called slip-wall or mized Dirichlet-
Neumann condition (subscripted with slip — wall). Then they represent a boundary
where we do not allow an influence of the boundary in the tangential direction (applying
Neumann conditions) and have a usual wall in normal direction resulting in no-slip
Dirichlet conditions:

(T, t) = 0 V(Z,t) € T8 _wan X [tos tend)
ou,

or

(f, t) =0 v (f7 t) S Pglipfwall X [t()? tend] :

An example of this boundary type can be found in Section 4.3 on Page 64, which is the
Flat Plate in Parallel Flow-scenario. This kind of boundary condition makes no sense for
one-dimensional degrees of freedom like the temperature, since there is no parameter left
after applying a Dirichlet condition.

2.3 Dimensionless Equations

So far we have not talked about units for all of our parameters. Thus, we imply that SI
units are used for these (e.g., the time ¢ is measured in seconds s). Nevertheless, one
often reads about dimensionless equations and parameters. They are useful when one
needs to compare, e.g., flows on different domain sizes.

In order to state the dimensionless equations we need dimensionless parameters, which
are denoted by a superscripted asterisk (e.g., t*). To define those we need characteristic
reference values subscripted by an infinity symbol (e.g., T,). The parameters can be
split up in dimensionless coordinates:

B 7
T o= —
L
o= Yooy
- =

14



2.3 Dimensionless Equations

and dimensionless states:

. u

U = —,
Uoo

p - 2
pOOuoo
T-Ty

T = ,
Ty —Tc

g = —g, and

where Ty and T are the highest and lowest temperature respectively (considering natural
convection phenomena a heated wall will have temperature Ty, e.g.).

Aside from these quantities we get dimensionless numbers, which can be used to compare
different kinds of fluid in different kinds of geometries. Typically the most important is
the Reynolds number Re,

Uoo L Uoo L
Re = Pxliomee  Hootoo (2.44)
1 v
giving a measure of the ratio of inertial to viscous forces. v = -~ is the kinematic

viscosity of the fluid. The characteristic velocity u., is usually set to the inflow velocity
and therefore this quantity does not have that much relevance in natural convection
scenarios, where no external flow is involved.

Another dimensionless number is the Prandtl number Pr,

Pr = ~ (2.45)

)

a
which is the ratio of momentum diffusivity to thermal diffusivity. Note that this number
does not contain a length scale and therefore is a property of the fluid itself, whereas the
Reynolds number is dependent on both the scenario and the fluid properties.

These numbers are then used to give a dimensionless set of equations (see [6]). The
continuity equation does not hold any fluid specific property and thus is not altered by
division and multiplication:

The dimensionless momentum equation with Boussinesq approximation reads:
ou*
ot*

Finally, we state the dimensionless energy equation:

oT*
T VAL A
ot* ta-v RePr

1
@V - o NT VY = (1= BT g

AT = 0.
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3 Peano

Peano is a framework that allows numerical simulation of partial differential equations
(PDE) in any dimension and is programmed in C++. In particular Peano has a component
that supports the computation of fluid dynamics — the fluid component. Our goal is to
use this component and extend it by the heat equation. First we give a short survey of
Peano and the general concept — a sophisticated description of Peano can be found in
[15] and [11]. Afterwards, we show implementation details for the chemical component.
These contain the modification of the momentum equation, the introduction of the energy
equation and other partly technical details. The name chemical developed historically,
since it originally was intended to simulate the transport of chemical substances. Since
this transport is very similar to the transportation of heat, we decided to keep the name
and thus when talking about the chemical component we think of the transportation of
heat.

3.1 General Concept

Peano is a memory efficient framework for solving PDEs on regular (trivialgrid) and
adaptively refined Cartesian grids (grid). The name is based on the Peano curve, which
is a space-filling curve, originally thought of as two dimensional, but easily extended to
an arbitrary dimension. The domain € is split up in pairwise disjoint rectangular cells.
These are then put on stacks as described in [11, 15| and allow a very efficient traversal
of the grid. The two different types of grids — trivialgrid and grid — is explained
further in Section 3.7. Until then we refer to the trivialgrid and thus to a regular
discretization of the domain €.

The general concept of Peano is to do everything cell-wisely, so that every cell can be
treated independently. A cell does not know anything about its neighbors nor the domain,
it solely knows itself, whether it is inside or outside of €2 and the 27 vertices that belong
to the cell. The degrees of freedom are either put on a vertex or in the center of a cell.
In the fluid component of Peano the velocity « is placed on the vertices, whereas the
pressure p is a cell degree of freedom. Since the chemical component is a subcomponent
of fluid these stay as they are. Additionally, the temperature is implemented as a scalar
vertex degree of freedom.
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3.2 The fluid Component

The fluid component implements the incompressible Navier-Stokes equations that have
been derived in the previous chapter without the energy equation. A finite element
method (FEM) approach is used to discretize the spatial operators. A good introduction
to FEM can be found in [1, 5|. The ansatz and test functions — called ® and v, respectively
— are bi-linear functions for the velocity and piecewise constant functions for the pressure.
In the fluid component the velocity is a vertex degree of freedom, whereas the pressure
is a cell degree of freedom.

3.3 Vertex and Cell

First of all we need to introduce a special vertex data type that enhances the fluid
vertex. The tool DaStGen (Data Structure Generator, [3]) is used to generate C++ classes.
We generate the record class FluidChemicalVertexDoF, which holds the same attributes as
a FluidVertexDoFWithPersistentCellNumber vertex. In addition to the fluid attributes
the chemical vertex has the following attributes:

e T (double) for the temperature T,

e TTransport (double) for the temperature transport, which is used as a temporary
variable throughout a grid traversal on each vertex, and

e heatScenarioVertexType (enum HeatScenarioVertexType) to distinguish whether
the temperature degree of freedom is on a heated (HEAT_DIRICHLET_HEAT), a cooled
boundary (HEAT_DIRICHLET_COOL), an adiabatic (isolated) boundary (HEAT_NEUMANN),
in the domain (HEAT_INNER) or outside of it (HEAT_OUTER).

The templated record-proxy class TrivialgridFluidChemicalVertexEulerExplicit (sub-
class of TrivialgridFluidVertexEulerExplicit) defines setters and getters for all chem-
ical attributes. This proxy class is useful, because it allows to add separate func-
tionality for the chemical vertex, which cannot be generated by DaStGen. When
using the trivialgrid component one typically uses the concrete instantiation
TrivialgridFluidChemicalVertexEE.

The cell does not hold anything specific to the chemical component. Hence, we decided
to use the fluid cell TrivialgridFluidCellWithPersistentCellNumber in combination
with the trivialgrid. In contrast to that, there is a chemical cell class for the grid
implementation as is explained in Section 3.7.
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3.4 Momentum Equation

3.4 Momentum Equation

We altered the momentum equation (2.17) by including the Boussinesq approximation.
Thus, the implementation needs to be adapted accordingly. Furthermore, it should be
taken into account that not all future Peano simulations will be using the chemical
component. Therefore, the gravity factor in the momentum equation,

ou - _ -
Py P V)i—pAi+Vp = p(1—-B(T-Tx))y,
= Gravi;§Factor

is implemented as an extra class ComputeGravityFactor. An UML class diagram (Fig.
3.1) shows that the fluid component is independent of the chemical component as far
as the implementation of the GravityFactor is concerned. The class AbstractCalculateF
holds an instance of ComputeGravityFactor. The former needs to know about the gravity
factor when accumulateFValues is called, since it belongs to the F part of the momentum
equation (see [11] and Section 3.5). The method is called “accumulate” since a vertex
typically does not belong to one cell alone and everything happens in a cell-wise manner in
Peano. Thus, the computations have to be split up and the results have to be accumulated
on the vertices.

The ComputeGravityFactor class has a method called computeGravityVector, where a
Vector of temperature values is supplied. When running a standard fluid simulation
this method returns a Vector containing only values equal to 1, since there is no Boussinesq
approximation involved and no real temperatures are available. For a chemical simulation
the method is overridden in the ComputeHeatGravityFactor class to compute the factor

AbstractCalculateF

+ <Vertex>accumulateFValues(Vector vertices)

T

ComputeGravityFactor

+ Vector computeGravityFactor(Vector temperatures)

* chemical
ComputeHeatGravityFactor

- double _thermalExpansionCoefficientBeta
- double _temperatureReference
+ Vector computeGravityFactor(Vector temperatures)

Fig. 3.1: UML Class diagramm for ComputeHeatGravityFactor.
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for each given temperature. These temperatures belong to the vertices of the currently
treated cell. The factor is loaded while generating a child of AbstractCalculateF in the op-
erator factory of the f1luid (OperatorFactory) and chemical (ChemicalOperatorFactory)
component, respectively.

3.5 Energy Equation

It has been pointed out that everything in Peano happens in a cell-wise manner and the
computations for vertices have to be split up accordingly. This approach is reflected in
the implementation of the adapters. Each adapter has several methods like the following
— for the trivialgrid component — that are called during a grid traversal:

e touchVertexFirstTime(...) is called whenever a vertex is touched for the first time
for the current adapter in the current grid traversal,

e handleElement(...) is called on a cell after all neighboring vertices received their
call to touchVertexFirstTime, and

e touchVertexLastTime(...) is the last method that is invoked for every vertex, after
all cells to which the vertex belongs have been treated with.

The interface of the TrivialgridEventHandle2TemperatureTransportAdapter adapter is
shown in Figure 3.2. We do not need to care about the grid traversal and at which
particular moment a vertex is touched for the first time. This is all done by other
components and thus an advantage worth noting. Also note that only one adapter is
necessary to implement all the functionality for TTransport.

The energy equation (2.43) has a term for convective and diffusive heat transport, very
similar to the terms in the momentum equation (2.42). Therefore, the implementation
resembles the implementation of the F-term of the momentum equation (2.42),

ou

pa+8(ﬁ.V)ﬁ—MAﬁ—p(1—B(T_Too))g_’_Vp = 0,
_F

in the fluid component of Peano. The energy equation has no internal heat source
which would correspond to the gravity — let it be zero. The term are looking at now is
called TTransport,

T
aa—tJrﬁ-VT—aAT — 0,

= TTransport

and every vertex (both the trivialgrid and the grid vertex) holds a double attribute
with this name. The spatial operators that are used for F are the same for TTransport.
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3.5 Energy Equation

TrivialgridEventHandle2TemperatureTransportAdapter

+ touchVertexFirstTime(vertex, position)
+ handleElement (vertices, cell, ...)
+ touchVertexLastTime(vertex, position)

T

CalculateTTransport

+ <Vertex>accumulateTTransport(Vector vertices)

Fig. 3.2: UML class diagram for CalculateTTransport.

Note that the operators are applied to each component, so that is no problem to use the
same operators for the three-dimensional velocity and the scalar temperature.

We implemented the class CalculateTTransport which corresponds to AbstractCalculateF.
Unlike the F term, the TTransport term only supports one operator discretization® so
far, so that CalculateTTransport does mot need to be a templated class. An UML
diagram (Fig. 3.2) again shows the simple relation between the adapter and the concrete
implementation — which is independent of the used grid component in contrast to the

adapter.

During a grid traversal we issue the following calls concerning the temperature update on a
vertex: resetTTransport, accumulateTTransport, and updateTemperatureWithExplicitEuler
(Table 3.1). The first and the last of these methods are implemented for both, the
trivialgrid and the grid vertex. resetTTransport just sets the TTransport attribute
to zero.

The time-dependent temperature update is then computed using the explicit Euler
method (first order approximation),

orT . T(x,t+71)—T(x,t)

E@’t) - T ’

where 7 is the current time step size. This update is computed in the vertex method
updateTemperatureWithExplicitEuler. This concludes the treatment of the energy equa-
tion. Note that the momentum equation is not considered when calculating the update
for the temperature, since the update — the calculation of TTransport and the call to
updateTemperatureWithExplicitEuler — is performed before the momentum equation is
dealt with (in the current time step). This is a common approach which can be seen in

l6].

'The fluid component also supports divergence free and enhanced divergence free elements.
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Table 3.1: Event and action on vertices and cells during grid traver-
sal for TTransport calculations in the trivialgrid adapter
TrivialgridEventHandle2TemperatureTransportAdapter.

Event Action

touchVertexFirstTime(...) resetTTransport

handleElement(...) accumulateTTransport

touchVertexLastTime(...) updateTemperatureWithExplicitEuler

3.6 Adaptive Time Step Size

The equations we want to solve contain both a spatial derivative and a time derivative.
The former is dealt with using FEM which is described in Section 3.5, whereas for the
latter an explicit Euler method,

af o ST = f{t)
dt T ’
is implemented in the chemical component. As with every numerical method that is

time dependent, the algorithm needs a time step size 7. The user has two methods of
providing an accurate 7.

The first is to explicitly provide 7 and the number of steps that should be performed
in the ode tag of the configuration file. The corresponding attribute names are tau and
number-of-time-steps, see Fig. 3.9 for an example. Additionally, there are attributes for
the start time ¢y (start-time) and the total running time t¢.,4 (end-time), which need to
be specified in the configuration file as well.

The second method is to use the adaptive time step size computation that assures
numerical stability. Some of these restrictions are called CFL (Courant-Friedrichs-Lewy)
conditions and are well presented in |6, 11, 14, 16]. These conditions state that a fluid
particle may not be transported further than the size of a cell in every direction,

hy
Ty = )
2Umag
— hy d
Ty — , an
2Umag
h.
Tw = )
2Wimaz

where h,, hy and h, is the minimum mesh width in each dimension and U,qz, Ve, and
Wymae 1S the maximal velocity in each dimension, respectively. The CFL condition for the
time step size update then reads:

Tept = Sep min{7,, 7, 7w},
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3.7 Adaptive Grid

where S.¢ = 0.5 is a safety factor. Further conditions that include the fluid’s properties,
like the kinematic viscosity v, exist|6, 11]:

S A -
T’U’LSC - visc 2]/ hg hg hg Y

using S, = 0.5. This equation assures the numerical stability of the momentum
equation (2.42). Additionally, to these we have to provide a stability condition for the
energy equation (2.43):

S L1, 11 -
Tthermal = rmal 5 | 79 ') FD) )

with Sipermar = 0.5. Note that both the condition due to viscosity and thermal diffusivity
have a quadratic dependency on the mesh size. Thus, by refining the mesh a smaller
time step size is necessary as well. The time step size 7 for the next time step is then
calculated as the minimum of all conditions:

T < Sglobal min {chla Tviscs Tthermal} )

where Sgopa = 0.8 is the global security factor.

These stability conditions are implemented in the classes FluidSimulation and
FluidChemicalSimulationBase, which is not discussed further. In order to use the adap-
tive time step size computation, the tau attribute of the ode tag has to be omitted in the
configuration file (see Section 3.9).

3.7 Adaptive Grid

Peano has two different types of grids to discretize the domain 2. The trivialgrid is
the canonical way of splitting 2 into cells. The user specifies the number of cells for each
dimension in the configuration file (see trivialgrid tag in Fig. 3.9). The domain is then
divided accordingly and all the algorithm needs to know about is the cell width in each
dimension. The mesh of a box (edge length 1m) with a sphere (radius 0.25m) in the
center shows a rather ragged contour (Fig. 3.3(a)), when using 27 x 27 cells. In order to
get it smoother, one needs to refine the whole domain leading to a lot of cells, where
only a few might be necessary at the border of the sphere.

The other type of grid Peano supports is an adaptive grid — further referred to as grid.
The grid component is the strength of Peano where the advantages of the cell-wise
evaluation approach is fully exploited (stack based cell treatment). It allows to trisect a
cell and therefore refine a certain part of the domain discretization. At boundaries this
is done automatically by defining a maximum mesh width and a minimum mesh width
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(a) trivialgrid mesh using 27 x 27 cells. (b) grid mesh using hpin = 1/27, hpae =
1/81.

Fig. 3.3: Comparison of a trivialgrid and a grid mesh on a square domain
with edge length 1 m with an obstacle (sphere with radius 0.25m) in
the center.

in each geometry tag of the configuration file. An example of the grid in comparison to
the trivialgrid is shown in Fig. 3.3(b).

The independent trisection of cells introduces the concept of levels, where the root level
consists of the coarsest cells without any refinement. A trisected cell itself is a cell and
can therefore be refined again (compare to Fig. 3.4 with 3 levels of refinement). Note
that the f1luid component of Peano currently only supports to have a level difference of
1 on neighboring cells!

The main difference is the existence of the so called hanging nodes. These nodes exist
along edges of refinement level transitions and do not hold a real degree of freedom — on
the current level. Therefore, they need to be interpolated linearly — when using linear
FEM ansatz functions — from the coarser to the finer and restricted from the finer to the
coarser level, respectively. The weight factors are shown in Figure 3.5. Since interpolation
and restriction are used quite often on the vertices, the according methods are placed in
the vertex class. In the chemical component they can be called for both the temperature
T (interpolateT(...)) and the temperature transport TTransport (restrictTTransport)
(see Section 3.5). The same methods exist for the velocity and other parameters in the
fluid component, see [11]| for more information.

When implementing the grid support for the chemical component, we need to in-
troduce a new vertex type GridFluidChemicalVertexEulerExplict and a new cell class
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Fig. 3.4: Scheme of a grid with 3 levels of refinement.
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Fig. 3.5: Linear interpolation and restriction weights for hanging nodes at inter-
level boundary.
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Table 3.2: Event and action for TTransport calculations in the grid adapter
GridEventHandle2TemperatureTransportAdapter with interpola-
tion and restriction of T and TTransport.

Event Action

touchVertexFirstTime(...) resetTTransport

interpolateVelocities
startStepsDown(...)

interpolateT
enterElement(...) accumulateTTransport
finishedStepsUp(...) restrictTTransport

touchVertexLastTime(...) updateTemperatureWithExplicitEuler

GridAbstractFluidChemicalCell. The former is basically the same as the trivialgrid
vertex with additional methods for interpolation and restriction. The latter inherits from
the AbstractFluidCell class and adds no further functionality so far. Nevertheless it is
implemented so that it can be extended more easily.

The grid has a new set of adapters, which need to be extended to use the new vertex
and cell type. The numerical treatment of the equations remains the same and thus we
do’nt discuss the modifications for most of the existing adapters, since they do not deal
with the temperature.

The adapter that is responsible for TTransport in the energy Eq. (2.43) is called
GridEventHandle2TemperatureTransportAdapter, see Section 3.5. Table 3.2 shows the
relevant calls to the vertices during a grid traversal in this adapter. When stepping down
from a coarser level, we need the temperature at every node and therefore at the hanging
nodes as well. Thus, it is interpolated as well as the velocities. Afterwards, all degrees
of freedom are available and the cell-wise accumulation of TTransport is called. When
all finer cells have been treated with, the results have to be restricted onto the coarser
level using restrictTTransport. The temperature is then updated with an explicit Euler
method just like for the trivialgrid vertex.

Another adapter that needs modification is the GridEventHandle2FAdapter which handles
the calculation of F including the Boussinesq approximation in the momentum equation
(2.42). There the interpolateT method is called on stepping down (startStepsDown)
along with the interpolation of the velocity. No restriction needs to be made in this
adapter for the temperature, since no updates are calculated for the temperature and
this degree of freedom is used only.

In Section 4.4 we discuss a numerical phenomena when using this type of grid.
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3.8 Scenario

So far we dealt with the equations and their implementations. Now we turn to the
scenarios which are responsible for assigning boundary types and boundary conditions
to the boundary numbers given by the geometry. Accordingly a scenario deals with the
initial values and the boundary values for Dirichlet boundaries. Note that geometry and
scenario are two different things. Geometry is a description of the domain telling whether
a voxel is inside or outside of the domain and defining numbers for every boundary. In
contrast to that a scenario takes these numbers and uses the information to deal with
actual values.

So far initial values and boundary conditions had to be specified for the velocity @
only. This was done in a FluidScenario. Now it is necessary to define these values for
the temperature — resulting in a HeatScenario — as well, but only when the chemical
component is used. Furthermore, it should be possible to combine any FluidScenario
with any HeatScenario to avoid code duplication.

Therefore, we chose to implement a Decorator pattern, where a Decoratable class
(FluidScenario) can be decorated by a Decorator (HeatScenario) (Fig. 3.6). The
interface HeatScenario inherits from the interface FluidScenario allowing the usual over-
loading techniques and so on. Additionally, it holds a FluidScenario as an attribute, thus
making it possible to “add” a concrete FluidScenario. This is the great advantage we’ve
been aiming for, since this allows to combine any FluidScenario with any HeatScenario
— even decorating a HeatScenario with another HeatScenario is possible. Note that every
HeatScenario itself needs to implement the interface of the FluidScenario. Since we
want that calls to the actual FluidScenario — like getVelocityForBoundaryNode() — are
delegated to the corresponding attribute _fluidScenario, the FluidScenario interface is
implemented by forwarding the calls to the Decoratable.

The big picture is as follows:

e The adapter TrivialgridGeometryHandle2FluidScenarioAdapter holds an instance
of HeatScenarioAdapterImplementation iff the chemical component is compiled.
When there is a call to createDegree0fFreedom (for creating a vertex or cell) the
corresponding initial values need to be set for both, the f1uid degrees of freedom
and the temperature as a chemical degree of freedom.

e The latter are set in the setDataForVertexChemical and setDataForCellChemical
methods of the HeatScenarioAdapterImplementation class, respectively. These
methods issue calls to the HeatScenario to get the temperature boundary types and
to get initial and boundary temperature values for Dirichlet boundaries. Another
call is made to the parent class methods setDataForVertex and setDataForCell,
which sets the velocity u and deals with the rest of the fluid boundaries and
degrees of freedom.
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TrivialgridGeometryHandle2FluidScenarioAdapter

+ createDegreeOfFreedom(. . .)

Decoratable

#ifdef

ScenarioAdapterImplementation ) .
FluidScenario

+ <Vertex>setDataForVertex(...)

+ getDensityRho ()
+ <Cell>setDataForCell(...)

=

|

FluidGravityBox

+ getVelocityForBoundaryNode(. . .)

fluid
chemical
Decorator
HeatScenarioAdapterImplementation HeatScenario
|+ <Vertex>setDataForVertexChemical(...) [ |- _fluidScenario <—
+ <Cell>setDataForCellChemical(...) + getTHeat ()

T

|

NaturalConvection

+ getTemperatureForBoundaryNode(. . .)

Fig. 3.6: UML class diagram for HeatScenario with Decorator Pattern.

e Since every HeatScenario is a FluidScenario the ScenarioAdapterImplementation
and the HeatScenarioAdapterImplementation basically hold the same scenario — the
constructor of HeatScenarioAdapterImplementation passes the HeatScenario to the
constructor of ScenarioAdapterImplementation casting it to a FluidScenario. Thus,

the above mentioned calls end up in the HeatScenario where they are delegated to
the _fluidScenario.

A complete list of all FluidScenario scenarios (Fig. 3.7) and all HeatScenario scenarios
(Fig. 3.8) shows the scenarios that can be decorated or used as Decorator. Due to the
pile of information — this is a complete list — these are hard to visualize. For the usage
in this thesis the most important scenarios are: GravityBox, FlatPlateInParallelFlow
and FluidPreCICEColdLeg and all HeatScenario implementations of course. The abstract
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FluidScenario
CircleFlow GravityBox
ObstacleInStationaryFlow
 mviaiseanrts ekt
DrivenCavity AbstractChannel
AN
SmoothedLid ObstacleInChannel
CheckerboardLid ObstacleInTurbulentChannel
ObstacleInTube
ObstacleInDriftRatchet
ObstacleInChannelWithSlipWalls —
Gsacieiniibiricieschael |
Implementation Step
E:::i%%%%%%%@%%iiii} FlatPlateInParallelFlow
FluidPreCICEColdLeg

Fig. 3.7: UML class diagram for all FluidScenario scenarios in the fluid

component.
HeatScenario
NaturalConvection RayleighBenardConvection
HeatedPlateInCooledFlow ChemicalPreCICEColdLeg

Fig. 3.8: UML class diagram for all HeatScenario scenarios in the chemical
component.
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scenario AbstractChannel provides useful methods and attributes that are needed when
working with external (driven) flow having an inlet and/or an outlet.

3.9 Configuration

Peano is a C++ framework consisting of different components which extend each other or
accomplish different tasks throughout a simulation of any kind. SCons? may be used for
compiling and a typical call to SCons reads as follows

» scons target=fluid-chemical dim=3 build=release

where the target is a tag which is known to SCons, so that the corresponding components
are compiled. The dim argument specifies the dimension d of the system. Using debug
instead of release for the build argument is recommended when a component is in
development.

In order to run a simulation with Peano one needs the executable and a configuration
file. Any input the user provides is stored in this XML file, which is the one and only
argument that is passed on to the executable as in the statement below.

» ./peano-fluid-chemical configuration.xml

Like any other XML file the configuration consists of different tags, their attributes and
subtags. An example for a complete configuration file for a chemical simulation can be
found in Figure 3.9.

Following there is a list of attributes of the chemical tag (the brackets show an example):
e name ("natural-convection"), identifier of the HeatScenario,
e t-heat ("21.0"), temperature for boundary of type HEAT_DIRICHLET_HEAT,
e t-cool ("19.0"), temperature for boundary of type HEAT_DIRICHLET_COOL,

e t-initial ("20.0"), temperature at time ¢, (initial value) and reference temperature
T for Boussinesq approximation (2.40),

e thermal-conductivity-kappa ("5.97e-1"), fluid parameter thermal conductiviy
(used for calculation of a (2.36)),

e specific-heat-at-constant-pressure-c_p ("4184.0"), fluid parameter specific heat
at constant pressure ¢, (used for calculation of «, (2.36))

e thermal-expansion-beta ("2.1e-4"), fluid parameter thermal expansion 3 (used in
Boussinesq approximation in the momentum equation, (2.17))

28Cons: A Software Construction Tool, see http://www.scons.org/
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(0]

o

plot-chemical-data-at-specific-point ("yes"), optional, flag to indicate whether
or not Peano should write the chemical data of a specific point to a file in every
time step (not only in the VTK output); if set to "yes" user has to provide
specific-point-for-chemical-data-xI in the dimension of the simulation, and

specific-point-for-chemical-data-xI ("0.05") , coordinates of the point whose
data should be plotted, I € [0,...,d]; coordinates of a vertex (exactly).

The tags that have the o symbol instead of the e symbol are optional. But as
stated above, the specification of specific-point-for-chemical-data-xI is mandatory
iff plot-chemical-data-at-specific-point is set to "yes".

Next we list (not exhaustively) the attributes of the fluid tag:

(0]

name ("gravity-box"), identifier of the FluidScenario,
rho ("1000.0"), density p,
eta ("1e-3"), dynamic viscosity 7,

velocity-mean-value ("1.0"), inflow velocity i, also used for calculation of the
Reynolds number Re,

velocity-profile ("parabola"), profile of velocity inflow at inlet; either "const" or
"parabola",

Re ("19.0"), Reynolds number Re; has to be supplied when there is an inlet and a
inflow velocity,

gravity-vector-xI ("19.0"), gravity vector g € R% 1 € [0,...,d]; only gravity in
one of the axis directions is allowed,

maximum-elevation ("19.0"), maximum elevation in direction of gravity; used for
hydrostatic pressure correction; only used, when gravity is set and non-zero,

inlet-pressure ("100.0"), reference pressure that acts on the inlet; can only be
specified when velocity-mean-value is not, and

outlet-pressure ("10.0"), reference pressure that acts on the outlet.

Note that this is not a complete list of all f1uid tags that can or have to be specified.
For more information on these tags see [11| and the documentation of Peano.

Additionally to this two tags there are different others in a configuration file controlling
other components of Peano:

o

domain — control offset and length of the domain in each dimension
geometry — geometric primitives that can be combined to give the domain €2
trivialgrid — number of cells in each dimension

ode — configuring the solver for the time dependent update of the differential
equation
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e solver — tolerances and types of linear solvers (for the Poisson Pressure Equation)
e plotter — type of output

Note that the domain tag provides a superset of the actual domain €2, where we want to do
the computations. The latter is specified by a combination of geometry tags. An example
configuration file for a chemical simulation using the NaturalConvection scenario is
shown below (Fig. 3.9).

3.10 freesteam

freesteam? is an open source C implementation of international-standard IAPWS-IF974
steam tables from the International Association for the Properties of Water and Steam
(IAPWS). The chemical component of Peano uses this library in order to calculate most
of the fluid parameters (density p, dynamic viscosity p, kinematic viscosity v, specific
heat at constant pressure c,, thermal conductivity , thermal diffusivity o, coefficient of
thermal expansion (3). Note that this is a table for water and steam only!

All the parameters can be calculated by freesteam by supplying an ambient pressure
p and a temperature T. The user denotes these two parameters as an attribute in the
chemical tag

o use-freesteam="yes" to indicate that freesteam should be used
o freesteam-pressure="1e5" defines an ambient pressure of 1 bar
o freesteam-temperature="293.15" uses a reference temperature of 293.15 K

Note that the pressure is given in Pascal and the temperature in Kelvin and that all
computed values are constant in space and time. Also note the necessity to define dummy
values for rho and eta in the fluid tag for technical reasons. They are not be used for
any other calculation than the computation of the Reynolds number. The definition of ¢,
«a and 3 can be omitted in the chemical tag of the configuration file if freesteam is used.

In order to compile Peano using freesteam, one needs to use SCons with the target
fluid-chemical-with-freesteam. Note that freesteam has to be located in the search
path as a library.

3see http://freesteam.sourceforge.net/
4see http://www.iapws.org/
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3.10 freesteam

?xml version="1.0"7>
configuration

run—trivialgrid —fluid —chemical
experiment—name Configuration Example

<domain x0="0.0" x1="0.0" x2="0.0"
h0="1.0" hl1="1.0" h2="1.0"

trivialgrid
number—of—cells nx0="20" nx1="20" nx2="20"
trivialgrid

geometry name="hexahedron"
geometry —base—number="0"
invert="false ">
bounding—box h0="1.0" hl1="1.0" h2="1.0"

geometry >

solver name="PETSc"
type="CG"
max—iterations="200"
preconditioner="JACOBI"
relative—tolerance="1le—7"
absolute—tolerance="1le—-7"
divergence—tolerance="1e5"
ode solver="euler—explicit"
start —time="0.0"
end—time="10.0"
tau="0.1"
number—of—time—steps="100"
print—delta="100"

chemical name="natural—convection
t—heat="1.0"
t—cool="0.0"
t—initial="0.5"
thermal—conductivity—kappa="le—4"

specific-heat—at—constant—pressure—c_ p="

thermal—expansion—beta="2.1e—4"

fluid name="gravity—box"
gravity —vector—x0="0.0"
gravity—vector—x1="-9.81"
gravity —vector—x2="0.0"
inlet —dimension—x0="0.0"
inlet —dimension—x1="0.0"
inlet —dimension—x2="0.0"
inlet —offset —x0="0.0"
inlet —offset—x1="0.0"
inlet —offset—x2="0.0"
velocity—mean—value="1.0"
initiate—velocity—everywhere="no"
velocity—profile="parabola"
random—noise—weight="0.0"
characteristic—length="1.0"

Re="1.0"
eta="1.0"
rho="1.0"

adjustment—factor="1.0"

element—type="d—linear"

use—divergence—correction="no"
fluid

plotter name="vtk"
path="_/"
filename="output—prefix"
use—standard —file—name—extension="yes"
use—binary —format="no"
plot—leaves—only="yes"
plot—vertex—type="yes"

run—trivialgrid —fluid —chemical

configuration

experiment —name>

1.0"

Fig. 3.9: Example configuration file for

a three-dimensional trivialgrid

simulation using the chemical component with gravity-box as
FluidScenario and natural-convection as HeatScenario.
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4 Validation

Before tackling a real scenario, one should validate both the models that are used to
simplify the reality and the implementation which is prone to bugs and human errors.
Since it is not always possible to produce real world data, one cannot always compare
the results quantitatively. Therefore, we have two scenarios — Natural Convection with
Heated Lateral Walls (Section 4.1) and Rayleigh-Bénard Convection (Section 4.2) — both
giving a qualitative comparison. The ideas for these scenarios have been taken from
Griebel [6]. Note that Peano uses a finite element method (see [1, 5|), whereas Griebel’s
implementation is based on a finite difference method, so that a comparison between our
results and Griebel’s needs to take this into account. Finally, there is the scenario Flat
Plate in Parallel Flow (Section 4.3) allowing us to do a quantitative analysis on boundary
layers. We also describe problems and phenomena that we encountered throughout
testing.

If not denoted explicitly the simulations and tests in this section have been performed using
the trivialgrid component of Peano, since the grid (see Section 3.7) implementation
was not available yet. Only Section 4.4 uses the grid component and shows a phenomena
that occurs only for simulations with a level difference of at least one.

4.1 Natural Convection with Heated Lateral Walls

Natural convection is also called buoyancy-driven flow, since the flow evolves only due
to density differences in the fluid. These density differences are caused by temperature
differences, which again are caused by e.g. cooling or heating the fluid at the boundary.
Note that there is no internal heat generation since the right hand side of the energy
equation is zero (see Eq. (2.43) on Page 11). Since we are using the occurring buoyancy
forces, a proper acceleration such as gravity is vital. This is especially true when using
the Boussinesq approximation, which assumes that density is constant except in buoyancy
terms in the momentum equation (Eq. (2.42) on Page 11).

The Rayleigh number,

Ra — MllB(Th —Tc) L?” (4.1)

av

is an important dimensionless number for buoyancy-driven flows and highly dependent
on both, the fluid parameters (such as thermal diffusivity ) and the scenario parameters
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Fig. 4.1: Natural Convection with Heated Lateral Walls, scenario setup.

(e.g. the gravity g). Being below a critical value, it leads to heat being transferred mainly
by diffusion, whereas the heat is transferred by convection, when the Rayleigh number is
above this value. An example for the first case can be found in Section 4.1.1, whereas
the latter case is shown in Section 4.1.2.

In the first scenario Natural Convection with Heated Lateral Walls we have a closed,
square box with a heated, a cooled and two adiabatic (insulated) walls, which is filled
with a fluid (see [6]).Fig. 4.1 shows the setup for this scenario. The left wall is heated at
temperature Ty, whereas the right wall is cooled at T>. The fluid itself and the adiabatic
walls at the top and the bottom of the box have an initial temperature T7;.

The initial temperature 77 is not really important for this scenario, since the mean
temperature T — averaged over the whole domain — is the average of the heating and
the cooling temperature,

— Ty +1c

Q= T 5
for all fluids with @ > 0 when the steady state is reached. Since the transients and
therefore the computational times can become very long, one can at least reduce the

time until that state is reached by setting 77 = T'q.

In Peano we use the fluid-scenario gravity-box, which sets no-slip Dirichlet boundary
conditions for the velocity at all boundaries (I' = I'Y):

A7) = 02 V(Zt) € D7 X [to, tond) -
S
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4.1 Natural Convection with Heated Lateral Walls

The chemical-scenario is natural-convection setting Dirichlet boundary conditions for
the temperature at the left and right wall (I'5) and Neumann boundary conditions at
the top and bottom wall (T'%), respectively. Note that the vertices in the very corners
technically belong to the temperature Dirichlet boundary I'D; as suggested by the marks
in Fig. 4.1.

In the following we take a look at different fluid parameters. As it turns out, the evolving
flow and the computational challenges are highly dependent on these parameters. Griebel
presents two types of fluids, which are discussed first. Afterwards, we take a look at two
less viscous fluids, one that is a little more viscous than water and water itself.

4.1.1 Diffusive Heat Transfer (Griebel 1)

The first parameters that Griebel presents for this scenario, describe an artificial fluid
with high viscosity and good heat diffusivity (conductivity). Further on they are called
Griebel 1-parameters:

Pr = 7, Re = 985.7, Ra = 140,
B =21x104 Ty =1, Te = 0, (4.2)
g = (0,-9.706 x 1072)", L = 1.

Pr is the Prandtl number, Re is Reynolds number, the Rayleigh number Ra, (3 is the
coefficient of thermal expansion, g the gravity and L the characteristic length. Note
that Griebel uses the dimensionless formulation of the NSE and energy equation and
therefore uses dimensionless parameters as well. Especially, when looking at the gravity
g this might seem strange. If wanted, one can change it to be the earth’s gravity
g~ (0, —9.81)T ms 2, but then one would need to adapt some other parameter in order
to maintain the Rayleigh number. Also note that Peano allows to choose the axis along
which the gravity acts. This is done by specifying a gravity vector in the configuration
file (gravity-x0, gravity-x1). Since we want the gravity to act “downwards” in the
pictures, we need to specify a negative value along the y-axis.

The characteristic length given by Griebel is without any unit as well, but use the same
value for our computations, so that we have:

L = 1m

Y

leading to a square domain with edge length L.

Another thing to mention is that we use temperatures without any units, since only the
difference is interesting in the Boussinesq approximation (see Eq. (2.40) on Page 11) and
the energy equation (2.43) only uses derivatives of the temperature. Hence, it would not
make any difference if we used Ty = 20°C or Ty = 293 K instead of Ty = 1 as long as
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the reference temperature T, is understood as parameter without unit as well. In Peano
Tt is used as the reference temperature for the Boussinesq approximation.

The Reynolds number Re itself is not really significant, since we cannot tell anything
about the characteristic velocity u., beforehand, as there is no external flow involved.
Therefore, we typically set

for our simulations.

If wanted, one could calculate the time dependent Reynolds number in each time step,
by setting teo = ||Umaz||,

>t
Re, — M (4.3)
t _’tend

. 18 the 2-norm largest velocity in the domain at time ¢ and U, = U
Nevertheless, since Griebel provided a global Reynolds number, we use it to specify
additional parameters (such as the kinematic viscosity v) that are necessary for the
Peano configuration file:

where @ rend,

T, = T = 0.5,
—4

ko= 14493 x 1074 Y ¢, = 1kg+K, (4.4)
n = 1.0145x 10%Pa-s, p =138 u, =12

where the thermal conductivity s, the specific heat at constant pressure c,, the dynamic
viscosity 7, the density p are set to fit the Griebel values in Eq. (4.2).

These parameters lead to the kinematic viscosity v,

2

v o= 1 = 10145 x 1070 2
p s
and thermal diffusivity «,
v K _,m?
a = — = — = 14493 x 107* —.
Pr Cpp s

Using these parameters we have Ra ~ 140.

As there is no external flow and the temperature difference is small, the evolving flow is
quite slow. Thus, it takes a long time until the steady state is reached. For this scenario
we have t.,4 = 3000s, leading to long computational running times, depending on the
mesh and time step size 7 of course.
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4.1 Natural Convection with Heated Lateral Walls

(a) Isolines for temperature, (b) Streamlines of flow, color-
color-coded temperature, coded velocity magnitude,
Ty =1,Tc =0. lZmaz| = 7.94 x 1075 ms~ 1,

Fig. 4.2: Natural Convection with Heated Lateral Walls, Griebel 1, t = 3000s,
7 =0.1, 20 x 20 cells, temperature isolines and velocity streamlines.

We tested on three different regular grids (trivialgrid only) with 20 x 20, 50 x 50 and
100 x 100 cells (given in number of cells per dimension), leading to square cells with edge
lengths 5cm, 2cm and 1cm, respectively. For each grid several time step sizes 7 have
been used. A list of all runs that have been performed can be found at the end of this
Section in Table 4.1 on Page 42. Now everything is set up for our first run of Peano with
the chemical component.

In Fig. 4.2 we see the steady state for the temperature and the velocites at t.,q = 3000
for a 20 x 20 mesh with time step size 7 = 0.1. These show that the heat is transported
mainly by diffusion (see Fig. 4.2(a)) and only slightly by convection — note that the lines
are slightly bend to the right at the top and left at the bottom, respectively. This is
exactly what is to be expected, when using a low Rayleigh number Ra =~ 140.

Fig. 4.2(b) shows the streamlines of the flow. There is one current flowing through the
whole domain, rising at left hand side, being pushed to the right, where it drops down
due to rising density and is pushed back to the left again. The color in the background
shows the magnitude of the velocity — which is ||@(Z, t)|| — at each point Z of the domain
at time ¢. The minimal velocity (dark blue) is 0ms ! for all upcoming Figures, whereas
the maximal velocity (dark red) is given in the caption of each Figure. The flow presented
in Fig. 4.2(b) has the following maximal velocity:

|Tmae| = 7.94 x 1075 2,
S

Next we take a look at the isolines of the velocities and the pressure for the steady state
on a 50 x 50 mesh (Fig. 4.3). The high velocity spots (||@]] > 7 x 107 ms™!) on the
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(a) Velocity  isolines,  color- (b) Isolines of pressure, color-
coded velocity, ||Umaz| = coded pressure.
7.907 x 107> ms L.

Fig. 4.3: Natural Convection with Heated Lateral Walls, Griebel 1, t = 3000 s,
7 =0.05, 50 x 50 cells, isolines of velocities and pressure.

left and right in Fig. 4.3(a) are located at an approximate distance of 20 cm to the
boundary. This shows that the viscosity — and therefore the friction at the wall due to
zero velocities — has more influence on the flow than the occurring buoyancy forces due to
density changes. This changes as soon as the fluid gets less viscous. Then the boundary
layer — the distance between the boundary and the corresponding highest velocity — gets
thinner.

Fig. 4.3(b) shows the color-coded pressure with pressure isolines. As the pressure is a cell
degree of freedom in Peano, the values are calculated in the center of the cell. Therefore,
we use the a superscripted C' to indicate the usage of a value computed by Peano. Also
note that we do not set the pressure at any point in the domain. Since the momentum
equation (2.42) only contains the pressure gradient absolute values are not necessary
and only the differences play a vital role for Peano. One could add 1bar to the Peano
pressure to simulate an ambient pressure of 1 bar in the domain.

Here we have the following cell pressure values:

PG, = 4.756 x 1072,
pC. = —4.756 x 1072,

at the bottom and top of the box, respectively.

The analytical hydrostatic pressure is:

A" = plgllh = 9706 x 107 Pa,
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4.1 Natural Convection with Heated Lateral Walls

Jull [107°%]

0 x [m]
0 0.2 0.4 0.6 0.8 1

Fig. 4.4: Natural Convection with Heated Lateral Walls, Griebel 1, t = 3000s,
7 = 0.05, 50 x 50 cells, velocity magnitude, line plot over horizontal
center line at y = 0.5 m.

where we have h = L for the height h of the water column. Since the pressure is calculated
in the middle of the cell in Peano, we have to extrapolate the pressure from the cell
center to the cell edges at the top and bottom. We get

b= P (] ) = 9702 102 P ~ 49,

where n = 50 is the number of cells. There is no visible hydrodynamic pressure,
G L2
b = golll, (1.5)

since ||Zmaz||” = 6.3 x 1072ms ! and these differences cannot be resolved by the color.

Finally, we have Fig. 4.4 showing absolute values of the velocity at time t.,q for the
horizontal line at y = 0.5.

So all in all we see good results that can be compared Griebel’s results (Fig. 9.4 in [6]),
where a 50 x 50 grid computation is shown. Note that we were able to qualitatively
produce the same results by only using a 20 x 20 grid, but cannot compare the results
quantitatively due to lack of data.

Table 4.1 shows the meshes and time step sizes that have been used for this scenario.
Additionally, the maximal velocity is at time t.,q = 3000s is given. The symbol Wmeans
that there was an error for this computation, e.g. when the solution of the PPE diverges
due to an unstable time step size.
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Table 4.1: Natural Convection with Heated Lateral Walls, Griebel 1, list of runs,

teng = 3000s.
Mesh T HﬁmaxH [%] at tend

7.951 x 1075
20 x 20 0.5, 0.1 7.938 x 1075
0.01 7.937 x 107°

0.2 v
50 x 50 0.15 7.909 x 107°
0.01, 0.05 7.907 x 1075

100 x 100 0.05 v

0.01, 0.005 7.901 x 1075

4.1.2 Convective Heat Transfer (Griebel 2)

We now take a look at another fluid — referred to as Griebel 2 — which is less viscous
and has smaller thermal diffusivity than the first fluid. The dimensionless parameters as
presented in Griebel are:
Pr = 7, Re = 11063, Ra = 2 x 10°,
B =21x10"% Ty =1, Tc = 0, (4.6)
goo = (0,—1.1005)", L = 1.

Like before, we use Ty = T' = 0.5 in Peano. In this run the non-dimensionless gravity
g=(0,-9.81)" ms 2 is used by transforming g.., applying the formula:

e - (07 _L||g||>T7 (4.7)

2
Uso

as presented in [6]. This leads to u. = 2.98ms™!, since we still use the characteristic

length L = 1 m for the height and width of the box. Again, u., and the Reynolds number
are not significant for our calculations, but they are used to reproduce the fluid that
Griebel is using. Additionally, they are listed here, since Peano’s configuration file needs
these parameters.

Next, by setting:
p=1%" ¢ =122 v =267Tx10"2
we finally get:

n = vp = 2.67X 107*Pa-s, and

2
a = = 386x107° L,
CppP S
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4.1 Natural Convection with Heated Lateral Walls

As total simulation time we again use t.,q = 3000 s and a fixed time step size 7 = 0.05 on
a 50 x 50 mesh (cell size 2cm x 2cm). Note that we have a much larger Rayleigh number
for this fluid and scenario configuration than before, so that the heat is transferred mainly
by convection.

This can be seen in Fig. 4.5, where the temperature contour lines are plotted for times
1505, 250, 350s, 550, 750 s and 3000 s, respectively. Warm fluid is pushing to the right
at the top of the box (Fig. 4.5(a) to Fig. 4.5(c)). As we’ve seen before, this problem
is symmetric and therefore the same happens at the bottom of the box from the right
to the left and takes the same time. The isoline for temperature 7= 0.5 in Fig. 4.5(c)
clearly shows that the warm fluid is dragged downwards by the cooled fluid. Note the
development of the isolines for 7" = 0.3, and 7" = 0.7 at times 550s, 750 s and 3000s.
Since heat was transferred by conduction before, there was no real boundary layer for the
temperature. This time we have a moderate boundary layer that needs to be discretized
fine enough by the mesh, which is shown later.

(a) t = 150s.

d) t = 550s. e) t = 750s. £) t = tena = 3000s.
(d) (e) (

Fig. 4.5: Natural Convection with Heated Lateral Walls, Griebel 2, 50 x 50
mesh, 7 = 0.05, evolution of temperature, isolines with color-coded
temperature.

43



4 Validation

h “%

L |

(a) t = 1508, |[Umaez| = (b) t = 250s, ||tUmal = (c)t = 350s, ||Umaz] =
6.0 x 107 3ms 1. 6.1 x 103ms 1. 53x 103 ms 1.

"———————-—w—-——* ™

=

(d) t = 5508, ||Unmae| = (e) t = 7508, ||tmaz| = ()t = tena = 3000s,
4.5x 1073 ms L. 4.2 x 103 ms L | mac| =
4.1 %103 ms~ 1.

’T

Fig. 4.6: Natural Convection with Heated Lateral Walls, Griebel 2, 50 x 50
mesh, 7 = 0.05, evolution of flow, streamlines with color-coded velocity
magnitude.

Fig. 4.6(a) to Fig. 4.6(f) show the streamlines of the evolving flow at the same times
as before. To be able to use the full range of color, the color-coded velocity magnitude
is normalized to its own maximal velocity, which is written in the caption to be able
to compare them to the other Figures (minimum is Oms™! for all time steps of course).
At the beginning we see that there form two internal loops within the outer flow. The
left loop then moves downwards, the right upwards, melting together at time ¢ = 250s,
before they finally split up again at time ¢ = 350s. Fig. 4.6(f) shows the steady state.
Note that the last modifications of the flow take a long time to reach their final state
even though the changes look very small — ¢ = 750s vs. ¢ = 3000s. Also note that the
speed of the flow is rising until time ¢ = 250 s and especially that there is high velocity
at the top and bottom of the box when the fluid is pushed towards the right and left
side for the first time, respectively. When comparing Fig. 4.6(f) to Fig. 4.2(b) one can



4.1 Natural Convection with Heated Lateral Walls

Table 4.2: Natural Convection with Heated Lateral Walls, Griebel 2, list of runs,

t. = 3000s.
Mesh T H/(ImaxH [?} at tena
1 3.834 x 103
25 % 25 0.5, 0.1, 0.05 3.833 x 103
0.75 4.09 x 1073
50 x50 0.5, 0.1, 0.05 4,089 x 103
100 x 100 0.1, 0.05, 0.01, 0.001 4.091 x 103
0.1 o
120>150 4 05 0,01, 0.001, 0.005  4.091 x 10~
200 x 200 0.01, 0.005 4,091 x 10-3
400 x 400 0.01, 0.005 4,092 x 10-3

see that the fluid parameters lead to smaller velocity boundary layers. Especially the
lower kinematic viscosity v results in the fluid moving more easily and faster and the
lower thermal diffusivity « corresponds to heat not being transferred as far into the box
by conduction.

Table 4.2 shows the list of runs that have been performed for the Natural Convection
with Heated Lateral Walls scenario with Griebel 2 fluid parameters. In general, all
final flows show the same steady state where only the maximal velocity differs for some
mesh resolutions. In contrast to the first fluid, it seems that there is quite a significant
discretization error for the 25 x 25 grid. This can be led back to the smaller velocity
boundary layers, which has been pointed out before.

Again, when comparing the results to Griebel’s (using a 50 x 50 mesh, see Fig. 9.5 in
[6]), we qualitatively get the same results.

Fig. 4.7 shows a three-dimensional simulation on a 50 x 50 x 50 mesh (cell size is
2cm X 2cm x 2cm). The temperature isosurfaces in Fig. 4.7(a) clearly show the influence
of the front and back wall of the domain — holding no-slip Dirichlet boundaries. The fluid
is slowed down at the boundary and thus the convective transport of the temperature is
influenced accordingly. The streamlines in Fig. 4.7(b) are qualitatively very similar to
Fig. 4.6(f). An overall maximal velocity of ||@naz| = 4.2 x 1072 ms ™! also indicates a
good approximation of the flow, when comparing it to the two-dimensional simulations
(see Table 4.2). But note that the flow does have three-dimensional effects as the maximal
velocity in z-direction is:

Wnae = 4.09x 107 ms™?,

which is approximately one scale below the maximal velocity in both other directions.
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(b) Streamlines (z = 0.5) with glyphs at three slices
(x =0.1, 0.5 and 0.9)

Fig. 4.7: Natural Convection with Heated Lateral Walls, Griebel 2, 50 x 50 x 50
mesh, ¢ = 3000, adaptive 7 computation, ||| = 4.17 x 1073 ms 1,
Umae = 2.14x1073ms™ ! vpee = 4.17x 103 ms™ !, wpee =
4.09 x 10~*ms 1.
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4.1 Natural Convection with Heated Lateral Walls

4.1.3 Artificial Fluid

Now we take a look at a fluid which is close to water, specified by the following parameters:

Pr=7 L=1m, g = (0,-9.81)" 3.
B =21x10"%, Ty =1, Tec =0, T; = 05, (4.8)
p = 100035, ¢, = 4183 .

Next we set:
n = 1x102Pa-s,

and therefore define:

v=1=1x10"2
P s
o =% = 1.4><10’6m?2,

1

By assuming u., = 1 ms * we get:

Re = 1 x10° and Ra = 1.47 x 108.

The gentle reader immediately realizes that the difference to water is to be found in the
dynamic viscosity n. We chose this artificial fluid to close the gap between Griebel 2 and
water. For Griebel 2 we had v = 2.67 x 107*m?s ! and water has v =1 x 1075m?s 1,
so that choosing ¥ = 1 x 107°m?s ! is a reasonable value for this purpose. It led to
some interesting phenomena, that are likely to occur when using water as fluid. For a
discussion on water see Section 4.1.4. As total simulation time we have:

tena = 10000s.

We’ve seen before that lower kinematic viscosity or thermal diffusivity lead to thinner
thermal and flow boundary layers at the heating and cooling wall, respectively. Compared
to the previously used fluids the viscosity and the diffusivity are smaller by approximately
one scale for the current fluid.

Therefore, it is to be expected that a mesh resolution of 25 cells (cell size 4 cm X 4 cm)
in each dimension is not enough for this configuration. And in fact even a cell size of
2cm x 2cm (50 x 50 cells) is too coarse. This can be seen in Fig. 4.8. For the first
shown time ¢t = 125s (Fig. 4.8(a)) everything looks fine, but after some more time has
passed (t = 375s, Fig. 4.8(b)) the flow gets noisy. In Fig. 4.8(c) the streamlines are not
even drawn any more since the flow obviously is not correct — in a phyiscal way — any
more. Especially when looking at the high Rayleigh number, one might be mislead to
believe that the flow is turbulent.
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N—

(a) t = 1258, |[Umaz] = (b) t = 375s, ||tUmal = (c) t = 100008, ||[@ne| =
6.8 x 107 3ms 1. 73x 103 ms L. 8.1x 10 3ms 1.

Fig. 4.8: Natural Convection with Heated Lateral Walls, Artificial Fluid, 50 x 50
mesh, 7 = 0.05, evolution of flow, streamlines with color-coded velocity
magnitude.

(a) t = 1508, |Gmael| =  (b) t = 15008, |[[@mae| = () t = 10000s, ||Gmaz| =
84 x 10 3ms 1. 55x 103 ms 1. 39x 10 3ms 1.

Fig. 4.9: Natural Convection with Heated Lateral Walls, Artificial Fluid,
100 x 100 mesh, 7 = 0.05, evolution of flow, streamlines with color-
coded velocity magnitude.

Using a finer resolution of i.e. 100 x 100 (cell size 1cm x 1cm) shows a completely
different result (Fig. 4.9). Note that the time for Fig. 4.9(a) is ¢ = 1508, when comparing
it to Fig. 4.8(a) showing the flow at time ¢t = 125s. When taking a look at Fig. 4.9(b)
one can see that the fluid starts to drop and rise close to the heating and cooling wall,
respectively. This happens in a width of less than 10 cm, explaining why a cell width of
2 cm (for the 50 x 50 mesh) might have been too coarse to resolve this flow.

The steady state at time ¢ = 10000 s shows three vortices embedded in the global flow
running through the whole domain. Note that the maximal velocity is decreasing in
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4.1 Natural Convection with Heated Lateral Walls

(a) t = 650s. (b) t = 650s, lower right (c) t=10000s.
heat spot with differ-
ent colormap to increase
contrast.

Fig. 4.10: Natural Convection with Heated Lateral Walls, Artificial Fluid,
100 x 100 mesh, 7 = 0.05, evolution of temperature, isolines of
temperature.

time, whereas initially of course there is no flow at all, so that it is increasing until time
t = 150s or before.

Despite these good looking results, when taking a closer look at the temperature in Fig.
4.10(a), we see that there are unnatural heat spots at the upper left and lower right
corner of the box (see the red circled markers and note the color differences within theses
markers). There we have cold fluid completely surrounded by warmer fluid and warm
fluid by colder fluid, respectively. Fig. 4.10(b) shows a magnification of the lower right
heat spot with a different colormap (7" = 0.5 is now black instead of green) in order to
emphasize the heat spot. As we neglect energy conversion from fluid friction into heat,
there is no physical cause for this heat spots to occur, especially since the fluid did not
pass through the whole domain yet. These spots disappear when the flow evolves — and
do not occur at the beginning of the simulation — but they suggest that the discretization
is still to coarse. Fig. 4.10(c) shows the flow for the 100 x 100 mesh at time ¢t = 10000 s.
These clearly show the low consistency and diffusivity of the fluid, as the boundary layers
are quite small.

Due to the heat spots, we ran another simulation with a 250 x 250 mesh (cell width
0.4cm). And indeed, when using this mesh we do not see these spots any more. Too,
the bulges that can be seen in Fig. 4.10(a) below and above the heat spots, respectively,
disappear. A picture of this simulation is not included since the overall image does not
change.

On the one hand it is a good result that we are able to get control of these problems.
But, on the other hand we use 62500 cells for a 1m x 1 m box and a 250 x 250 mesh,
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(a) Regular refinement. (b) Mesh stretching.

Fig. 4.11: Comparison of a 20x20 mesh with (a) regular re-
finement and (b) activated mesh stretching along x-
axis  (mesh-stretching-direction="0")  with  factor 2
(mesh-stretching-parameter="2.0").

resulting in rather high computing times for such a small scenario. Then again, it is
important to notice that — in comparisons to previous fluids — only the boundary layer
got smaller, whereas the structure in the whole domain principally remained the same.
Regarding this fact, we used a 200 x 100 mesh, leading to non-square rectangular cells of
size 0.5cm x 1 cm. This works quite well, in the sense that the heat spots disappear — as
for the 250 x 250 mesh. But this mesh still uses 20 000 cells. Therefore, it would be nice
to say that we want a finer resolution at the left and right boundary, whereas the rest of
the domain uses coarser cells. Since at this point of the work only the trivialgrid was
available for the chemical-component of Peano, we were not able to refine those areas
on its own.

For these cases Peano supports mesh-stretching, which can be activated by using the
configuration tag use-mesh-stretching as attribute of the trivialgrid configuration
argument. We can define an axis along which the cells are being stretched with a factor.
There is no need to change any code, since all operators are implemented to use the
actual cell size along each axis solely and we are therefore able to use this feature without
any adaptions. In Fig. 4.11 one can see the meshes of a 20 x 20 trivialgrid with
regular cells (Fig. 4.11(a)) compared to a 20 x 20 trivialgrid with mesh-stretching
(Fig. 4.11(b)) along the z-axis (mesh-stretching-direction="0") with a stretch-factor
of 2 (mesh-stretching-parameter="2.0").
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4.1 Natural Convection with Heated Lateral Walls
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(a) t = 250s, isolines (b) t = 10000s, isolines (c) t =10000s, streamlines,
of temperature, color- of temperature, color- color-coded velocity
coded temperature, heat coded temperature. magnitude, ||Umaez] =
spots. 4.019 x 103 ms~ L.

Fig. 4.12: Natural Convection with Heated Lateral Walls, Artifical Fluid, 50 x 50
mesh-stretched grid (along x-axis, factor 2), 7 = 0.05.

When using this technique on a 50 x 50 grid, a cell at the very left or right of the domain
approximately has size 3mm x 20 mm, whereas a cell at the center of the domain has
size 42mm x 20mm. The results for a computation with this mesh — still using the
time step size 7 = 0.05 — are shown in Fig. 4.12(a), where still some heat spots occur
(see red markers). But what actually is more interesting is that we get an accurate
steady state. This can be seen in Fig. 4.12(b) showing the temperature isolines and
Fig. 4.12(c) showing the streamlines at time ¢ = 10000s. This was not possible using
the regularly refined 50 x 50 grid (Fig. 4.8(c)). For a 100 x 100 mesh-stretched grid
we even get rid of the heat spots, which is not shown here (maximal velocity at t.,q is
|@maz|| = 3.998 x 103 ms1).

So, for this particular case — when accepting the heat spots as visible discretization error
— we can reduce the number of cells from 10000 (100 x 100 mesh) to 2500 (stretched
50 x 50 mesh) just by using the mesh-stretching technique, in order to get the same
results. When the heat spots are not acceptable, we get 62500 cells (250 x 250 mesh) vs.
10000 cells (stretched 100 x 100 mesh), still leading to significantly shorter computation
times.

Finally, we have the Table of runs 4.3 for this scenario and the Artificial Fluid. The kind
of mesh — with or without mesh-stretching — is denoted in the mesh column. Additionally,
there is an extra column to indicate whether or not heat spots occurred. The time step
size 7 did not play such a vital role as in the cases before and has therefore not been the
focus of our simulations.
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Table 4.3: Natural Convection with Heated Lateral Walls, Artificial Fluid, list
of runs, tepg = 10000s.

Mesh T el [%} at t.,q Heat Spots

50 x 50 0.05 v

stretched  0.05 4.019 x 1073 yes
100 x 75 0.1 3.875 x 1073 yes
100 x 100 0.05 3.875 x 1073 yes

stretched 0.05 3.998 x 1073
200 x 100 0.1 3.919 x 1073
200 x 200 stretched 0.01 3.994 x 1073
250 x 250 0.05 3.978 x 1073
400 x 400 0.01 3.982 x 1073

4.1.4 Water

In the last section we saw that a high Rayleigh number of Ra = 1.47 x 10® leads to
problems that can be solved by refining the grid. Now, when turning to water, we have
the following parameters:

Pr=7 L=1m, g = (0,-9.81)" 13,
B =21x10*L Ty = 205°C, Ty = 19.5°C, T; = 20.0°C, (4.9)

K»

p = 100025, ¢, = 4184 e, ko= 0.597 .

Note that we’re now using a temperature with unit °C. This time we set the dynamic
viscosity 7,

n = 1x103Pa-s,
appropriate to the properties of water. Finally, we get:

v = 1><10’6m?2,

a =5 = 14x107 2
cpp s
and with v = 1ms':

Re = 1x10° and Ra = 1.47 x 109,
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4.2 Rayleigh-Bénard Convection

v 20.2 -1

(a) Isolines of temperature, color- (b) Streamlines, color-coded ve-
coded temperature. locity magnitude, ||Umaz| =
4.9 %107 ms L.

Fig. 4.13: Natural Convection with Heated Lateral Walls, Water, 400 x 400
mesh-stretched grid, 7 = 0.01, ¢ = 9375s.

As threshold for the transition of laminar to turbulent flow a critical Rayleigh number
of Ra = 1 x 10 is stated in [10]. Since there is no turbulence-model introduced to the
chemical component so far, we cannot resolve this phenomena. So the only way to get a
hold on this is to reduce the cell size a lot, increasing computational costs. And in fact
this does not really resolve the turbulence completely — only on a macroscopic level.

Fig. 4.13 shows a simulation using a 400 x 400 mesh with activated mesh-stretching
using a time step size of 7 = 0.01. By looking at the streamlines, one can see that the
boundary layers are very small for water due to its low viscosity (Fig. 4.13(b)). The
maximal velocity of || @a.| = 4.9 x 1073 ms ! at ¢ = 93755 is a bit higher than it was
for the artificial fluid but still in the same order of magnitude. We see that we can use
water as a fluid, but the number of cells that is necessary to resolve this type of flow
might be too high — a simulation with a 200 x 200 mesh did not show satisfying results.
It is possible that using a turbulence model in Peano allows to work on a coarser mesh.

4.2 Rayleigh-Bénard Convection

The next scenario which was used for validation and testing is the Rayleigh-Bénard
Convection. Like in the previous scenario, the flow is temperature-driven and no external
flow is introduced. Fig. 4.14 shows the setup, the top wall is cooled at temperature
Te and the bottom wall heated at Ty, respectively, resulting in Dirichlet boundary
conditions (I'E) at these two walls. We chose the walls at the left and right to have
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Fig. 4.14: Rayleigh-Bénard Convection, scenario setup.

Neumann boundaries regarding the temperature (I'%) to simulate adiabatic walls. For
the velocities we have no-slip Dirichlet boundaries conditions at all walls ('}, = I'?).

In Peano the scenario name for the fluid-scenario is gravity-box, whereas the chemical-
scenario is called rayleigh-benard-convection.

Again, like before, note that the corner vertices belong to the Dirichlet boundary of the
temperature and therefore is heated and cooled, respectively. What we expect to happen,
is that at first the fluid is heated and cooled by conduction and almost no actual flow
occurs. Then, after conduction is established, convection comes into play and a flow
with a special structure is forming, the so-called Rayleigh-Bénard convection cells. A
Rayleigh-Bénard cell is an eddy in the domain, where the fluid rises and drops due to
density differences caused by temperature difference in a regular manner. These typically
occur in shallow layers, leading to very thin but broad domains. Griebel states that
there is no mass exchanged between these eddies for two-dimensional flows, in contrast
to three-dimensional cells. It is also stated that Rayleigh-Bénard convection cells only
occur when the critical Rayleigh number,

Ra =~ 1108,

is exceeded. To avoid influences from the left and the right wall, these need to be far
enough apart. Like Griebel [6] we take a look at different fluids: Glycerine, Air and
Water.

4.2.1 Glycerine

We start with glycerine as the first fluid for the Rayleigh-Bénard Convection scenario.
The scenario configuration is:

g = (0,-9.81)" 13,
Ty = 204.78K,To = 291.2K,T; = 293K,
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4.2 Rayleigh-Bénard Convection

so that we have temperature difference of 3.58 K. For the fluid Griebel presents the
following parameters (this time with units)

Pr = 12500, Re = 33.73, Ra =~ 1 x 10%,
= 5x 107", (4.10)
p = 126428 1 = 1.499Pa-s,

and therefore

v = 1.186 x 1073 Pa - s,
a = % =949 x 10782,
Since Peano only uses « in the simulations, it is not important that ¢, and & really fit

the fluids properties. Nevertheless, we need to specify them in the configuration file,
therefore we set:

Griebel suggests a 38 cm x 4 cm box, leading to:

L = 0.04m,

1

and we finally assume u,, = 1ms™ " as always. After all parameter have been defined

the Rayleigh number is:
Ra = 9.985 x 10°.
This time Griebel provides the total simulation time t,,q,
tena = 10000s.

Do not be confused when reading t_end = 2.5-10° in Griebel [6], that’s the dimension-
less time corresponding to 10000 s.

We use two different meshes, a 49 x 5 (cell size 7.7mm x 8 mm) and a 227 x 21 mesh
(1.7mm x 1.9mm). For both, non-dimensionless quantitative data is presented |6 (Sec-
tion 9.7.2), which we used for comparing.

At first we take a look at the 49 x 5 mesh, leaving us only four degrees of freedoms
for the temperature in the y-direction, since we have Dirichlet boundaries at the top
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(b) Streamlines with color-coded temperature.

C0aCE0e0c0a0a0

(¢) Umazr = 7-35x 107°ms Y upmin = —7.35 x 1075ms !, streamlines with color-
coded u

(d) Vmaz = 1.04 x 107*ms 1, v = —9.65 x 107°ms !, streamlines with color-
coded v

Fig. 4.15: Rayleigh-Bénard Convection, Glycerine, 49 x 5 mesh, t = t¢pg =
10000s, 7 = 0.01, temperature and velocity.

and bottom. To resolve a real flow, this actually seems rather few. Results — using
the time step size 7 = 0.01 — at time t.,4 are shown in Fig. 4.15. The fungi-formed
isolines of the temperature in Fig. 4.15(a) show the warm fluid pushing upwards from
eight spots at the bottom of the box. Lying inbetween each two of these spots cold
fluid is pushing down from the top, forming Rayleigh-Bénard convection cells. Note that
the rather rough isolines are due to the coarse discretization. Fig. 4.15(b) shows the
color-coded temperature, just like before. Additionally, the streamlines are plotted to
better see the interaction of heat transport and density differences. Fig. 4.15(c) and
Fig. 4.15(d) show the same streamlines but with different color-coded data. The former
color-codes u, the latter v of the flow. Since these are not absolute values, we also get
negative velocities, meaning that at that point the fluid is flowing in the negative x and
y-direction, respectively.

Before we go on to the finer mesh, note that there are a total of 14 Rayleigh-Bénard
cells, whereas Griebel’s result for the coarse discretization only shows 12. When refining
the grid, both Griebel’s and our results show 14 cells as well, so that he attributes
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4.2 Rayleigh-Bénard Convection

() t = tepg = 10000s.

Fig. 4.16: Rayleigh-Bénard Convection, Glycerine, 227 x 21 mesh, 7 = 0.001,
evolution of flow, isolines of temperature, color-coded temperature.

this phenomena to the discretization size. Keep in mind that Griebel uses a finite
difference method whereas Peano implements a finite element method. The different
number of Rayleigh-Bénard cells may explains, why the velocities given in Griebel
(Umaz = 4.76 X 107°ms 1 V0, & 7.78 x 107° ms 1) differ quite a lot from our results
for the coarse grid.

Now we take a look at the 227 x 21 mesh, giving us a very fine cell size of 1.7 mm x 1.9 mm.
Fig. 4.16 shows the temperature isolines at three different times ¢ = 2500s,4300s and
10000s using the time step size 7 = 0.001. One can see that there is no heat exchanged
by convection at time ¢ = 2500 (Fig. 4.16(a)) as all contour lines are still straight. Note
that this is after a quarter(!) of the total simulation time elapsed. As can be seen in Fig.
4.16(b), the temperature is transported — by convection — into the Rayleigh-Bénard cells
afterwards. Fig. 4.16(c) then shows the steady state at time ., = 10000, presenting
the same structure as the 49 x 5 mesh.

The streamlines and their chronological progress can be seen in Fig. 4.17. One can see
the forming of the eddies — starting to form from the left and right wall into to middle of
the box in Fig. 4.17(a). Note that the flow is very slow (||tpez| = 1.15 x 1072 ms™! at
time ¢ = 2500s) and has no significant influence on the temperature transport (compare
Fig. 4.17(a) and Fig. 4.16(a)). Time ¢t = 4000 shows that the eddies have reached the
center, having a maximal velocity of (||@mnae|| = 1.52 x 107°ms~!). This shows that the
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GEBB00I0IIIOOET0

(a) t = 25005, ||@maz] = 1.15 x 107 ms~

- GGZT0T00TTTO

(b) t = 40005, [|@mas|| = 1.52 x 105 ms~

(c) t = tena = 100008, ||@ma.| = 8.05 x 10> ms—

Fig. 4.17: Rayleigh-Bénard Convection, Glycerine, 227 x 21 mesh, 7 = 0.001,
evolution of flow, streamlines with color-coded velocity magnitude.

convective heat transport itself has a great impact on the speed of the flow. For the final
time te,q in Fig. 4.17(c) we have:

[timaz|| = 8.05 x 10752,
ltmaz|| = 5.28 x 10~ 5 m, |vmaz|| = 8.05 X 107° %,

which is very close to Griebel’s result (tmqez = 5.45 X 107> ms ™!, Vpee & 8.07 x 10> ms™1).
Bearing in mind that our results were better for the coarser mesh, our results are probably
more accurate than Griebel’s for the fine mesh as well.

4.2.2 Air

The second fluid we take a look at is air. The given Griebel parameters are:

Pr = 0.72, Re = 4365, Ra =~ 30000,
B =34x107%, usx = lms?, (4.11)
Ty = 2935K, To = 2925K, T; = 293K.

Griebel sets the dynamic viscosity n¢ = 1.81 x 107* Pa - s, whereas the real viscosity of
air is:

n = 181 x10°Pa-s,
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4.2 Rayleigh-Bénard Convection

so that we guess that this is a typo. We use the real viscosity 7 in our simulations.
Therefore we have

k
p = 1.205-> and
m
2
v = T —1502x10°
p s
which leads to
2
o = 2 = 2086 x107° L,
Pr S

Just like for glycerine we can fix ¢, =1 kg%K and get:
= = 2514 x 107° ——
K ape, —

since the real properties of air for x and ¢, are not important for Peano, as long as o has
the correct value.

The characteristic length L is the height of the box and chosen to fit the given Rayleigh
number,

lgll 8 (Th — Tt)

For the domain Griebel uses a box with aspect ratio 4:1. Therefore we have a domain
size of 26.24 cm x 6.56 cm. As final time we set:

1
3
L :( Rava > — 6.56 x 10~ 2m.

tend = 1000s.

Summarizing, we have a highly non-viscous fluid with better heat conductivity than
water.

In Fig. 4.18 we see the results using a 65 x 17 mesh (approx. cell size 4 mm x 3.9 mm)
with 7 = 0.01. When comparing the streamlines in Fig. 4.18(a) to Griebel’s results (Fig.
4.19(a)), we do not see much difference, since six Rayleigh-Bénard cells have formed
in both cases. But when looking at the temperature isolines in Fig. 4.18(b) and Fig.
4.19(b), it is obvious that our results do not match Griebel’s. Instead of three spots at
the bottom where the heat rises to the top, we get four of those at the bottom and three
at the top where the cold fluid is pushing down into the box. Griebel’s results are the
other way around — three warm spots at the bottom and four cold spots at the top. After
all, 65 x 17 cells are too coarse for such a scenario and to resolve this flow appropriately.
In this case we used a fixed time step size of 7 = 0.01, which is below the time stepping
criteria that were presented in Section 3.6. The results do not differ, when using 7 = 0.1
and 7 = 0.15 instead of 7 = 0.01.
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(a) Streamlines with color-coded velocity magnitude, |Umqez|| =
2.34 x 107 2ms 1.

(b) Isolines of temperature with color-coded temperature

Fig. 4.18: Rayleigh-Bénard Convection, Air, 65 x 17 mesh, ¢t = t.,q = 1000s,
7 = 0.01, streamlines and isolines of temperature.

O)0NONCNONO)

(a) Streamlines, u&,, ~ 1.3 x 10 2ms !, v, ~ 1.8 x 10 2ms L.

max ? max

(b) Isolines of temperature.

Fig. 4.19: Griebel results, Rayleigh-Bénard Convection, Air, 65 x 17 mesh, t =
tend = 10008, streamlines and isolines of temperature, |6].
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4.2 Rayleigh-Bénard Convection

(b) t =1000s, ||tmaz| = 2.276 x 1072 ms 1.

Fig. 4.20: Rayleigh-Bénard Convection, Air, 130 x 34, 7 = 0.005, evolution of
flow, streamlines with color-coded velocity magnitude.

After refining the mesh to 130 x 34 cells (approx. cell size 2mm x 1.9mm) we get the
results we expected (Fig. 4.20). In Fig. 4.20(a) we see the flow at time t = 50s. The
maximal velocity is ||Zmaz|| = 1.82 x 107* ms ™!, which is slow compared to the maximal
velocity ||Zmaz|| = 2.33 x 1072ms ! at time ¢ = 100s. For the steady state at time
t = teng = 1000 s we have:

||ﬁmax|| = 2.276 x 10_2 %7
Uppae = 1.71 % 1072 %; Umaz = 2.23 X 1072 %’

which is above the velocities that are given by Griebel (u,, ~ 1.3 x 107 2ms 1, v =~

1.8 x 10?2 ms!). But then we have to keep in mind that we do not really know which
parameters Griebel used for his calculations. If(!) Griebel really used n¢ = 107 for
his calculations, this would explain, why our velocities are higher than his, since lower
viscosity typically results in faster flows in natural convection scenarios.

When refining the grid to 260 x 68 cells (approx. cell size 1 mm x 1 mm), the flow does

not change significantly and we get the following velocities:

[|Tnae|| = 2.26 x 1072 2,
Upaw = 172X 10722 0,0, = 222 x 10722,

s ?
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292.
293
293.1

(a) t =50s.

(b) t =100s.

(c) t =1000s.

Fig. 4.21: Rayleigh-Bénard Convection, Air, 130 x 34 mesh, 7 = 0.005, evolution
of flow, isolines of temperature with color-coded temperature.

Finally, we show the temperature isolines for the 130 x 34 mesh using the time step size
7 = 0.005 at different times. For ¢t = 50s (Fig. 4.21(a)) we see that convective heat
transport is about to begin, since the isolines are not completely straight any more. Fig.
4.21(b) shows the almost fully developed flow, where the main heat transport happens
by convection. Remember that it took more than a quarter of the total simulation
time for that process to start for glycerine. This can be explained by looking at the
fluids properties. Air is much less viscous than glycerine, so that the flow is more
sensitive — in a convective kind of sense — to temperature differences. This can be seen by
comparing the velocities of Fig. 4.17(a) (||Umaz] = 1.15 x 1072 ms™!) and Fig. 4.20(a)
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4.2 Rayleigh-Bénard Convection

(|Tmael] = 1.82 x 1074 ms1). In both cases the convective heat transport has not yet
begun (Fig. 4.16(a) and Fig. 4.21(a)), but air is a lot faster than glycerine.

As was mentioned before, there is a big velocity difference from time ¢ = 50s to time
t = 100s, indicating that convective heat transport has a greater influence on the speed of
the flow, than diffusive heat transport. This can be seen in Fig. 4.21(b), where the steady
state is almost reached. Fig. 4.21(c) then shows the steady state at time ¢ = 1000s.
There is not much change to time ¢ = 100, only that the shapes slightly move towards
the center.

All in all we can say that this scenario works quite well with Peano. For glycerine we
have slightly better results than Griebel [6], whereas air needs a finer discretization for
the domain, but still procudes the results we expected.

4.2.3 Water

We now turn to water — parameters can be found in Section 4.1.4. Griebel does not
provide a box ratio for water, so that we have to choose our own. Since this thesis is not a
parameter analysis for the Rayleigh-Bénard Convection scenario, we fixed the boxes size
at 0.5m x 0.05m using L = 0.05m as the characteristic length. The Rayleigh number
(4.1) thus is:

Ra = 1.84 x 10°.

We ran a simulation on a 500 x 50 (cell size 1mm x 1 mm) with the time step size
7 = 0.005. In contrast to the flows of glycerine and air, the flow of water in this setup
does not have a steady state. The streamlines in Fig. 4.22(a) at time ¢ = 10000s show
that Rayleigh-Bénard cells still form. But the cells are not stable and deform from step

e agi=n

(a) Streamlines with color-coded velocity magnitude.

A NERRS

(b) Isoline for temperature 7' = 0.5 with color-coded temperature.

Fig. 4.22: Rayleigh-Bénard Convection, Water, 500 x 50 mesh (cell size
Imm X 1mm), ¢ = 10000s, 7 = 0.005.
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to step, forming new cells. Fig. 4.22(b) shows the temperature isoline at T'= 0.5. We
can see the spots at the bottom and top of the wall, where the warm and cold fluid
accumulates before it rises and drops, respectively.

As before, Peano does not yet handle effects of turbulence the chemical component.
These could play a vital role, but there is no real data that we could have used for
comparing. Note again that we set the box ratio almost arbitrarily and thus an other
domain might give different results.

4.3 Flat Plate in Parallel Flow

The last validation scenario is the first one to involve external (driven) flow and is called
Flat Plate in Parallel Flow. We have an isothermal plate which is placed in the middle
of a global flow, that is flowing at constant speed u., from the left to the right.

In Fig. 4.23 one can see the general setup for this scenario. The box in the Figure just
represents our simulation domain, meaning that the outer flow is not limited to the
box. The plate is heated at temperature Tp = Ty, whereas the inflow has an initial
temperature T, = T¢ for all times. So, it is obvious that Dirichlet boundary conditions
have to be imposed on the left and bottom boundary of the scenario (I'},). For the
velocity we have a constant inflow u., at the left and zero-velocities for the wall at the
bottom, leading to Dirichlet boundaries for the velocities (I'%)) as well. Note that the
lower left scenario corner, which is the very edge of the plate at the left side, belongs to
the plate. The vertex that is located there technically gets the boundary conditions that
are used for the plate. The upper left corner vertex gets the conditions that are used for
the inflow.

Also note that there is no actual wall at the top of the general scenario, but we still need
to limit our computational domain. The idea is to choose the height of the box according
to the fluids parameters, so that the flow at the top does not distinguish itself from the
flow above of it, so that there should be a flow at constant speed u., from the left to the
right at the top. But this cannot be accomplished by any incompressible code, since we
have conservation of mass and the code assures that the total outflow matches the total
inflow. Since the fluid is slowed down along the plate, it gets faster at the top of the box
to assure the same outflow, reaching a velocity ..

Nevertheless, we need to impose a boundary condition for the upper domain boundary
and implemented free-slip condition in y-direction there. This means that there is neither
in- nor outflow in y-direction, by setting a no-slip Dirichlet condition for the y-component
(normal) of the velocity and a Neumann condition for the xz-component (tangential) (see
Section 2.2). If pure Neumann conditions would be used for the upper boundary, the
fluid would be pushing into the domain from the top due to gravity. For the temperature
we set Neumann boundaries, since free-slip conditions are only interesting when having
at least two-dimensional degrees of freedom.

64



4.3 Flat Plate in Parallel Flow
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Fig. 4.23: Flat Plate in Parallel Flow, scenario setup.

Further note that the inflow does not have a parabolic profile, meaning that the flow is
not influenced in any way before the first contact with the plate.

In Peano the scenario name for the fluid-scenario is flat-plate-in-parallel-flow,
whereas the chemical-scenario is called heated-plate-in-cooled-flow.

4.3.1 Hydrostatic Pressure

As mentioned before, this is the first scenario where we have external flow. Therefore, we
have to deal with the pressure at the outflow boundary, which is on the right. Until now
Peano automatically imposed zero pressure boundary conditions at the outflow, when
the inflow was specified as a velocity. We modified this behavior, so that we are now able
to set inflow velocity independently from the outflow pressure using the configuration
tags velocity-mean-value and outlet-pressure (see Section 3.9).

It also has been pointed out that the Boussinesq approximation requires the gravity to be
non-zero in order to take density differences of the fluid into account. Now, when using
water (parameters can be found in Section 4.1.4 on Page 52) with an inflow velocity of
Uso = 1ms ! a quite strange phenomena occurs.

In Fig. 4.24 we see the very beginning (¢ = 0.002s) of a simulation with time step size
7 = 0.001 on a 100 x 100 mesh for a 1m x 1 m box (cell size 1cm x 1cm). The fluid
flows through the domain with almost constant speed u., (slightly pushed downwards
due to gravity, Fig. 4.24(a)). The pressure (p$,, = 4534, pC,., = —4481) in Fig. 4.24(b)
clearly shows the influence of the gravity on the left side of the domain, whereas the
gravity is neglected at the outflow since we have zero pressure boundary conditions.

It is obvious that the hydrostatic pressure is not taken into account at the outlet on the
right side, so that we get a rather non-physical pressure distribution for our simulation.
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(a) Streamlines with color-coded (b) Isolines of pressure with
velocity magnitude. color-coded pressure.

Fig. 4.24: Flat Plate in Parallel Flow, water, 100 x 100 mesh, uo = 1ms !,
t =0.002, 7 = 0.001.

The hydrostatic pressure is the pressure that is exerted by a fluid when it is at rest. So,
when assuming constant density p and gravity g, the hydrostatic pressure is:

Phydrostatic = PHth, (412)

where h is the height of the fluid column to a reference point (with respect to the gravity)
— which in our case is the top of the domain.

What happens is that the inflowing fluid experiences gravity forces, is pushed downwards
and accelerates. This can be seen in Fig. 4.25(a), showing the streamlines and the
velocities at time ¢ = 0.15s.  The right border is considered to be the outflow, but since
we imposed Neumann boundaries there, nothing prevents the fluid from flowing into the
domain. Due to conservation of mass this is exactly what happens — otherwise there
would be more fluid flowing out of the domain than into it.

Nevertheless, since we only have one outflow, the right inflow needs to flow out on the
right side as well. This explains the high pressure area (p¢,, = 10100) at the top right
side in Fig. 4.25(b), which pushes the fluid downwards and finally out of the domain.
The gravitation acts as acceleration on the fluid, so that the velocities rise and rise until
Peano crashes due to overflow.

The solution to this problem is to overlay the hydrodynamic pressure with the hydrostatic
pressure at the right boundary. The result of this can be seen in Fig. 4.26(b), where we
have a pressure difference of 9614 Pa between a cell center at the top and a cell center
at the bottom. Fig. 4.26(a) shows the streamlines that are not bend down any more
(compare to Fig. 4.24(a)). Note that this functionality has been implemented after the
runs have been performed.
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4.3 Flat Plate in Parallel Flow

(a) Streamlines  with  color- (b) Isolines of pressure with
coded velocity magnitude, color-coded pressure, p&, =
|tmaz|l = 10.07ms L. 10100, pS,;, = —1134.

Fig. 4.25: Flat Plate in Parallel Flow, water, 100 x 100 mesh, us = 1ms™!,
t=10.15s, 7 = 0.001.

(a) Streamlines  with  color- (b) Isolines of pressure with color-
coded velocity magnitude, coded pressure, p$ . = 4593,
| @maz| = 1ms—t. pC. = —5021.

Fig. 4.26: Flat Plate in Parallel Flow, Water, 100 x 100 mesh, 1, = 1ms !,
7 =0.01.
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4.3.2 Boundary Layers

As was mentioned before, the inflow does not have a parabolic profile. This is important
because we investigate the two boundary layers, the velocity and the thermal boundary
layer (Fig. 4.27).

The concept of the velocity boundary is layer is easily explained. At the surface of the
plate the fluid experiences zero velocities, so that there is no movement at all. The fluid
then transfers momentum to the next layer through the action of viscosity, so that the
fluid is retarded at this next layer. This transfer happens from layer to layer and its
influence vanishes with increasing distance to the surface. The thickness d(x) of this layer
is of course dependent on the length x that the fluid has been exposed to the boundary.

The same holds for the thermal boundary layer principally. Energy is transferred from the
plate’s surface into the first fluid layer, which exchanges energy with the next layer, and
so on. The thickness of this layer — until no significant amount of energy is transferred
any more — is called 0, (x), which again is dependent on the length z, that the fluid is
flowing along the wall. A good introduction to boundary layers can be found in [10].

For the thickness of the boundary layer of the velocity one can use the formula:

x
olz) = b ,

() T
given in [12] in Section 8.2.3, where Re, is the Reynolds number for the characteristic
length x:

(4.13)

Re, = - . (4.14)
1%

For the ratio of thermal to velocity boundary layer one can find:

gj ~ Pr3, (4.15)

LLLLTLTL]

Fig. 4.27: Flat Plate in Parallel Flow, scheme of velocity § and thermal boundary
layer &;.
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Fig. 4.28: Flat Plate in Parallel Flow, boundary layer widths for water, §(z)
velocity, o, (z) thermal boundary layer.

in [10], where Pr = 7 for water. As inflow velocity we still have us, = 1ms .

Fig. 4.28 shows d(z) and d,(x) for water on a length of 2m. Note that Reg,, = 2 x 10°
and the flow would be turbulent in the real world at the end of the box (more precisely
the flow would get turbulent at x = 0.5, since Reg s, = 5 x 10°). But since our code does
not resolve effects of turbulence or turbulence itself, this is not considered any further.

Also note that we have §(2m) = 7mm(!) for water. The thermal boundary layer is even
smaller, since Pr > 1. Therefore we choose a computational domain of size 2m x 0.01 m,
discretized by 1000 x 10 cells, so that each cell has size 2mm x 1 mm.

Due to the problems we’ve seen above gravity is set to zero for this scenario, leading
to an unrealistic thermal boundary layer. This is because the density differences in the
momentum equation (Eq. (2.42) on Page 11) are neglected, when using g = (0, O)T ms 2.
Furthermore, the Peano configuration flag initialize-everywhere is set, so that the
whole domain is initialized with velocity u., (except for the vertices on the plate of
course). As time step size we have:

T = 1x107°,
with a total simulation time of t.,; = 10s. The temperatures are:
Ty = 363K, T, = T = 293K,

so that we have a temperature difference of 70 K.

In Fig. 4.29 the most right 5 cm of the domain are shown, so that one can see the extract
[1.95m,2m] x [0cm, 1cm]. The arrows in Fig. 4.29(b) indicate the velocity boundary
layer, which seems to be nicely curved. Due to the lack of gravity the thermal boundary
layer only shows the diffusive heat transport.

Finally, we have Fig. 4.30, where the temperature and the velocities are plotted over
vertical cuts of the domain. For the thermal boundary layers in Fig. 4.30(a) we already
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e — e —

(a) Isolines of temperature with color-coded temperature in K.

(b) Streamlines with color-coded velocity magnitude, arrows to indicate boundary
layer §(x), ||tmaz| = 1.17ms L.

Fig. 4.29: Flat Plate in Parallel Flow, Water, 1000 x 10 mesh, ¢t = 10s, 7 =
1 x 1079, showing domain [1.95m,2m] x [0cm, 1 cm).

mentioned that buoyancy forces due to density differences are neglected. Therefore,
we only see temperature changes that happened diffusively over one or several layers,
explaining why these look quite alike. Another thing to mention is that the temperatures
are below T for x = 0.25. This is a phenomena that occurs when using non-square cells
and thus can be considered as discretization error [Zenger, personal communication|.

The mark, that is plotted for each x in Fig. 4.30(b), is the value of the velocity boundary
layer width when using Eq. (4.13). They all almost perfectly fit the boundary layer
widths that are computed by Peano, as can be seen in the magnification. The latter also
shows horizontal dashed lines for the height of each §(x) for easier comparison to Peano’s
boundary layer widths.

This shows that Peano is able to resolve the phenomena of boundary layers accurately.
However, in reality one has much larger domains and cannot afford to refine the mesh on
a mm-scale, so that these effects are typically neglected for water. Note that the velocities
are higher than u., due to conservation of mass, an effect that has been explained before.

4.4 Adaptive Grid

So far we have only been using the trivialgrid component of Peano for our chemical
simulations. In Section 3.7 the implementation of the (adaptive) grid for the chemical
component is described. The grid allows to refine regions with high velocities, high
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(a) Thermal boundary layers.
] /;f(jf,,
1.0 —
x =0.25
0.75 z=0.5
x=1.0
0.5 r=15
x=2.0
0.25
0 y [m]
0 0.002 0.004 0.006 0.008 0.01
'
— A
\

N

<z

(b) Velocity boundary layers, marks using Eq. (4.13).

Fig. 4.30: Flat Plate in Parallel Flow, Water, 1000 x 10 mesh, ¢t = 10s, 7 =
1 x 107%, boundary layers ((a) thermal, (b) velocity) over vertical cuts
(x =0.25m,0.5m, 1 m, 1.5m, and 2m) of the domain.

temperature gradients or other regions of interest manually by defining refinement boxes
in the domain via the configuration file (see Section 3.9). At boundaries this refinement
is done automatically until the finest level is reached.

We now discuss a phenomena that occurs when having different levels of refine-
ment (e.g., Fig. 3.3(b)) and the gravity is non-zero. A scenario that has no ex-
ternal flow, such as a natural convection scenario, typically produces very small
velocities. Fig. 4.31 compares a scenario that has no external flow (gravity-box
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(a) Dipole field in a grid simulation (b) No visible dipole field due to

without external flow (fluid sce- higher velocities in scenario with
nario gravity-box), ||Umaz| = inflow (obstacle-in-channel),
1.22x 103 ms™ !, Ty = Tc = parabolic  velocity  profile,
Tr = 0. |Emaz|| = 1.48ms 1.

Fig. 4.31: Comparison of scenario without (a) and with (b) external flow on same
mesh (h = hynin = 19, H = hypae = 1/3), color-coded pressure, chemi-

cal scenario for both rayleigh-benard-convection, s = I ms .

with rayleigh-benard-convection, Fig. 4.31(a)) and a scenario with external flow
(obstacle-in-channel with rayleigh-benard-convection, Fig. 4.31(b)).

Both have the same mesh with one coarse cell at the center (H = 1/3) and refined cells
(h = 1/9) at the domain boundary. Since there is no temperature gradient (Ty — T =
0) there should be no flow at all in the natural convection scenario (Fig. 4.31(a)).
Nevertheless, we see a dipole field with a maximal velocity of ||#ez| = 1.22 x 1072 ms .
The driven flow (Fig. 4.31(b)) does not show this dipole field, falsely suggesting that
there is none.

The reason for this dipole field is a discretization error that is independent of the chemical
component. The pressure is a cell degree of freedom, so that it is located in the center
of a cell. The ansatz functions for the pressure are piecewise constant (see Section 3.2).
Since the velocities are located at the vertices and we need the pressure — or better the
force — for the calculations of the update in the momentum equation, this force has to be
spread onto the vertices (Fig. 4.32). The hydrostatic pressure levels py < p; < py are
dependent on the gravity g of course (Eq. (4.12)). Note that cell A and C both have
value p; because their cell centers are located on the same height (with respect to g).

On stepping up to the coarser grid, node N accumulates not only the values of cells A and
B directly but also the values of the hanging nodes are restricted. This is what causes
problems, since the force on node N of cell A is larger than the accumulated forces of
cells B, C and D. This leads to an outward pointing velocity contribution — seen from the
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Table 4.4: Maximal velocity in dipole field at time ¢t = 1s, error in order of
O(h?), grids with maximal mesh size H and minimal mesh size h.

H h | Umaz || [?} att=1s
1/3 1/o 1.64 x 1072
1/g 1/o7 2.26 x 1073
1/o7 1/81 2.54 x 107
1/81 1/243 2.82 x 107

coarser cell. At the bottom of cell A the same happens in the opposite direction, since
the force pushing from cells B, C and D is larger than the force pushing from cell A.

In the box scenario (Fig. 4.31(a)) these are the only velocity contributions that exist,
resulting in a dipole field. Note that the error is in order of O(h?), since the we use bi-
linear FEM elements (Table 4.4). Also note that this error occurs for all FEM approaches,
where using different elements might eliminate the error in this scenario but results in
the occurrence an error elsewhere.

This phenomena has not been seen in Peano before, because there was no scenario without
external flow. Natural convection scenarios thus should not use the adaptive grid, when
the velocities are expected to be slow — which is dependent on the fluids parameters of
course. As soon as an external flow is involved it should not play a vital role and the
grid can safely be used. But note that the discretization error is still there and typically
just not visible in the output, because it is too small.
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Fig. 4.32: Peano distribution of pressure in a cell with hydrostatic pressure levels
po, p1 and pg and cell sizes H and h = H/3 with restriction of hanging

nodes.



5 Application to Reactor Safety

In a nuclear power plant (NPP) power is produced by controlled nuclear fission. The
released heat is used to heat a fluid (typically water) for generation of electricity. Different
types of NPPs exist that use water as coolant and moderator (for neutron deceleration),
such as heavy water reactors (HWR) and light water reactors (LWR). The latter can be
subdivided into two different types of reactors:

e In a boiling water reactor (BWR) steam is produced in the reactor core (approx.
70 bar, 285 °C).The steam drives a turbine before it is cooled down in a condenser.

e In the primary cooling circuit of a pressurized water reactor (PWR) water is heated
but — due to the pressure (approx. 155bar) — does not boil (approx. 310°C). In
the steam generator heat is transferred to a secondary coolant, which also is water.
The second coolant boils and drives a turbine to generate electricity.

On normal operation the primary coolant in a PWR is heated in the reactor pressure
vessel (RPV) and flows through a pipe — the so called Hot Leg — into the steam generator
(Fig. 5.1). The steam generator connects the primary and the secondary cooling circuit,
transferring the heat to the secondary coolant. The primary coolant is then pushed
through the Cold Leg back into the RPV by the reactor coolant pump (RCP).

A loss-of-coolant accident (LOCA) requires the injection of emergency core coolant (ECC)
for the cooling of the reactor core. The ECC is pumped into the cold leg through a safety
injection nozzle. For reactor safety analysis it is important to describe the mixing of
the ECC (30°C) and the hot primary coolant in the cooling circuit accurately, since the
high temperature gradients may lead to a thermal shock related fracture of the reactor
pressure vessel.

5.1 Upper Plenum Test Facility (UPTF)

The mixing of the ECC with the primary coolant was experimentally investigated in
the frame of the UPTF- Transient and Accident Management (TRAM) test series. The
UPTF is a geometrically full-scale test facility with a (non-radioactive) core simulator
that is used to simulate the primary circuit of a PWR [13].

The distribution of the temperature in the cold leg and the annulus of the RPV has
been examined in the UPTF-TRAM test series C1 and provides an exhaustive data
basis for the validation of Peano and the implemented energy equation. Considering
UPTF-TRAM C1 Runla01, the specifications and results can be summarized as follows:
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Steam Generator

RCP
RPV
[}
| ECC
: 7 \.t.l
Hot Leg | Cold Leg
(
|
C o s
T

Fig. 5.1: Scheme of a pressurized water reactor with reactor pressure vessel
(RPV), hot leg, steam generator, reactor coolant pump (RCP), cold leg
and the injection nozzle of emergency core coolant (ECC).

190 °C.

considered.

nozzle.
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Before ECC injection the flow is stagnant in the cold leg at approx. 18 bar and

The cold leg is always filled with liquid water, so only single-phase phenomena were

There is a turbulent mixing of cold and hot water close to the safety injection

A stratification of hot and cold water along the cold leg was obeserved.



5.2 Peano Implementation

5.2 Peano Implementation

GRS provides a CAD-model of the cold leg, that is used by Peano in combination with
the tool preCICE, which has been developed at the Technische Universitat Miinchen [2].
preCICE is used to fill the gap between the CAD-model and Peano’s geometry, that
can tell whether or not a voxel is inside or outside of the domain. The geometry also
defines boundary numbers for the safety injection nozzle, the boundary towards the RPV
and the union of all other boundaries. A notable advantage of Peano is, that the mesh
generation, both regularly and adaptively, happens fully automatic (see Section 3.7).
In order to compile the chemical component of Peano with preCICE one can use the
SCons target fluid-chemical-precice (see Section 3.9).

The fluid scenario precice-cold-leg then applies boundary conditions for the velocity
u: a Dirichlet boundary condition for the inlet (safety injection nozzle), a Neumann
boundary condition for the outlet (open boundary towards RPV) and no-slip Dirichlet
conditions (walls) for the rest of the boundaries. The temperature boundary conditions
are set by the chemical scenario chemical-cold-leg: a Dirichlet boundary condition for
the inlet and Neumann boundary conditions for all other boundaries (walls are assumed
to be adiabatic and the outlet adapts temperature according to temperature distribution
in the pipe).

Both the trivialgrid and the grid component of Peano can be used for mesh gen-
eration. Technically, the cold leg is embedded in a rectangular box. So, when using a
trivialgrid with 270 x 150 x 60 cells (approx. cell size 3.3 cm X 3.3 cm) the complete
box is partitioned into this number of cells and only some (approx. 85000 cells) are
inside of the cold leg (Fig. 5.2(a)). An adaptive grid using A, = /729 (fraction of edge
length of embedding cube) has approximately 915000 inner cells (see longitudinal and
cross section in Fig. 5.2(b)). It is possible to use refinement boxes to refine certain areas
of the scenario manually. The left end of the cold leg (marked red in 5.2(a)) represents
the outlet towards the RPV.

The cold leg geometry — in contrast to channel-like scenarios — provides a challenging
test setup for Peano exactly because of the embedding mentioned. Furthermore, Peano’s
trivialgrid component has been designed for evaluation and comparison purposes.
Hence, current runtimes — depending, of course, on the mesh resolution and the number
of time steps — are in the order of two weeks for purely serial computations of fluid
flows of about 100 seconds in simulation time scale. The streamlines of an on-going
computation of a fluid-only scenario with time step size 7 = 1 x 10~* at time ¢ = 0.3 s
convey a positive impression for further simulations (Fig. 5.3).

It remains to do a thorough analysis of the cold leg and a validation using the UPTF-
TRAM test series results. Nevertheless, to do so, the work done provides the theoretical
and technical base for Peano and its validation, which are all essential prerequisites for
any further simulation. Future developments of Peano, both mathematical enhancements
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of the model and numerical improvements regarding runtime etc., will be discussed in

Chapter 6.
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(a) trivialgrid, 270 x 150 x 60 mesh of embedding box, 85000 cells inside cold leg.
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4

Fig. 5.3: Cold Leg, 270 x 150 x 60 mesh, 7 = 1 x 1074, ¢t = 0.3 s, velocity stream-

lines, ||@maz| = 2.55ms 1.
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6 Conclusion

This thesis is closed by giving a short summary of the results and an outlook on the
current development activities of Peano and in particular possible further extensions of
the CFD component.

Summary

Peano is a memory efficient c++ framework for solving PDEs on regular and adaptively
refined Cartesian grids. The mathematical model of the existing CFD solver component
has been extended by the energy equation, representing a classical convection-diffusion
equation for the temperature. The Boussinesq approximation is used to approximate
density differences in gravitational terms and thus includes occurring buoyancy forces.

The cell-wise operator evaluation approach of Peano allowed to easily extend the existing
code by the energy equation. The general concept of Peano as well as implementation
details like the Decorator Pattern, used to couple a HeatScenario and a FluidScenario,
have been explained thoroughly (see Section 3). The in-house tools DaStGen and preCICE
are used to support the modular implementation of Peano and allow faster development.

We have demonstrated that Peano is able to cope validation scenarios, that have been
used for both qualitative and quantitative analysis. Most of the simulations have been
two-dimensional since simulating a three-dimensional flow not only leads to longer
computational times but there is also less data to validate it with. Nevertheless, the
concrete implementation of the Peano’s operators is independent of the dimension and
thus three-dimensional flows have been investigated as well. A summary of the validation
scenarios and the mesh sizes that have been used for our simulations are shown to give a
general overview of the validation process (Table 6.1). Natural convection scenarios like
Natural Convection with Heated Lateral Walls and Rayleigh-Bénard Convection show that
the current implementation of the chemical component simulates flows with convective
and diffusive heat transport accurately. Nevertheless, since there is not (yet) a model for
turbulence implemented for this component, the simulation of water in such scenarios
requires a fine spatial discretization.

Additional features like the hydrostatic pressure correction at open boundaries have been
added to the existing implementation of the fluid component. Boundary layers are
examined in the Flat Plate in Parallel Flow scenario and especially the velocity boundary
layer is resolved accurately. Furthermore, we explained a phenomenon related to the
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Table 6.1: Summary of computed scenarios with fluids and mesh sizes. Asterisk
* for stretched meshes (see Section 4.1.3).

Scenario Fluid Meshes used for Simulations
Griebel 1 20 x 20, 50 x 50, 100 x 100
25 x 25, 50 x 50, 100 x 100,
_ ' Griebel 2 200 x 200, 400 x 400
Natural Convection with 50 % 50 x 50
Heated Lateral Walls
Section 4.1 50 x 50 ¥,

Artificial Fluid 100 x 100, 250 x 250, 400 x 400,
50 x 50*, 100 x 100*, 200 x 200*

% 200"

e
Glycerine 49 x 5, 227 x 21

Rayleigh-Bénard Convection 65 x 17 ¥

Section 4.2 Alr 130 x 34, 260 x 68
Water 500 x 50

Flat Plate in Parallel Flow Water 1000 x 10

Section 4.3

hydrostatic pressure arising due to the choice of FEM elements (bi-linear for the velocity,
piecewise constant pressure), which has not been seen in Peano before (see Section 4.4).

The coupling of preCICE and Peano allows the application of Peano on a reactor safety
scenario, the temperature mixing in the Cold Leg during ECC injection. We provided
the technical base that is necessary for further validation of this scenario, meaning
the possibility to create a mesh using the CAD-model that is provided by GRS, and
performing first f1luid simulations on it.

Outlook

The current implementation of the chemical component of Peano provides a solid base
for simulations involving temperature. Possible enhancements as the inclusion of a
turbulence model (e.g., a k — e-model or the computation of turbulence with a Large-
Eddy Simulation (LES)), will allow the simulation of turbulent flows. As the possibility
to calculate the time step size adaptively, dynamic mesh refinement of regions in the
domain with high velocity or temperature gradients could provide more accurate results.
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At the same time this feature could be used to coarsen regions with small gradients,
optimizing computational costs.

Another enhancement that is currently being integrated in Peano is the modeling of free
surface flow and dispersed two phase flows, e.g., simulation of bubbles in water.

The parallel component of Peano is available for the fluid but not for the chemical
component, yet. The same holds for an implicit time integration method to solve the
pressure Poisson equation. Both can be implemented to allow finer meshes and reduce
the computational time for a simulation.

The core of Peano is under strong development and recently Peano 2 has been released.
The fluid component is not yet ported to this new version, but once it has been, new
features and, in particular, parallelization can be integrated even more easily and faster.
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