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Abstract

The hierarchical tensor product finite element method, using el-
ements with variable aspect ratio, has proven to be useful for the
numerical solution of elliptic partial differential equations and allows
several concepts for the control of the adaptation process. In addition
to the more conventional adaptive grids derived from Lo- or H-based
error estimates, we study grids which are optimized with respect to
the evaluation of linear functionals like the value of the solution at
a fixed point. It is well-known that this requires the solution of a
dual problem. As for the case of singular solutions, these grids are
extremely refined at certain points, yielding different strategies for
the solution vector and the right-hand side. This improves the order
of the respective error in regard to Lo- or H%-based adaptive grids,
but causes additional difficulties for the design of efficient multigrid
solvers.
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1 Introduction

The first known mathematician to use hierarchical ideas was Archimedes
Tetpaywviopés mapafodns (the quadrature of the parabola), see [13]. By
inductively exhausting the parabola with triangles, he was able to measure
the area given by a parabola. In 1909, Faber [7] introduced the hierarchical
basis and explicitly used it for the representation of functions. Yserentant [15]
applied the hierarchical basis in 1986 as a preconditioner. In 1990, Zenger [16]
directly represented a smooth multivariate function u with a hierarchical ten-
sor product basis instead of a standard nodal basis. The coefficients of this
representation, the so-called hierarchical surplusses, decrease with the vol-
ume of the support of the corresponding basis functions. Consequently, the
hierarchical surplus is a very simple criterion for the decision of whether the
contribution to the basis representation is important enough or not. These
considerations lead to the concept of sparse gridsin which we order the basis
functions in terms of their contribution to the basis representation and, with
that, in terms of their support volume. It turns out that sparse grids are a
priori Ly- or H%-adaptive grid structures and lessen the so-called “curse of
dimension”, see Bungartz [4]. To understand this, let us compare the number
of grid points that are necessary to reduce, e.g., the Lo-error of a linear finite
element discretization by a factor 1/4 for a sufficiently smooth problem. In
a standard nodal approximation space, we asymptotically need 2¢ and in the
sparse grid approximation only twice — independent of the dimension d — as
many grid points.

Often we are not only interested in the L,- and H°-error, but also in
other interesting quantities defined by the special application or prescribed
by the user, such as the value at a certain point. Thus, it is natural to
ask how we can discretize the given problem with a minimum amount of
work and memory, on one hand, and ensure the prescribed tolerance, on the
other hand. In fact, this is an economic question: efficient use of limited
sources (computational time and memory) with respect to the benefit gained
(user prescribed tolerance). In non-adaptive methods, the solution has to be
estimated before its calculation in order to arrange the grid and to cluster
grid points where necessary. We then get a priori optimized grid structures,
e.g., the aforementioned sparse grids. However, the a priori grid construction
might be a hard job for arbitrary quantities of interest, for, in general, the
locations of critical ranges are not known a priori. Often, much experience



is required. A priori estimations as provided, e.g., by the standard error
analysis for finite element or finite difference methods, are often insufficient
since they only describe the asymptotic error behaviour. Additionally, they
require regularity conditions of the solution which are not satisfied in the
presence of the singularities, e.g., arising from re-entrant corners. These con-
siderations clearly motivate a self-adaptive solution process based on an a
posteriors error estimation.

Today multigrid methods are thought to be the most efficient methods
to solve the large systems of linear equations arising in connection with the
approximate solution of linear elliptic boundary value problems by finite
element or finite difference methods. Griebel and Oswald [8] described an
additive Schwarz multilevel preconditioner, Bungartz [3] and Pflaum [10]
multiplicative multigrid solvers for sparse grids.

Following [14], one of the most promising and most challenging method-
ological approaches in today’s scientific computing is to bring together multi-
grid, parallelism and adaptivity methods. In this article, we specially focus on
the fruitful combination of the multigrid and the adaptivity aspects. Here, in
many respects, the hierarchical polynomial basis of degree p > 1 has proven
to be useful. We introduce a multiplicative multilevel solver for more general
adapted grids, e.g. grids which are optimized with respect to the evaluation
of the solution at a fixed point. In Section 2, we explain the hierarchical
finite elements used for the Galerkin approximation and the adaptation pro-
cess. In Section 3, we show how the adaptation process is done and to which
grids the refinement process leads to. Hereby, the dual solution enables us to
decompose the discretization error into different contributions arising from
the discretization. We estimate these error contributions and seek to bal-
ance their influences. For a detailed description of the adaptive hierarchical
finite element method we refer to Schneider [12]. We use an a posteriori
error estimation, because then, no information about the exact solution is
needed before the computation. The a posteriori error estimation is based
on a concept in finite element Galerkin methods in which the discretization
error is essentially governed by the Green’s function. This concept uses du-
ality arguments introduced by Eriksson, Johnson, and their co-workers [6, 5]
and further developed by Rannacher and co-workers [2, 11]. A new point of
view to define a reqular sparse grid is given in Section 4. We demonstrate
that sparse grids can be classed as a special case of this self-adaptive solu-
tion process in which we refine as much as possible. Section 5 deals with
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the ingredients of the multigrid method. The main idea is to relax only on
the discretization points of all possible tensor subgrids of the discretization
to get N-independent convergence rates, where N denotes the number of
degrees of freedom of the underlying finite element approach. The lion’s
share of this article is Section 6, where two- and three-dimensional numeri-
cal examples are presented and discussed in detail. For example, we observe
an O(N?) convergence behaviour for the two-dimensional point-value error
problem discretized with linear finite elements. This means that we gain one
order of magnitude. Another basic result is that the order of magnitude of
the computational time is dominated by the calculation of the right-hand
side, and not, as one would expect, by the solution of the system of linear
equations. Several extensions are presented in Section 7: a problem with a
root singularity on the boundary is solved with higher order discretizations.
Finally, concluding remarks are given in Section 8.

2 Hierarchical Finite Elements

Beginning with the one-dimensional case, we construct the hierarchical basis
B, of depth n for the interval Q) := [0, 1] from the standard hat function
¢o:R— R,

_J 1—z| forze[-1,+1],
o(x) = { 0 otherwise, (1)

and the linear transformation 7., : [z; — hy,, %; + he;] — [—1,1] defined by

7o, (7) := ( — ;) /hs;. All piecewise linear basis functions ¢,; € B, can then
be constructed by dilation and translation of ¢

be;(7) == ¢ (TIJ. (x)) Va € [xj — hgy, 25 + by,

with support supp ¢y, = [maX{O,xj — hyg, }, min{z; +hwj,1}] C [0,1] for
certain given discretization points z; € QM and the corresponding grid width
0 < hy, € R. We call z; € [0, 1] the basis point bp(¢s,) of the basis function
Ox; € By

Let us construct the hierarchical basis B,, inductively, starting with By :=
{bo(z) := 1 —z, $1(z) := =}, where we define hy := hy := 1, see Fig. 1, by
two principles:
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Figure 1: The one-dimensional piecewise linear hierarchical basis: basis func-
tions of the bases By, ..., Bs.

1. the principle of hierarchy (P1): the family of bases B, Vn > 0 build a
nested sequence of sets by B,,_1 C B, Vn > 0 and

2. the principle of surplus (P2): all basis functions of B,, Yn > 0 may not
influence the representation of the function v € H* (Q(l)) in any basis
point z; € bp(B,_1) of the basis functions of B,,_;.

The second principle gives a hint how to construct the basis functions of B,
Vn > 0. All basis functions ¢,, € B, \ B,_1 have to fit with their support
exactly in the set of intervals one gets by the partition of Q) by the basis
points z; of the basis functions ¢,; € B, 1.

In Fig. 1, the first three steps of constructing B, are given. For ex-
ample, one deduces the only basis function ¢/, € B; \ By by exhaust-
ing the interval [0,1] by the support supp ¢/ of the function ¢ /() :=
1 — |2z — 1| with Ay, := 1/2. It is easy to deduce that for all basis functions
¢s; € By \ Bno1 Vn > 1 hold for the grid width h,; := 27", and therefore,
the support of the basis function ¢,, has the length 2'~".

Now, we exploit the tensor product approach for the d-dimensional case
and give a recursive formulation of the d-dimensional hierarchical basis Bl(:?
ford > 1

BY) = B ® By,
where we define n¢ := (ny,...,nqs) € NJ. We start the recursion with B{) :=
B,,. The indices n; i = 1,...,d indicate the depths of the basis Bf:fi) in the
directions 7. In the following considerations, we suppress the upper dimension



Figure 2: The multidimensional piecewise linear hierarchical basis: two-
dimensional subspace scheme with supports supp ¢x; and basis points x;
of the corresponding hierarchical basis function ¢,. (For example, the hi-
erarchical basis functions with the grey supports are displayed in Fig. 3.)

index (d) whenever the dimension d is clear from the context. The piecewise
multilinear basis functions are defined as

oy (V) i= o V(XY - gf) (@ H ZACORCINC) H% @),

w]d

where (9 = (21,...,24) € Q4 := [0,1]%. The coordinates of the basis
point X; := (j,,...,;,) of the d-dimensional basis function ¢y, are given by
the d basis points of B,,; of the corresponding one-dimensional basis functions
in all directions ¢ =1, ..., d, see also the subspace schemein Fig. 2. To get an
impression of a typlcal two dlmensmnal basis function, see Fig. 3. The space
spanned by B(d) is called V = <B(d >CV= Hl(Q(d)) Note that V(d is
also generated by a classmal tensor nodal basis with 2"+! basis functlons in
direction z =1,...,d.
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Figure 3: The multidimensional piecewise linear hierarchical basis: illustra-
tion of the tensor product approach for piecewise bilinear basis functions.
The corresponding supports are shown in Fig. 2 (grey).

Any function u of the space Vrfj) has the hierarchical basis representation

upa(X) = Y Ul (x),

Xjebp(Bl(:i))

with uﬂ}ie; € R Voy, € Bx(ji)' The coefficients uE}f’f{J correspond to the incre-
ments of data coming from the basis function ¢,;, and therefore, they are
also called hierarchical surplusses.

As a model problem, we consider Poisson’s equation with Dirichlet and
Neumann boundary conditions

—Au = fin Q@)

u = gon(#Tp CI =009, (2)
81,’LL = mOIlFNI:F\FD.

Let us denote the standard Lo-inner product by (.,.)x and by ||.||x the cor-
responding norm on % resp. I'. The weak or variational formulation of
(2) reads then

(Vo,Vu)g = (9, f)g+ (d,m)p Vo eV. (3)

We also call (3) the continuous primal problem. Using the finite element
method, we obtain an approximation u, € <A, > of the analytical solution
u € V in the ansatz space < A, > C V by solving the discrete primal problem
of (3) given by

(V¢7 Vun)g = (¢a fn)Q + (¢7 mn)r v ¢ € Tn7 (4)

7



where 7, C V is called the test space. Sticking to a Ritz-Galerkin approach,
we choose T,, = A, C Bfl‘fl). The discretization underlies the grid G, :=
bp (An).

The function u,, = Y xjebp(An) Unxg “¢x; interpolates the Dirichlet boundary
value function gon I'N A4,,, f, = s €bp(An) Jnx; - @x; interpolates the source
function f in Q@ and m, = Y cpp(an) Mnx; - Px; interpolates the Neumann
boundary value function m on I'y N A,. We end up with a system of linear
equations S - u, = by, for the coordinate vector u, := (Upx;)x;ctp(4,) € RY
of the function u,. We correspondingly define the coordinate vectors f, :=
(fux;)xsep(an) € RY of the source function f and my = (Mnx;)x;etp(an) €
RY of the Neumann boundary function. The vector b, is called load vector.
The matrix S is known as the stiffness matriz with entries sy, , defined by

S = (sxk,xj) e RV and Sxiex; 1= (quxk,ngxj)Q(d). (5)

Xk €bp(Th),x;Ebp(An)

3 Adaptation

We only give a very crude description of the adaptation process in this article.
In Subsection 3.1, we generally develop an a posteriori error estimation that
allows us to distinguish two relevant error contributions, namely the primal
error contribution arising from the discretization of the primal problem and
the dual error contribution arising from the discretization of the dual prob-
lem. We use the primal error contribution for the a posteriori error estimation
and the dual error contribution for the grid refinement. In Subsection 3.2,
we present the grid refinement technique that makes explicit use of the hier-
archical tensor product structure of the approach. For a detailed discussion
of both the a posteriori error estimation and the self-adaptive algorithm see
Schneider [12].

3.1 The A Posteriori Error Estimation

We like to derive a posteriori error estimates for the model problem (2) with
an arbitrary, linear functional, e.g. of the form

J(9) := (w, 9)q or J(9) := (W, V), (6)



where ¢ € V' (or a suitable restriction of V). The functions w(.) and w(.) are
suitably chosen weights.

Following the dual approach, we consider another boundary value prob-
lem, the so-called continuous dual problem, for the corresponding “error prop-
agation” function z € V

(V2,V)g =J(@) + (y, ) VY€V, (7)

with the functional J as the right-hand side, homogenous Dirichlet boundary
conditions’ z\FD = 0, and homogenous Neumann boundary conditions y :=
0,z with y\FN = 0. Since, we will make explicit use of the continuous dual
solution z, we approximate z by the solution z,, € <T,, > of the discrete dual
problem

(Vam, Vi) = J() + (Ym, ¥)r YV € Am, (8)

where the function ym = X« cop(mnnr) Ymx * Px, Interpolates the function
y=0onT,NTp. We call z, the discrete dual solution. Analogically, we
denote the test space T, as dual test space and the ansatz space A,, as dual
ansatz space. In the following considerations, we assume that the primal
spaces are included in the dual spaces: T,, C T,, and A, C A,,.

The aim is to create a primal ansatz space A,, C V in order to minimize
the value |J(e)| for the error e := u — u,, € V of the discrete primal problem
(4). The error J(e) can be decomposed into two components: the primal
error contribution 0, € R and the dual error contribution 6,, € IR

Mm = (Vzma V(u - un))Q - (y’ﬂh g— gn)r and (9)
O = (V(z—2n), V) — (¥ — Ym, 9)r - (10)

The primal error contribution 7, arises from the discretization of the primal
problem involving the discrete dual solution z,,, and the dual error contribu-
tion 6, arises from the dual problem involving the continuous primal solution
u. Again, these dependencies reflect the duality of the problems. The total
of the discretization error then is

J(€) = Nm + Om. (11)

!Note that the continuous dual function vanishes where the continuous primal function
has prescribed Dirichlet boundary conditions, and the normal derivative of the continuous
dual function vanishes where the continuous primal function has prescribed Neumann
boundary conditions.




Equation (11) is a quantitative relation between the discretization error J(e)
and the primal and dual error contributions 7, and 6,,.

We like to estimate the error J(e) by an appropriate error estimation in an
economic way. Since the discretization of the dual problem in (8) is consistent
with the continuous dual problem in (7), the dual error contribution 6,, tends
to zero with higher resolution of the discrete dual solution z,,. This means
that only the primal error contribution n € IR remains in (11)

n:=(Vz,V(u—tn))g— (49— g)r = m nm = J(e). (12)

We learn two important things from equation (12). First, the continuous dual
solution z rules the discretization error J(e). Therefore, the dual solution z
has the key position in the presented approach. Second, for a “sufficiently
good” approximation z, of the continuous dual solution z, we may use 7,
as an error estimation for the total of the discretization error J(e). Here, a
“sufficiently good” approximation of z has two aspects: on one hand, because
of an accurate error estimation, the computation of z,, is carried out on a
not too coarse grid and, on the other hand, because of the computational
costs, the computation of z,, is carried out on a not too fine grid. Because we
have already postulated 7,, C T}, and A, C A,,, we define in the numerical
examples T,, := T, and A,, := A,.

3.2 The Grid Refinement

The grid refinement process depends on data from the continuous primal
solution u, e.g. the locations of the singularities. As presented in Schnei-
der [12], the primal error contribution 7, can be calculated from the discrete
primal and discrete dual solution u, and z,, the given source data f, the
given Neumann data m, and the given Dirichlet data g. Therefore, we focus
on the dual error contribution 6,, for the necessary data for the grid refine-
ment. Due to the hierarchical approach, we only consider elements of the
current approximation that can still be refined, so-called leave elements. Be-
cause the supports of these leave elements are by construction disjunct, we
can estimate their contribution to the dual error contribution 6,, by a value
that is proportional to the product of the corresponding surplusses. This
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Figure 4: The refinement of an element: geometrical illustration for the
subdivision of an element to be refined in the two-dimensional case.

motivates to introduce the local dual error contributions

Om,xk = Zg,irk u?n},exrk [(V¢xka vka)g - (al/ﬁbxk‘r ; ka|F)I‘] VXk € bp(Tm)
(13)
Here, we make the basic assumption that the hierarchical surplus asymp-
totically decays in regions where the concerning functions are sufficiently
smooth. However, the local dual error contributions 8, x, are also appropri-
ate in regions where the corresponding functions are not smooth enough, as
the numerical examples in the Sections 6 and 7 show.
We create new ansatz basis functions in the following way: we sup-
pose that an indicated element corresponds with the ansatz basis function
Py € Bf:fl). Then, we add to the refined discretization A, ; all ansatz basis

functions of the next hierarchical level ¥, € Bg? \Br(l'f,) with supp(¢x,) C
supp(tx; ), in which we use the usual multi-index notation n¢ = n¢ + 1.
Geometrically speaking, subdividing an element means to create in each co-
ordinate direction ¢ = 1,...,d two new finite elements with support of half
size in the direction ¢ and the same support size in all other directions k
with 1 < k # ¢ < d. Fig. 4 illustrates this creation of new elements in the
two-dimensional case.

In order to balance all local dual error contributions |6,, x, |, we indicate
all elements with basis point x, € G, satisfying

‘ Hmzxk‘ 2 f}/ Xrlfleag’( ‘Om,Xk" (14)

This means that we refine all elements of the set of all leave elements with
expected comparatively large contribution to the discretization error. The
real number 0 < v < 1 prescribes a threshold depending on the error func-
tional J and the discretization order p. The value of v controls how many
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Figure 5: A two-dimensional example for a mid-point value adaptation: ini-
tial and adaptive grids after 8, 12, and 18 refinement steps.

new grid points are generated per refinement step and, therefore, we define
the grid point quotient of a refinement step

__ N(An+1)
n = 7]\](14”)

Hereby, we have to take care: on one hand, if we create too few new grid
points (g, — 1), the solution of the primal and dual discrete problems is
relatively too expensive in comparison with the calculations of the adaptation
process. On the other hand, if we create too many new grid points, the self-
adaptive grid refinement cannot find the crucial regions corresponding to the
error functional J because of over-adaptation. When we refine all grid points
in every refinement step, we end up with the so-called regular sparse grids
(gn — 2), see Section 4. For the complete self-adaptive algorithm see again
Schneider [12].

We give an example for the two-dimensional Dirichlet model problem (2)
with solution u(x1,%2) := sinwz; - sinh 7zy/sinh 7. We choose the point-
value J(u) := u (1/2,1/2) in the mid-point as error functional by defining in
(6) the Dirac’s delta distribution as weight w(x) := 0 (1/2 — z1,1/2 — ).
The adaptation process creates a sequence of grids extremely refined towards
the mid-point, see Fig. 5.

eR VYn>0. (15)

4 Regular Sparse Grids

In this section, we newly define regular sparse grids by mathematical induc-
tion. The regular sparse grids were firstly introduced by Zenger [16]. We

12
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Figure 6: Regular sparse grids: the two-dimensional regular sparse grid G's
with depth ¢t = 3 (49 grid points).

start with a regular full grid G, of depth ¢t = 0 with 2¢ ansatz basis functions
and set the local dual error contributions 0, x, =1 Vxx € T, in every
refinement step. This leads to a maximum grid refinement (g, — 2) in which
all grid points are indicated, see equation (14). Consequently, they are all
refined. In Fig. 6, a two-dimensional regular sparse grid G5 is presented. We
recognize the recursive grid pattern.

5 Multigrid Method

In this chapter, we design an efficient multigrid solver for problems discretized
on grids that have no longer a regular structure, e.g. on grids that are
extremely refined at certain points.

The basic idea is to relax on all full (semi-)coarsened grids involved in
the discretization, see [9]. For two-dimensional regular sparse grids, this was
already implemented by Pflaum, see [10]. Here, we provide all subgrids of
the ansatz basis functions A, that have no more refined elements in A4,, in
any direction. We do a classical correction scheme V-cycle with one pre- and
post-smoothing step, in which we semi-coarsen only in one direction, say x1,
see also Fig. 7 for a two-dimensional example. The grey subgrids are the
starting grids for the V-cycle marked by the arrows.

We smooth with a Jacobi relaxation with damping parameter w = 2/3
in the nodal basis of the subgrid. The correction du,, of the coefficients u,,
on the current subspace fln influences the current residual r, := b, — Su,, by
6rn = —Su,, where S is a suitable restriction of the stiffness matrix (5) to
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Figure 7: The error smoothing: two-dimensional example for an adaptive
grid (left) and subgrids introduced by the hierarchical basis (right). The
arrows indicate the V-cycle with one pre- and post-smoothing step.

the current subspaces 7}, and A,. Note that in general not all points of the
subgrids will be used in the discretization. For reasons of computational time,
we relax only on those points that are taken into account in the discretization.

The residual r, is computed in the hierarchical basis of the current test
subspace Tn. Because we correct u,, in the nodal basis of the current subspace
A,, we have to dehierarchise the current residual 7,. The d-dimensional
transformation for dehierarchising and also for hierarchising a function u,, is
due to the tensor product approach reduced to a sequence of one-dimensional
dehierarchising or hierarchising transformations, see Fig. 8. For the one-
dimensional hierarchical basis transformations, see Balder [1].

The fine-to-coarse transfer is done by simple restriction, whereas the
coarse-to-fine transfer is done by multilinear interpolation.
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Figure 8: Involved basis functions ¢ of the one-dimensional basis transforma-
tion from hierarchical (left) to nodal (right) representation and vice versa.

6 Numerical Examples

The algorithms for the adaptation process and multigrid solver are imple-
mented as a C program, based on linearized binary trees as underlying data
structure; for algorithmic details see Schneider [12].

We study the influence of the regarded error functional on the refinement
process in two ways: first, we are looking at the grid generation and the
behaviour of the error-complexities ¢, and second, we focus on the reduction
of the ly-norm of the residuum per iteration p with respect to the number of
degrees of freedom N

L ||Tn,new||2

" ol

We always compare the convergence rate p for the adapted grid with the
convergence rate p for full grids.

In the numerical examples we restrict ourselves to Dirichlet boundary
problems (I'y = () and focus on four different error measurements: the dis-
crete maximum norm, indicated in all figures by (¢), taking the maximum
absolute value over all grid points; the discrete lo-norm (x) and the discrete
energy-norm (A) are calculated as means of all squared values of the dis-
crete function u, or Su,, resp., on an auxiliary grid where all elements are
subdivided as it is described in Section 3. Last, we study the error in the
mid-point P = (1/2,...,1/2) of the d-dimensional unit cube, indicated by (-).
In all diagrams, the respective error is plotted with respect to the number of
degrees of freedom N. Also a solid reference curve is given. The position of
this curve is chosen for reasons of clarity.
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6.1 The Two-Dimensional Poisson Problem

Let us consider the two-dimensional model problem (2) with the solution
u(zy,x9) := 10 - sin(4z; + 225 — 1) studied by Rannacher [2], see the left-
hand side of Fig. 9.

pUuLEannn

. . .
o fo8°R g f°t°0°3°
.*.. T

oI o1 .

ofece .

Figure 9: The two-dimensional Poisson problem: model problem (2) with so-
lution u(x1, z2) := 10-sin(4x; +2x,—1) (left) and refined grid for computing
u (1/2,1/2) with best accuracy with 12 624 grid points (right).

6.1.1 The Full Grid Approximation

In Fig. 10, we present the error-plot for a full grid discretization. On the
left-hand side we see the convergence behaviour for the ly-, mid-point, and
maximum error of order of magnitude O(N~!), and for the energy-error of
order of magnitude O(N~1/2). Both results are well known. The convergence
rate p is bounded by 0.1111 and therefore N-independent, as shown on the
right-hand side.

6.1.2 The Adaptive Point-Value Approximation

Now, we like to compute the point-value for the mid-point P with best
accuracy. Therefore, we again define in (6) Dirac’s delta distribution as
weight w(x) := 0 (1/2 — x1,1/2 — x9) and get as error functional J(e) :=
e(1/2,1/2). Fig. 11 provides the results. The convergence rate p is bounded
by 0.3112. The convergence behaviour of the interesting quantity mid-point
error is exactly the same as for the interpolant, see Bungartz [4], and has
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Figure 10: The two-dimensional Poisson problem: error-plot with O(N™!)
reference curve (left) and the convergence rate p (right) for the full grid
discretization.

the order of magnitude O (N—?(log N)?) indicated by the sparse grid conver-
gence (sgc) reference curve. The log-terms appear due to the fact, that the
right-hand side is evaluated exactly on the same grid structure as used for
the calculation of the numerical solution u,,.

If we compute the right-hand side on a grid with higher resolution, say on
an suitably chosen regular sparse grid, we are able to suppress the log-terms,
see Fig. 12. Note that the order of the computation time is then no longer
given by the solution of the elliptic problem, but dominated by the calcu-
lation of the right-hand side. The convergence behaviour of the mid-point
error is then O(N?) like the reference curve O(N?) is indicating, and the
convergence rate p is bounded by 0.3106. This means that, if we compute
the right-hand side carefully, we are able to get an O(N~2) convergence be-
haviour for a point-value error using linear finite elements for both the primal
and the dual problem. Note that in comparison to the full grid discretization,
we gain one order of magnitude in accuracy.

A typical grid of the mid-point adaptation process is shown on the right-
hand side in Fig. 9. As expected, the grid is extremely refined towards
the mid-point and reflects the shape of the primal solution u, because the
order of magnitude of the function u also influences the order of magnitude
of the hierarchical surplus, and with that the order of magnitude of the
corresponding error contribution. Here, the average grid point quotient of a
refinement step ¢ defined in (15) is 1.306.
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Figure 11: The two-dimensional Poisson problem: point-value adaptation
with evaluation of the right-hand side on the same grid structure used for
the calculation of the numerical solution u: error-plot with O (N~2(log N)?)
reference curve (left) and the convergence rate p (right).
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Figure 12: The two-dimensional Poisson problem: point-value adaptation
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error-plot with O(N~2) reference curve (left) and the convergence rate p
(right).
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6.2 The Three-Dimensional Laplace Problem

Due to the tensor product finite element approach all theoretical results hold
for arbitrary dimension d. E.g., let us focus on the three-dimensional model
problem (2) with the solution

sinh (\/2_0 7rx1)
sinh ( V2.07 )

i.e. Laplace’s equation to neglect the influence of the right-hand side. By
defining w(x) := ||Ve||7!Vé(x) in (6) we choose the energy-norm as error
functional J(e) = ||Vel|. In Fig. 13 we present the convergence rate p for the
full grid discretization, bounded by 0.3763 (above left), and the energy adap-
tation process (above right), bounded by 0.4632, which is only little worse
than for the full grid approximation. Below, we see the O(N~') convergence
of the energy error, indicated by the solid reference curve.

sin(mxs) sin(mxs),

U/(.T)l, T2,T3) =

7 Extensions

A finite element discretization with basis polynomials of order p > 1 is pre-
sented in Bungartz [4]. The main idea is to use no longer the classical linear
hat function ¢ defined in (1), but appropriate polynomials of higher and
arbitrary degree p. To be more precise, in the construction of the set of
basis functions, we still keep the linear functions for the boundary influence
from By. However, for all basis functions ¢ € B, \ B,_1Vn > 1, we choose
polynomials of degree max {p,n + 1} with zeros in all corresponding hierar-
chical ancestor points of bp(B,_1) that are normalized in the basis point by
¢g;(x;) = 1. An example of a basis polynomial of degree p = 4 is shown on
the left-hand side of Fig. 14.

As solution of the model problem (2), we choose an example with a root
singularity on the boundary u(z, z3) := Re (,/z — 1/2), see also the right-
hand side of Fig. 14. We are interested to calculate again the mid-point with
best accuracy.

The weak formulation (4) now leads to a Petrov-Galerkin approach, using
for the test space still the linear space 7}, introduced in Section 2 and for the
ansatz space an appropriate space AP based on the finite elements of order p.
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Figure 14: An example for the construction of a one-dimensional basis poly-
nomial with degree p = 4 (left) and the solution u of the two-dimensional
model problem (2) with root singularity on the boundary in the point with
the coordinates (1/2,0) (right).

Fig. 15 illustrates the error-plots and the convergence rate p for the different
polynomial degrees p = 1,2, 3. One clearly sees the mid-point error behaviour
of order of magnitude O (N~%) for p = 1,2, 3, indicated by the corresponding
solid reference curves. Note that we only need about 2000 grid points to reach
machine accuracy (single precision) for the discretization order p = 3. The
convergence rate p stagnates p-independently and is bounded by 0.4506 for
p =1, by 0.3890 for p = 2 and by 0.4795 for p = 3. The average grid point
quotient of a refinement step ¢ defined in (15) is about 1.39.

8 Concluding Remarks

In the previous sections, we introduced concepts for an a posteriori grid-re-
finement technique and for a multiplicative multigrid solver independently
from the dimension d, for details see again [12].

Both concepts are based upon hierarchical bases and have been success-
fully combined even for singularities. This allows us to solve elliptic partial
differential equations in optimal time, with respect to both the order of mag-
nitude of the number of degrees of freedom N and the computational time
per unknown. We have seen in Sections 6 and 7, that the convergence rate p
is N-independent and approximately bounded by 1/2 for one pre- and post-
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smoothing step. In other words, we gain a reduction of the /s-norm of the
residuum of approximately 0.7 per relaxation step, independently from the
number of degree of freedoms N, the dimension d, the order of approximation
p, and the particular grid structure. This is a satisfactory result, even though
the numerical value of p still has to be improved. Another very promising
result is that we achieve for the two-dimensional mid-point error problem
the convergence behaviour of order of magnitude O(N "), using only finite
elements of order p. We also gave an example where the order of the compu-
tational time is dominated by the calculation of the right-hand side and not,
as one might expect, by the solution of the elliptic problem. In the opinion of
the authors, there is a huge potential in the method of adaptive hierarchical
tensor product finite elements.
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