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Abstract. Sparse Approximate Inverses M which satisfy minM ‖AM − I‖F have shown to
be an attractive alternative to classical smoothers like Jacobi or Gauss-Seidel [24]. The static and
dynamic computation of a SAI [3] and SPAI [11], respectively, comes along with advantages like
inherent parallelism and robustness with equal smoothing properties [5].

Here, we are interested in developing preconditioners that can incorporate probing conditions for
improving the approximation relative to high or low frequency subspaces. We present analytically
derived optimal smoothers for the discretization of the constant coefficient Laplace operator. On this
basis we introduce individual as well as global probing conditions in the generalized Modified SPAI
(MSPAI) approach [18, 19] which yields efficient smoothers, e.g. for Multigrid.

In the second part we transfer our approach to the domain of ill-posed problems to recover original
information from blurred signals. Using the probing facility of MSPAI we impose the preconditioner
to act as approximately zero on the noise subspace. In combination with an iterative regularization
method it thus becomes possible to reconstruct the original information more accurately in many
cases. Moreover, we are able to deal with discontinuities within signals using local corrections
in the preconditioner. A variety of numerical results demonstrates the usefulness of using sparse
approximate inverses as smoothers and regularizing preconditioners.
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larization

AMS subject classifications. 65F08, 65F10, 65F35, 65F50, 65F22, 65N55, 65Y05

For applying an iterative solution method to an ill-conditioned system of linear
equations Ax = b with sparse matrix A ∈ Rn×n, x, b ∈ Rn, it is often crucial to include
an efficient preconditioner. Here, the original problem Ax = b is replaced by the
preconditioned system MAx = Mb or Ax = A(My) = b. Often used preconditioners
as Jacobi, Gauss-Seidel, or Incomplete LU (ILU) decomposition are of unsatisfactory
quality or strongly sequential. In a parallel environment both the computation of
the preconditioner M as well as the application of the preconditioner on any given
vector v should be efficient. Furthermore, an iterative solver applied on AMy = b or
MAx = Mb should converge much faster than for Ax = b (e.g. it holds cond(MA)�
cond(A)).

The first two conditions can be easily satisfied by using a sparse matrix M as
approximation to A−1. Note that the inverse of a sparse system A is nearly dense,
but in many cases the entries of A−1 are rapidly decaying, so most of the entries are
very small (see Demko [8] et al.).

Sparse approximate inverses can be computed by minimizing AM−I in the Frobe-
nius norm, where I denotes the identity matrix. In this Frobenius norm minimization
we can include further approximation conditions, described by the Modified SPAI
(MSPAI) [18, 19] method. This additional feature allows us to control the approxi-
mation property of the preconditioner. So by means of probing vectors we can choose
subspaces for which the preconditioner satisfies certain conditions. This is especially
important for iterative solution methods that differ between high frequency and low
frequency components, e.g. smoothing in Multigrid or regularization techniques based
on iterative solvers.
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The outline of the paper is the following: In Section 1 we will give a survey of
SPAI and MSPAI and a short description of Multigrid methods and iterative solvers
for regularization problems. In Section 2 we show that for Multigrid methods the
smoothing property can be greatly improved by using MSPAI in comparison to SAI
or SPAI smoothers. With a different subspace approach we focus on the reconstruction
of signals associated to ill-posed problems in Section 3. We present numerical results
throughout the paper to demonstrate the impact of our approach at the corresponding
parts. A conclusion with a short outlook closes the discussion.

1. Introduction. Benson and Frederickson [3] were the first to propose the
computation of an explicit approximation M ≈ A−1 to the inverse of a system matrix
A ∈ Rn×n. For an a priori prescribed sparsity pattern P this can be done in a static
way by solving

min
P(M)=P

‖AM − I‖2F =

n∑
k=1

min
P(mk)=Pk

‖Amk − ek‖22 (1.1)

with mk the k-th column of the preconditioner M and ek the k-th column of the
identity matrix I. P(A) denotes the pattern P of A and Pk the pattern of the k-th
column of P. This well-known approach of providing a SAI preconditioner, naturally
leads to inherent parallelism which is one of its main advantages. Each of the n small
Least Squares problems regarding one column can be computed independently of one
another.

Using both the index set Jk, which is implicitly given by Pk and contains the
indices j such that mk(j) 6= 0, and its corresponding so-called shadow Ik, that is
the indices of nonzero rows in A(:,Jk), each subproblem in (1.1) is related to a small
matrix Âk := A(Ik,Jk) if Pk is sparse. We refer to the reduced sparse column vectors
as m̂k := mk(Jk) and êk := ek(Ik), respectively. The solution of every reduced
problem minm̂k

‖Âm̂k − êk‖2 can be obtained e.g. by using QR decomposition using
Householder or the modified Gram-Schmidt algorithm.

1.1. The SPAI Algorithm. The SPAI algorithm is an additional feature in
this Frobenius norm minimization that introduces different strategies for choosing
new profitable indices in mk to improve on an already computed approximation.
We assume that by solving (1.1) for a given index set Jk, we already have deter-
mined an optimal solution mk(Jk) inducing the sparse vector mk with residual rk.
Dynamically we want to augment new entries in mk and solve (1.1) for this en-
larged index set J̃k such that we derive a reduction in the norm of the new residual
r̃k = A(Ĩk, J̃k)mk(J̃k)− ek(Ĩk).

Following Cosgrove, Dı́az, Griewank [7], and Grote, Huckle [11], in SPAI we test
one possible new index j ∈ Jnew out of a given set of possible new indices Jnew to
improve mk. Therefore, we can consider the reduced 1D minimization problem

min
λj

‖A(mk + λjej)− ek‖2 = min
λj

‖λjAj + rk‖2 . (1.2)

The solution of (1.2) is given by

λj = − rTk Aej
‖Aej‖22

and leads to an improved squared residual norm

ρ2j = ‖rk‖2 −
(rTk Aej)

2

‖Aej‖22
.
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For improving mk, we only have to consider indices j in rows of A that are related
to nonzero entries in the old residual rk; otherwise they do not lead to a reduction of
the residual norm. Thus, we have to determine those column indices j, which satisfy
rTk Aej 6= 0. Let us denote the index set of nonzero entries in rk by L. By J̃i we
denote the set of new indices that are related to the nonzero elements in the i-th row
of A, and by Jnew := ∪i∈LJ̃i the set of all possible new indices that will lead to a
reduction of the residual norm. The one or more newly added indices Jc are chosen
to be a subset of Jnew, that corresponds to the maximal reduction in rk. For the
enlarged index set Jk ∪ Jc we have to update the QR decomposition of the related
Least Squares submatrix and solve for the new column mk.

It is possible to influence the sparsity and approximation quality during the com-
putation of the SPAI indirectly by different parameters, e.g. how many entries are to
be added in one step, how many pattern updates are to be done, which residual norm
should be reached or which initial pattern P is to be used. Note that SPAI can also
be applied on dense systems to compute a sparse preconditioner.

1.2. Modified SPAI. Holland, Shaw, and Wathen [16] have generalized the
SPAI ansatz allowing a sparse target matrix B on the right hand side in the form
minP(M)=P ‖AM − B‖F . This approach is useful in connection with some kind of
two-level preconditioning: First compute a standard sparse preconditioner B for A
and then improve this preconditioner by an additional Frobenius norm minimization
with target B. From an algorithmic point of view, the minimization with sparse target
matrix B, instead of I, introduces no additional difficulties. Simply P(M) should be
chosen more carefully with respect to A and B.

In [18], we combine this approach with classical probing techniques [1, 2, 6],
which are, for example, applied to preconditioning Schur complements. In contrast
to classical probing, our basic formulation

min
P(M)=P

‖CM −B‖F = min
P(M)=P

∥∥∥∥( C0

ρeT

)
M −

(
B0

ρfT

)∥∥∥∥
F

, (1.3)

with sparse matrices C0 and B0, is not restricted to special probing subspaces as it
allows any choice of e and f . The resulting preconditioner M satisfies both C0M ≈ B0

and eTM ≈ fT . We refer to the first n rows of (1.3), i.e. C0M − B0, as full approx-
imation part and to the additional rows as probing part. The weight ρ ≥ 0 enables
us to control how much emphasis is put on the probing constraints, and the matrices
e, f ∈ Rn×k represent the k-dimensional subspace on which the preconditioner should
be optimal. Choosing ρ = 0, C0 = A, and B0 = I in (1.3), leads to the classical SPAI
formulation. Setting C0 = I and B0 = A, we end up with a formulation computing
explicit sparse approximations to A. In this case the derived approximation on A can
have a considerably fewer number of nonzeros (nnz) than A but choosing fT = eTA,
the preconditioner M will have a similar action on eT as A.

Furthermore, it is also possible to include individual probing conditions for each
column mk. As a new approach we use probing masks defined by sparse row vectors
sk, k ∈ {1, . . . , n}, containing the same pattern as mk, i.e. P(sk) = P(mk), and
add the condition minm̂k

|ŝkm̂k − fk| to the Frobenius norm minimization of the k-
th column. Corresponding to m̂k, ŝk denotes the reduced form of sk. The masks
for each column of M can be stored in a sparse rectangular matrix S, whereby the
individual probing conditions result from diag(SM) ≈ f . Compared to MSPAI using
global probing vectors e, f , this approach gives considerably more freedom for choosing
probing conditions individually for each column of the preconditioner. Note that
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e.g. for a tridiagonal pattern the mask ŝk = (1, 0,−1) can be used to enforce a quasi
symmetry in the column vector mk such that mk−1,k ≈ mk+1,k.

The field of applications using MSPAI is versatile: we can improve precondition-
ers resulting from ILU, IC, FSAI, FSPAI, or AINV (see [4] for an overview) by adding
probing information. We also overcome the main drawbacks of MILU and classical
probing such as the restriction to certain vectors like (1, 1, . . . , 1)T as probing sub-
space and the rather difficult efficient implementation on parallel computers. The
numerical examples in [18, 19] demonstrate MSPAI’s effectiveness for preconditioning
various PDE matrices and preconditioning Schur complements arising from domain
decompositions.

1.3. Multigrid. The crucial observation leading to Multigrid (MG) methods is
the following: Applying a stationary iterative solver like Gauss-Seidel iteration gives
a satisfactory reduction of the error on the subspace related to high frequency com-
ponents. Therefore, Gauss-Seidel iteration is considered as a smoother in a first step
of the MG algorithm. The error mainly contains smooth components and can be
projected to a smaller linear system. This reduced system can be tackled recursively
by the same approach based on smoothing steps and projection on an again reduced
system. On the coarsest level the small linear system can be solved explicitly. Af-
terwards, the coarse solutions have to be prolongated step by step back to the finer
levels including postsmoothing steps.

Here, we are mainly interested in the smoother. To derive a convergent method
the smoother has to reduce the error in the high frequency subspace. For a given
matrix A and an approximate inverse smoother M the iteration k is described by
x(k+1) = x(k) +M(b−Ax(k)) and thus the error is given by I−MA. As the eigenval-
ues and eigenvectors are analytically well-known for a discretization of the constant
coefficient Laplace operator, it is possible to fully discuss the convergence behavior of
MG in this special case. For analyzing the smoothing property the eigenvalues are sep-
arated into high and low frequency eigenvectors. The projection P = UT (I −MA)U
on the high frequency subspace U gives the smoothing factor defined as the spectral
radius of P . In the constant coefficient case the smoothing factor can also be described
as 1 −ma, where a and m are generating functions representing A and M [10, 17].
Note, that the technique of generating functions is similar to Local Fourier Analysis
(LFA) used in standard Multigrid literature [26]. In 2D the functions are defined in
x, y ∈ [0, π], where the high frequency domain is given by the difference G between
the two squares [0, π]2 and [0, π2 ]2 with corners at

(0, π/2), (π/2, π/2), (π/2, 0), (π, 0), (π, π), and (0, π).

Thus, the smoothing factor is given by

µ := max
x,y∈G

{
|1−m(x, y)a(x, y)|

}
.

In this paper we want to use MSPAI as a smoother. SAI was already considered by
Tang and Wan in [24] and SPAI by Grote and Bröker in [5].

1.4. Iterative regularization. For ill-posed problems, as they arise in image
restoration, regularization techniques are important in order to recover the original
information. Let us consider the model problem

x
blur−→ Hx

noise−→ Hx+ η = b (1.4)
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where x is the original image, H is the blur operator, η is a vector representing the
noise, and b is the observed image. We want to recover x as good as possible and as
fast as possible. Because H may be extremely ill-conditioned or even singular, and,
because of the presence of noise, (1.4) cannot be solved directly. Consequently, to
solve Hx = b on the signal subspace a regularization technique has to be applied.
One of the classical methods is the Tikhonov regularization [25] which solves

min
x

{
‖Hx− b‖22 + γ ‖b‖22

}
⇔ (HTH + γI)x = HT b

instead of (1.4) for a fixed regularization parameter γ ≥ 0.
Another regularization method is based on an iterative solver such as the Conju-

gate Gradient (CG) method [1, 9] for spd matrices or CG on the normal equations in
the general unsymmetric case. The usual observation, which coincides with the CG
convergence analysis is that in the first iterations the error is reduced relative to large
eigenvalues. In later steps, the eigenspectrum related to noise and small eigenvalues
dominates the evolution of the approximate solution. Therefore, the restoration has
to stop after a few iterations before the method starts to reduce the error relative to
the noise space.

Preconditioning usually should accelerate the convergence without destroying the
quality of the reconstruction [12, 13, 23]. Structured preconditioners like Toeplitz or
circulant matrices are considered typically whenever spatially invariant blur operators
are treated. For general H, a preconditioner like ILU will lead to faster convergence
but the quality of the reconstruction will deteriorate because the preconditioner also
improves the solution relative to the unwanted noise subspace. Therefore, it is even
more demanding to develop preconditioners for general H, e.g. for spatially variant
blur.

The application of the preconditioner can have three positive effects:
x Reduce the necessary number of iterations.
x Result in a better reconstruction of the original vector.
x Result in a flat convergence curve such that it is easier to find the best re-

construction.
In general, we have to expect that not all three conditions can be reached simulta-
neously. Therefore, we have to present different preconditioners depending on the
application.

Using preconditioners within iterative methods to restore original data has been
successfully proposed by Nagy, e.g. in [20, 21], mostly in connection with nearly
structured problems. Furthermore, for the analysis and solution of discrete ill-posed
systems there are several MATLAB packages such as Regularization Tools developed
by Hansen [15] and RestoreTools developed by Nagy [22].

2. MSPAI Smoothing.

2.1. A 1D model problem. To derive approximate inverse smoothers we con-
sider the standard 1D discretized Laplace operator with constant coefficients which is
of the form A1x = b, with A1 := tridiag(− 1

2 , 1,− 1
2 ). The matrix A1 is related to the

generating function or symbol

a1(x) = 1− eix + e−ix

2
= 1− cos(x). (2.1)

The high frequency part of A1 is represented by (2.1) for x ∈ [π2 , π] =: I1. Hence the
optimal smoothing parameter ω in the Jacobi smoother 1−ωa1(x) is found by solving



6 T. HUCKLE AND M. SEDLACEK

the problem

min
ω

max
x∈I1
|1− ωa1(x)| = min

ω
max
x∈I1
|s(x)| ω=

2
3=

1

3
. (2.2)

The solution can be found by replacing (2.2) with the maximum over the two boundary
values minω max

{
|s(π2 )|, |s(π)|

}
.

2.1.1. Analytical derivation of the optimal smoother. As approximate
inverse smoother we choose a trigonometric polynomial of the same degree

m1(x) = a+ 2b cos(x) (2.3)

and a tridiagonal Toeplitz matrix M = tridiag(b, a, b), respectively. The smoothing
condition for (2.3) can be written as

min
a,b

max
x∈I1
|1−m1(x)a1(x)| = min

a,b
max
x∈I1
|s(x)|

or using the boundary values of I1 as

min
a,b

max
{
|1−m1(π/2)a1(π/2)|, |1−m1(π)a1(π)|, |1−m1(u)a1(u)|

}
= min

a,b
max

{
|a− 1|, |2(a− 2b)− 1|, |1−m1(u)a1(u)|

}
(2.4)

in which u ∈ I1 is the local extreme point of the function 1 − m1(x)a1(x) with
derivative equal to zero. We thus obtain for u = 1

2 − a
4b the quadratic condition

s(u) =
(a+ 2b)2

8b
− 1 (2.5)

and the overall solution (a, b) =
(
16
17 ,

4
17

)
which leads to

M3 opt := tridiag

(
4

17
,

16

17
,

4

17

)
. (2.6)

The related smoothing factor for this optimal preconditioner m(x) is 1
17 = 0.0588,

which is significantly smaller than the optimal smoothing factor of 1
3 = 0.333 related

to ω = 2
3 for the Jacobi smoother.

2.1.2. Individual probing masks. The minimization conditions (2.4) on a and
b can be also seen as conditions for the entries of the matrix directly. A column k
of M is described by the three values (mk−1,k,mk,k,mk+1,k)T =: m̂k where the main
diagonal entry is related to a and the upper and lower entries to b. Therefore, we
can translate the two linear minimization conditions of (2.4) into individual probing
masks ŝk on entries of M directly:

S3L1 : min
m̂k

|(0, 1, 0)m̂k − 1| and S3L2 : min
m̂k

∣∣∣∣(−1, 1,−1)m̂k −
1

2

∣∣∣∣ .
Notice that we refer to individual probing conditions as local probing conditions.
There are several possibilities to eliminate and replace the quadratic condition (2.5)
by linear conditions that can be related to masks itself. In one possible method we
assume that the linear conditions of (2.4) are satisfied exactly. Inserting a = 1 into the
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second condition yields b = 1
4 . We replace the denominator of the quadratic condition

with this value and get the new linear condition

min
a,b

∣∣∣∣ (a+ 2b)2

8 · 14
− 1

∣∣∣∣ = min
a,b

∣∣(a+ 2b)2 − 2
∣∣→ min

a,b

∣∣∣a+ 2b−
√

2
∣∣∣

which is related to the probing condition with isotropic probing mask

S3L3 : min
m̂k

∣∣∣(1, 1, 1)m̂k −
√

2
∣∣∣ .

We call a mask ŝk to be isotropic if the minimization minm̂k
|ŝkm̂k − fk| can be

described by one probing vector e ∈ Rn with e(Jk) = αŝTk , α ∈ R, and k ∈ {1, . . . , n},
in the form minP(M)=P

∥∥eTM − fT∥∥
2
. Here for instance ŝk = (−1, 1,−1) of S3L2 is

related to e = (1,−1, 1,−1, . . .)T and ŝk = (1, 1, 1) of S3L3 to e = (1, 1, . . . , 1)T .
In our following numerical experiments we are interested in a comparison between

MSPAI with probing conditions, the optimal smoother M3 opt (2.6), and the tridiag-
onal preconditioner given by SPAI. The SPAI matrix is derived by the minimization
over the Frobenius norm in which the reduced Least Squares problem for a typical
column of M is given by

min
m̂k

∥∥∥∥∥∥∥∥∥∥


−0.5 0 0

1 −0.5 0
−0.5 1 −0.5

0 −0.5 1
0 0 −0.5

 m̂k −


0
0
1
0
0


∥∥∥∥∥∥∥∥∥∥
2

. (2.7)

The inner columns of the solution of (2.7) have Toeplitz structure described by the
matrix tridiag

(
2
5 ,

6
5 ,

2
5

)
related to the generating function m(x) = 6

5 + 4
5 cos(x). Pre-

conditioning with the SPAI matrix results in the smoothing factor 0.250. Indeed, this
is a degradation compared to the smoothing factor 0.0588 for the optimal derived
smoother M3 opt but still an improvement compared to Jacobi. Note that MSPAI
minimizes the 2-norm of a combination of conditions while M3 opt is derived by min-
imizing the 1-norm. Therefore, to derive efficient smoothing factors by MSPAI, it is
important to find a good combination and weighting of probing conditions.

Let us consider a numerical experiment for the matrix A1 of order n = 103. Using
an approximate inverse preconditioner satisfying the individual probing conditions, we
achieve highly reduced smoothing factors in comparison to SPAI and Jacobi. Table
2.1 shows that depending on the probing mask and weight ρ reductions down to
µ = 0.075 are possible for S3L3 weighted with ρ = 102. Moreover, the choice of the
subspace weight is stable, i.e. increasing values lead to a saturation of the achievable
smoothing factors.

Table 2.1
Smoothing factors by using M3opt (2.6), SPAI, and MSPAI with local probing conditions for

the constant coefficient system A1 of order n = 103.

M3 opt SPAI
weight local probing conditions
ρ ρS3L1 ∧ 0.7S3L2 ρS3L3

0.0588 0.250

1.0 0.134 0.083
2.0 0.107 0.077
101

0.095 0.075
102
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2.1.3. Global probing vectors. Considering the conditions S3L2 and S3L3
with isotropic masks it is possible to derive conditions with low and high frequency
global probing vectors eS := (1, 1, . . . , 1)T and eN1 := (1,−1, 1,−1, . . .)T for the
generalized Frobenius norm minimization (1.3) of MSPAI:

min
P(M)=P

∥∥∥∥eTSM − 1

2
eTS

∥∥∥∥
2

and min
P(M)=P

∥∥∥eTN1M −
√

2eTN1

∥∥∥
2
,

respectively. In the following, we use a different approach and derive global probing
conditions with respect to the optimal derived preconditioner M3 opt (2.6). This can
also be applied to general probing vectors like eN2 := (1, 0,−1, 0, 1, . . .)T and eN3 :=
(0, 1, 0,−1, 0, 1, . . .)T representing additional high frequency subspaces. For a given
probing vector e we observe that eTM3 opt = αeT with α ∈ R. As we want to find
the smoother M , based on MSPAI with the same action on eT , we define probing
conditions eTM ≈ αeT and obtain

S3G1 : min
P(M)=P

∥∥∥∥eTSM − 24

17
eTS

∥∥∥∥
2

, S3G2 : min
P(M)=P

∥∥∥∥eTN1M −
8

17
eTN1

∥∥∥∥
2

,

S3G3 : min
P(M)=P

∥∥∥∥eTN2M −
16

17
eTN2

∥∥∥∥
2

, and S3G4 : min
P(M)=P

∥∥∥∥eTN3M −
16

17
eTN3

∥∥∥∥
2

.

Figure 2.1 (a) shows the impact of using these global probing conditions for matrix
A1. Inducing MSPAI to satisfy S3G1 leads to a strong reduction of the smoothing
factor in comparison to SPAI, close to the optimal value of M3 opt. A combination
of global conditions can lead to an efficient smoother as well. Again the smoothing
factor stays stable for increasing values of ρ.
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(a) MSPAI with global probing conditions for A1.
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(b) MSPAI using global probing vectors with ac-
tion on B1.

Fig. 2.1. Smoothing factor µ against subspace weight ρ. (a) considers MSPAI using global
probing conditions for the constant coefficient system A1 of size n = 103. (b) shows MSPAI using
global probing vectors with action on B1 with varying coefficients of size n = 103. MSPAI is
compared to Jacobi, SPAI, and M3opt (2.6).

In a similar way it is possible to derive global probing conditions with action on
A, i.e. minP(M)=P‖eTAM −αeT ‖2. For probing vectors, e.g. eN1, eN2, and eN3, the
approximation eTA ≈ const ·eT holds and therefore eTAM ≈ const ·eTM up to some
boundary perturbations. Note that for an approximate inverse preconditioner which
should nearly be exact on e the condition eTAM ≈ eT should be satisfied.
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As a generalization we are interested in the impact of using global probing con-
ditions when considering the 1D tridiagonal matrix B1 with varying coefficients and
k-th row defined by

(B1)k,: := (0, . . . , 0,−bk−1, bk−1 + bk,−bk, 0, . . . , 0) with b :=

(
−1

2
− j

2n

)
j=0,...,n

.

We denote the exact conditions minP(M)=P‖eTB1M − 16
17e

T ‖2 for the probing vectors
eN1, eN2, and eN3 as S3G5, S3G6, and S3G7. The approximate conditions for α = 1
are indicated by S3 G̃5, S3 G̃6, and S3 G̃7.

Figure 2.1 (b) shows that both the exact and approximate probing on the high
frequency part of the system lead to significant improvement compared to SPAI and
Jacobi, similar to the 1D problem A1.

2.2. A 2D Model Problem. We consider the block tridiagonal matrix

A2 :=
A1 ⊗ I + I ⊗A1

2
= blocktridiag

(
0,−1

4
, 0

∣∣∣∣−1

4
, 1,−1

4

∣∣∣∣ 0,−1

4
, 0

)
,

with A2 ∈ Rn2×n2

related to the generating function

a2(x, y) = 1− cos(x) + cos(y)

2
.

As before the smoothing corresponds to the rectangle I2 := {(x, y)|x ∈ [π2 , π] ∧ y ∈
[0, π]}. Hence, the solution of minω maxx,y∈I2 |1− ωa2(x, y)| yields the optimal Jacobi
smoother with smoothing factor 3

5 = 0.6 for ω = 4
5 .

2.2.1. Analytical derivation of the optimal smoother. As approximate
inverse smoother we use the trigonometric polynomial m2(x, y) = a + 2b

(
cos(x) +

cos(y)
)
. Via the minimization 1−m2(x, y)a2(x, y) over I2, the solution for the optimal

smoothing preconditioner is given by

M5 opt := blocktridiag

(
0,

8

41
, 0

∣∣∣∣ 8

41
,

48

41
,

8

41

∣∣∣∣ 0, 8

41
, 0

)
(2.8)

with smoothing factor 9
41 = 0.2195.

2.2.2. Individual probing masks. Analogously to the 1D case the minimiza-
tion can be derived by considering

min
a,b

∣∣∣∣1− (a+ 2bh(x, y))

(
1− h(x, y)

2

)∣∣∣∣ with cos(x) + cos(y) =: h(x, y) ∈ [−2, 1] .

The corners of I2 result in the minimization conditions

min
a,b

{
|2a− 8b− 1| ,

∣∣∣a
2

+ b− 1
∣∣∣ , ∣∣∣∣a2 + b+

a2

16b
− 1

∣∣∣∣} . (2.9)

To get rid of the quadratic condition we make use of the fact that the linear conditions
in (2.9) have the same absolute value for the optimal a and b. We obtain a = 6b and

the quadratic term can be replaced either by 6ba
b = 6a or (6b)2

b = 36b. Consequently,
we end up with two additional linear conditions

min
a,b

{∣∣∣∣7a8 + b− 1

∣∣∣∣ , ∣∣∣∣a2 +
13b

4
− 1

∣∣∣∣} . (2.10)
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Once again we can see the minimizations (2.9) and (2.10) on a and b as conditions
for the entries of the smoother directly. A column k of M is now described by the five
degrees of freedom (0,mk−n,k, 0|mk−1,k,mk,k,mk+1,k|0,mk+n,k, 0)T =: m̂k. Thus, we
gain the following local probing conditions for the 5-point stencil A2:

S5L1 : min
m̂k

|(0,−2, 0 |−2, 2,−2| 0,−2, 0) m̂k − 1| ,

S5L2 : min
m̂k

∣∣∣∣(0,
1

4
, 0

∣∣∣∣14 , 1

2
,

1

4

∣∣∣∣ 0, 1

4
, 0

)
m̂k − 1

∣∣∣∣ ,
S5L3 : min

m̂k

∣∣∣∣(0,
1

4
, 0

∣∣∣∣14 , 7

8
,

1

4

∣∣∣∣ 0, 1

4
, 0

)
m̂k − 1

∣∣∣∣ , and

S5L4 : min
m̂k

∣∣∣∣(0,
13

16
, 0

∣∣∣∣13

16
,

1

2
,

13

16

∣∣∣∣ 0, 13

16
, 0

)
m̂k − 1

∣∣∣∣ .
It is possible to combine the conditions S5L2 and S5L4 to obtain an isotropic mask
to which the low frequency probing vector eS corresponds to. To derive this, we add
the diagonal and subdiagonal values of the weighted conditions r · S5L2 and s · S5L4
and set them to be equal. The isotropy condition leads to the equation r+s

2 = r
4 + 13s

16
with the solution r = 5s

4 . We obtain a = b = r+s
2 = 9s

8 and r+s = 5s
4 +s = 9s

4 for the
right hand side. This leads to the additional individual isotropic probing condition

S5L5 : min
m̂k

|(0, 1, 0 |1, 1, 1| 0, 1, 0) m̂k − 2| .

Let us consider A2 of size n = 1024. Following Figure 2.2 (a) we can see that
MSPAI satisfying individual probing conditions reduces the smoothing factor in com-
parison to SPAI with factor 0.339. Utilizing more degrees of freedom with a com-
bination of probing masks the smoothing factor can be reduced further towards the
optimal value of M5 opt.
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(a) MSPAI using individual probing conditions.
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(b) MSPAI using global probing conditions.

Fig. 2.2. Smoothing factor µ against subspace weight ρ. MSPAI using individual (a) and global
(b) probing conditions compared to Jacobi, SPAI, and M5opt (2.8) for the 2D constant coefficient
model problem A2 of size n = 1024.

2.2.3. Global probing vectors. Similar to the 1D model problem we observe
that (e ⊗ f)TM5 opt = α(e ⊗ f)T for certain e, f , and α. Therefore, we define global
probing conditions by using (e⊗ f)TM = α(e⊗ f)T . Regarding the 2D case, we use
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global vectors resulting from the Kronecker products ēS := eS⊗eS , ēN1 := eN1⊗eN1,
ēN2 := eN2 ⊗ eN2, and ēN3 := eN3 ⊗ eN3. We obtain

S5G1 : min
P(M)=P

∥∥∥∥ēTSM − 80

41
ēTS

∥∥∥∥
2

, S5G2 : min
P(M)=P

∥∥∥∥ēTN1M −
16

41
ēTN1

∥∥∥∥
2

,

S5G3 : min
P(M)=P

∥∥∥∥ēTN2M −
48

41
ēTN2

∥∥∥∥
2

, and S5G4 : min
P(M)=P

∥∥∥∥ēTN3M −
48

41
ēTN3

∥∥∥∥
2

.

Like MSPAI with individual probing masks an approximation on the subspace
spanned by the global probing vectors reduces the smoothing factor compared to
SPAI and Jacobi (see Figure 2.2 (b)). The global condition S5G1 leads to a stable
smoothing factor of 0.252. Similar to the 1D model problem it is also possible to
derive global probing conditions with action on A2, not considered here.

2.2.4. 9-point stencil of the 2D Model problem. As a second 2D example
we consider the 9-point stencil of A2, which is the block tridiagonal matrix

A3 := blocktridiag

(
−1

8
− 1

8
,−1

8

∣∣∣∣−1

8
, 1,−1

8

∣∣∣∣− 1

8
,−1

8
,−1

8

)
related to the generating function

a3(x, y) = 1− h(x, y)

4
with h(x, y) := cos(x) + cos(y) + cos(x− y) + cos(x+ y).

We use the pattern of a3(x, y) for our approximate inverse smoother

m3(x, y) = a+ 2b
(

cos(x) + cos(y) + cos(x− y) + cos(x+ y)
)
.

With h(x, y) ∈ [−1, 2] this yields the minimization problem

min
a,b

∣∣∣∣1− (a+ 2bh(x, y)
)(

1− h(x, y)

4

)∣∣∣∣ . (2.11)

The optimal solution is given by (a, b) =
(
160
153 ,

16
153

)
which leads to

M9 opt = blocktridiag

(
16

153
,

16

153
,

16

153

∣∣∣∣ 16

153
,

160

153
,

16

153

∣∣∣∣ 16

153
,

16

153
,

16

153

)
(2.12)

with smoothing factor 1
17 = 0.0588.

We consider the boundary values h(x, y) = −1 and h(x, y) = 2 to get linear
conditions. A third, quadratic condition can be deduced by setting the derivative of
(2.11) to zero and inserting its solution h′(x, y) = 2 − a

4b into (2.11). We obtain the
following minimization conditions at high frequency values:

min
a,b

{∣∣∣∣3(a− 4b)

2
− 1

∣∣∣∣ , ∣∣∣∣3(a+ 2b)

4
− 1

∣∣∣∣ , ∣∣∣∣a2 + 2b+
a2

32b
− 1

∣∣∣∣} .
The direct translation into linear probing masks and their combination reveals the
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individual probing conditions

S9L1 : min
m̂k

∣∣∣∣(−3

4
,−3

4
,−3

4

∣∣∣∣−3

4
,

3

2
,−3

4

∣∣∣∣− 3

4
,−3

4
,−3

4

)
m̂k − 1

∣∣∣∣ ,
S9L2 : min

m̂k

∣∣∣∣( 3

16
,

3

16
,

3

16

∣∣∣∣ 3

16
,

3

4
,

3

16

∣∣∣∣ 3

16
,

3

16
,

3

16

)
m̂k − 1

∣∣∣∣ ,
S9L3 : min

m̂k

∣∣∣∣(1

4
,

1

4
,

1

4

∣∣∣∣14 , 13

16
,

1

4

∣∣∣∣ 1

4
,

1

4
,

1

4

)
m̂k − 1

∣∣∣∣ ,
S9L4 : min

m̂k

∣∣∣∣(41

64
,

41

64
,

41

64

∣∣∣∣41

64
,

1

2
,

41

64

∣∣∣∣ 41

64
,

41

64
,

41

64

)
m̂k − 1

∣∣∣∣ , and

S9L5 : min
m̂k

∣∣∣∣(1, 1, 1|1, 1, 1|1, 1, 1) m̂k −
20

11

∣∣∣∣ .
In Table 2.2 we can see that in comparison to SPAI all individual probing conditions
lead to a reduced smoothing factor and are stable for increasing values of ρ. It is
almost feasible to reach the optimal value 0.0588. Again it is possible to derive global
probing conditions, e.g. with action on A3, by using Kronecker products of the 1D
probing vectors. By observing (e ⊗ f)TAM9 opt = α(e ⊗ f)T similar to Section 2.2.3
we can define conditions with (e⊗ f)TAM = α(e⊗ f)T for some e, f , and α.

Table 2.2
Smoothing factors by using M9opt (2.12), SPAI, and MSPAI with local probing conditions for

the 2D 9-point stencil A3 of order n = 1024.

M9 opt SPAI
weight local probing conditions
ρ ρS9L1 ρS9L2 ρS9L3 ρS9L4 ρS9L5

0.0588 0.1657

0.2 0.147 0.161 0.150 0.116 0.095
1.0 0.129 0.136 0.077 0.066

0.069
2.0 0.130 0.129 0.063 0.063
101 0.126 0.126 0.070

0.062 0.068
102 0.130 0.127 0.071

3. MSPAI in Regularization. An optimal preconditioner for iterative regu-
larization methods should treat the large eigenvalues and have no effect on the smaller
eigenvalues not amplifying the noise. Since SPAI is an efficient smoother and satis-
fies the first condition we propose MSPAI probing as regularizing preconditioner for
general H to suppress a reconstruction on the noise space: Following [13], such a
preconditioner M should have the following properties:

x M ≈ |H|−1 on the signal subspace with |H| =
√
HTH, and

x M ≈ I or M ≈ 0 on the noise subspace.
For circulant matrices, the eigendecomposition is known and, therefore, these con-

ditions can be satisfied by manipulating the eigenvalues. Most of the preconditioners
make use of properties of structured matrices. For general matrices, this is usually not
possible, and we thus use the probing facility of MSPAI in order to derive a different
approximation quality on the signal or noise subspace, respectively:

x For the signal space, we could use the vector eS := (1, 1, . . . , 1)T representing
smooth components, and therefore the important part of the signal subspace.
In this paper we expect that the signal subspace is already taken into account
by SPAI itself and thus we omit this probing possibility.
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x For the noise space, we use eN1 := (1,−1, 1,−1, . . .)T , eN2 := (1, 0,−1, 0, 1, . . .)T ,
and eN3 := (0, 1, 0,−1, 0, . . .)T as typical vectors related to fast oscillations.
In case of using probing masks, ŝk = (−1, 1,−1) and ŝk = (1, 0,−1) are
related to eN1 and eN2, eN3, respectively.

For higher dimensional problems probing vectors typically result from a Kronecker
product of 1D probing vectors. The conditions in MSPAI are given by AM ≈ I in
order to derive a good preconditioner and fast convergence on the signal subspace,
and ρeTNM ≈ 0 with ρ > 0 for the noise subspace in order to avoid a deterioration of
the reconstruction by the preconditioner.

3.1. A 1D model problem. Let us consider the matrix H1 := tridiag
(
1
2 , 1,

1
2

)
related to the symbol

h1(x) = 1 +
eix + e−ix

2
= 1 + cos(x).

As approximate inverse preconditioner we choose the trigonometric polynomial of
symbol m4(x) = a + 2b cos(x) related to a Toeplitz matrix M = tridiag(b, a, b). The
entries a and b should be determined such that the preconditioner M acts both nearly
as the inverse on the signal subspace and as zero on the noise subspace. For x ∈
{0, π

2 , π}, this leads to the minimization conditions

min
a,b

{
|m4(0)h1(0)− 1| , |m4(π/2)h1(π/2)− 1| , ρ |m4(π)|

}
= min

a,b

{
|2(a+ 2b)− 1| , |a− 1| , ρ |a− 2b|

}
. (3.1)

By using the factor ρ we introduce a weighting between the signal and the noise
conditions. We obtain the optimal solution of (3.1) by solving the equality

(2a+ 4b− 1) = (a− 1) = −ρ (a− 2b) .

Thus, we are able to derive the optimal regularizing preconditioner

M3 ρ := tridiag

(
ρ− 0.5

2 + 5ρ
,

2 + 2ρ

2 + 5ρ
,
ρ− 0.5

2 + 5ρ

)
. (3.2)

In the limiting case, for only preconditioning on the signal space (ρ = 0), we get
M3 0 = tridiag

(
− 1

4 , 1,− 1
4

)
, and for only regularizing on the noise subspace (ρ = ∞)

M3∞ = tridiag
(
1
5 ,

2
5 ,

1
5

)
= 2

5H1 = 2
5H

T
1 . Therefore, the preconditioner for ρ = ∞

is equivalent to the normal equations. With the parameter ρ we can choose between
preconditioning on the signal subspace or suppression of noise.

Again the conditions (3.1) can be seen as conditions for the entries of the pre-
conditioner directly, where a column k is described by the three degrees of freedom
m̂k := (mk−1,k,mk,k,mk+1,k)T . Both the first and the second condition are covered
by SPAI and are not used in MSPAI, as we can think of SPAI approximation as acting
mainly on the signal subspace. The translation of the last condition of (3.1) into an
individual probing condition with probing mask ŝk yields

R3L1 : min
m̂k

|(−1, 1,−1)m̂k| .

It is possible to transfer this individual regularization condition to the global condition
eTM ≈ 0 with probing vector eN1 = (1,−1, 1,−1, . . .)T , representing high frequency
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noisy components. Thus, we force M to act as approximately zero on the noise
subspace. We refer to the high frequency global probing condition as

R3G1 : min
P(M)=P

∥∥eTN1M
∥∥
2
.

As a first numerical example we examine the given 1D blur operator H2k
1 with

k > 0 for a given vector x representing the original data. We use the MSPAI reg-
ularization property to reconstruct two different signals perturbed by random noise.
By using powers of H we make the problem more ill-conditioned and thus enforce
the difference between the reconstruction results of all methods. In order to be able
to use CG as iterative method we ensure to have a symmetric and positive definite
(spd) preconditioner via corresponding powers of MMT after the computation of M ,
i.e. the preconditioner is (MMT )k. We implement the CG algorithm without a stop-
ping criterion to iterate to the maximum number of specified iterations, i.e. to observe
the semi-convergent behavior. We keep track of the reconstruction error between the
original signal x and the reconstruction x̃ as well as of the residual in each iteration.
If not mentioned otherwise, we refer to CG as using CG without preconditioner and
to PCG as CG using a preconditioner, e.g. MSPAI with properties on a certain sub-
space. Notice that in general an appropriate stopping criterion should be employed
[14] when using an iterative regularization method.

Let us consider in a first example the ill-posed problem with operator H8
1 and

original data x1 of size n = 103 affected by random noise of order 0.01%. Here x1
denotes the smooth signal

x1 :=

(
sin

(
4πj

n

))
j=1,...,n

.

The measurement of the error ‖x1− x̃1‖2 within each iteration shows that for increas-
ing values of ρ the reconstruction is stable and the region of optimal reconstruction
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Fig. 3.1. Reconstruction error against the iteration for the 1D operator H8
1 and original data

x1 of size n = 103 affected by random noise of order 0.01%. CG is compared to PCG using the
optimal preconditioner M3ρ (3.2) for different weights ρ.
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quality is broader and smoother compared to the unpreconditioned CG (see Figure
3.1). Moreover, by putting more weight to the regularization property of M3 ρ it is
possible to approximate the distribution of CG using normal equations. However, we
achieve almost similar reconstruction quality in fewer iterations. Refer to Table 3.1
for details. Hence, with this family of preconditioners we can steer the iteration to
faster convergence (small ρ) or slightly better reconstruction quality (ρ > 1).

Table 3.1
Optimal reconstruction error ‖x1 − x̃1‖2 for the 1D operator H8

1 and original data x1 of size
n = 103 affected by random noise of order 0.01%.

Regularization method optimal value reached at iteration

CG(H8
1 ) 2.1870 · 10−4 5

CG(H8
1
T
H8

1 ) 1.8998 · 10−4 62

PCG(H8
1 ) with M3 ρ

ρ = 0.4 2.3699 · 10−4 4
ρ = 1 1.9746 · 10−4 12
ρ = 5 1.9236 · 10−4 34
ρ = 102 1.9226 · 10−4 48

In our second 1D example we observe the behavior for the blur operator H4
1 and

a signal which has strongly increasing entries near the boundaries and an additional
nonanalytic point in the middle

x2 :=

(
1

j
− 1

n+ 1− j +
1

n
2 + 1

4 − j
+ sin

(
4jπ

n

))
j=1,...,n

.

The problem has size n = 103 and is perturbed by random noise of order 0.1%.
Having a closer look at the error between the original and the reconstructed signal
vector shows that the reconstruction is very good for interior components, different
from n

2 , but deteriorates near the boundary. Therefore, we introduce some correction
at the boundary by changing the components (eN1)1 = τ and (eN1)n = ±τ in which τ
is a weight factor of heuristic choice, in most cases τ ∈ [0, 1]. Additionally we correct
our probing subspace in the middle by (eN1)n

2
= 0 and (eN1)n

2±1 = 1
2 (eN1)n

2±1 again

with heuristic weight 1
2 . Following Figure 3.2 we can see the typical CG behavior

of reaching the optimal value after a few iterations but afterwards deteriorating the
reconstruction very fast by reducing the error relative to the noise subspace. Using a
MSPAI preconditioner the optimum is reached after more iterations but in a stable
and smooth manner with slightly smaller value. Table 3.2 shows the optimal reached

Table 3.2
Optimal reconstruction error ‖x2− x̃2‖2 for the 1D blur operator H4

1 and the original data x2.
The problem has size n = 103 and is affected by random noise of order 0.1%. ρ = 102.

Regularization method optimal value reached at iter.

Tikhonov (γ = 0.3) 0.1286 –

CG(H4
1 ) 0.1240 8

PCG(H4
1 ) ρR3G1

no boundary correction 0.1210 130
τ = 0.25 0.0433 58
τ = 0.25, middle correction 0.0263 52
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Fig. 3.2. Reconstruction error against the iteration for the 1D blur operator H4
1 and the original

data x2 of size n = 103 affected by random noise of order 0.1%. CG is compared to CG for the
normal equations and to PCG using MSPAI satisfying R3G1 with ρ = 102.

reconstruction error with its corresponding number of iterations. Compared to the
unpreconditioned CG the reconstruction x̃2 is by a factor of 2.86 times more accurate
when using boundary corrections and 4.72 times when using both corrections within
MSPAI.

Likewise it is possible to use subspace corrections within mask probing. We
change the individual probing condition R3L1 for the first and last column of the
preconditioner, in order to take into account the missing value −1 which lies outside
the vector. This lost information can be incorporated by using the probing mask
(1 − τ,−1 + (−1 + τ)) = (1 − τ, τ − 2) for the first and the last column. Note, that
similarly interior discontinuities can also be treated by modifying the related masks.
Furthermore, also for M3 ρ it is possible to build in similar corrections, e.g. by weight-
ing the nondiagonal entries. Various experiments revealed that using such corrections
at discontinuities of the data vector x within the probing subspaces lead to better
reconstruction, i.e. smaller reconstruction errors compared to the unpreconditioned
case. We will use similar techniques in Section 3.3.

As a more general problem we consider the reconstruction of x1 based on the
blur operator B2 of size n = 103 affected by random noise of order 1% and 0.1%,
respectively. B2 denotes the tridiagonal system with varying coefficients whose k-th
row is given by

(B2)k,: := (0, . . . , 0, wk−1, wk−1 + wk, wk, 0, . . . , 0) for w :=

(
2j2

n2
+ 1

)
j=0,...,n

with k ∈ {1, . . . , n}. Following Figure 3.3 CG using normal equations yields both bet-
ter reconstruction after slightly more iterations and smoother convergence compared
to the unpreconditioned CG. In case of applying MSPAI satisfying the global probing
condition R3G1 to CG(B2) we are able to reconstruct x1 with smaller error and in a
smooth way. These positive effects can be enforced by using it for CG with normal
equations. The optimal reconstruction is achieved in fewer iterations, is much better,
and the convergence curve much smoother.
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Fig. 3.3. Reconstruction error against the iteration for the 1D blur operator B2 and the original
data x1 of size n = 103 affected by random noise of order 0.1% (a) and 1% (b), respectively. CG is
compared to CG using the normal equations, PCG for B2 and BT2 B2 using MSPAI with R3G1.

3.2. A 2D model problem. In 2D we consider the matrix

H2 :=
H1 ⊗ I + I ⊗H1

2
= blocktridiag

(
0,

1

4
, 0

∣∣∣∣14 , 1, 1

4

∣∣∣∣ 0, 1

4
, 0

)
with its corresponding symbol h2(x, y) = 1 + cos(x)

2 + cos(y)
2 and preconditioner

m5(x, y) = a + 2b
(
cos(x) + cos(y)

)
. With cos(x) + cos(y) =: h(x, y) ∈ [−1, 2] =: I3

we have to minimize

min
a,b

max
x,y∈I3

∣∣∣∣1− (a+ 2bh(x, y))

(
1− h(x, y)

2

)∣∣∣∣
relative to the signal subspace and mina,b ρ|a − 4b| for h(x, y) = −2 relative to the
noise subspace. This yields the optimal block tridiagonal preconditioner

M5 ρ = blocktridiag

(
0, 2ρ− 3

2
, 0

∣∣∣∣2ρ− 3

2
, 9 + 8ρ, 2ρ− 3

2

∣∣∣∣ 0, 2ρ− 3

2
, 0

)
. (3.3)

The individual probing masks for a reduced inner column of the preconditioner
m̂k := (0,mk−n,k, 0|mk−1,k,mk,k,mk+1,k|0,mk+n,k, 0)T as well as the high frequency
probing vector for the 2D case can be derived via Kronecker products of the 1D
probing vectors. Thus, we obtain the individual and global probing condition

R5L1 : min
m̂k

|((−1, 1,−1)⊗ (−1, 1,−1))m̂k| and

R5G1 : min
P(M)=P

∥∥(eN1 ⊗ eN1)TM
∥∥
2
,

respectively.
We observe the behavior for the 2D problem with blur operator H4

2 and original
data x1 of size n = 502 affected by random noise of order 0.1%. Again, for M5 ρ with
increasing values of ρ we approximate the convergence of CG using normal equations
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(refer to Figure 3.4). Applying MSPAI with R5G1 to PCG it is almost possible to

reach the value of CG(H4
2
T
H4

2 ) but in less iterations. Higher values of ρ lead to
smooth and broad convergence curves similar to M5 ρ. CG has its optimal value after
9 iterations with error 2.219 · 10−3, MSPAI using R5G1, ρ = 1 after 12 iterations with
value 1.496 · 10−3, and CG using normal equations reaches the error 1.282 · 10−3 after
44 iterations.
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(3.3).
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Fig. 3.4. Reconstruction error against the iteration for the 2D problem with blur operator H4
2

and original data x1 of size n = 502 affected by random noise of order 0.1%. CG is compared to
CG for the normal equations and to M5ρ (a) and MSPAI satisfying ρR5G1 (b), respectively.

3.3. Examples from the Regularization Toolbox. We are interested in the
impact of using sparse approximate inverse preconditioners on some problems of the
MATLAB package Regularization Tools Version 4.1 for analysis and solution of dis-
crete ill-posed problems, developed by Hansen [15].

In our first example we consider the deriv2 example which is a discretization of
a first kind Fredholm integral equation. We choose deriv2(n,case) with case = 2.
Our problem has size n = 2 · 103 and is affected with random noise of order 0.001%
and 0.01%, respectively. Note that the system matrix K is dense. We apply both
CG and PCG to KTK and force the MSPAI to act as approximately zero on the
noise subspace by using the high frequency probing conditions R3L1 and R3L2 :
minm̂k

|(1, 0,−1)m̂k| simultaneously. We weight the subspace with ρ = 103 and apply
the symmetric preconditionerM+MT to the normal equations. To avoid deterioration
at the boundary we adjust M by resetting the values M1,1 = M2,2, M2,1 = M3,2,
Mn,n = Mn−1,n−1, and Mn−1,n = Mn−2,n−1.

Following Figure 3.5 we are able to achieve better reconstruction g̃ of the original
data g and in fewer iterations when applying MSPAI. For other noise levels and for
deriv(n,1) we observed similar behavior.

Let us focus on the blur [15] test problem as a second example which is deblur-
ring images degraded by atmospheric turbulence blur. The matrix G is an n2-by-n2

symmetric, doubly block Toeplitz matrix that models blurring of an n-by-n image by



SMOOTHING AND REGULARIZATION WITH MSPAI 19

0

0.05

0.10

0.15

0.20

0.25

0.30

0.35

0.40

1 4 7 10 13 16 19 22 25 28

iterations

‖g
−
g̃
‖ 2

u u CG(KTK)
bc bc PCG(KTK), MSPAI with

R3L1,R3L2, ρ = 103

u

u

u

u

u

u u

u

u

u
u u

u

u u

u u

u u u u u
u u u

u u u

u u

bc

bc

bc

bc
bc bc bc bc bc

bc

bc bc

bc bc

bc

bc

bc

bc
bc bc

bc

bc bc bc

bc

bc

bc

bc bc

bc

(a) Noise level 0.001%.

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

iterations
‖g

−
g̃
‖ 2

u u CG(KTK)
bc bc PCG(KTK), MSPAI with

R3L1,R3L2, ρ = 103

u

u

u

u

u

u u
u

u u
u u

u

u u

u u

u u

u

u

bc

bc

bc

bc bc

bc bc

bc

bc

bc

bc

bc bc

bc bc

bc

bc bc bc

bc

bc

(b) Noise level 0.01%.

Fig. 3.5. Reconstruction error against the iteration for the deriv2 problem of [15] invoked with
deriv2(2000,2) and affected by random noise of order 0.001% (a) and 0.01% (b), respectively. CG
is compared to PCG using MSPAI with R3L1, R3L2, and ρ = 103 for the normal equations. MSPAI
is symmetrized via M +MT .
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Fig. 3.6. Reconstruction error against the iteration for the blur problem of [15] invoked with
blur(150,4,1) and affected by random noise of order 0.01% (a) and 1% (b), respectively. CG is
compared to CG using normal equations, PCG using MSPAI with R5G1, R5G2, R5G3, and PCG
using MSPAI for normal equations with ρ = 1. We use M +MT as preconditioner within PCG(G)
and MTM for PCG(GTG).
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a Gaussian point spread function. The parameter σ controls the width of G and thus
the amount of smoothing and ill-posedness. G = A1 ⊗A1 is symmetric block banded
and possibly positive definite depending on n and σ. We choose the problem to be of
size n = 150 with bandwidth 4 and σ = 1, i.e. we invoke blur(150,4,1) and G is of
size 1502 × 1502. The original data vector is denoted by p.

We compare the unpreconditioned CG to PCG both for G and for the normal
equations GTG. In case of preconditioning G, MSPAI is symmetrized via M+MT and
for GTG the preconditioner MTM is applied. For MSPAI we impose the blocktridiag-
onal pattern m̂k := (0,mk−n,k, 0|mk−1,k,mk,k,mk+1,k|0,mk+n,k, 0)T . In view of the
structure of G we build the high frequency subspace by Kronecker products of oscil-
latory probing vectors in the regularizing global conditions R5G1 and the new ones
R5G2 : minP(M)=P

∥∥(eN1 ⊗ eN2)TM
∥∥
2

and R5G3 : minP(M)=P
∥∥(eN2 ⊗ eN1)TM

∥∥
2
,

all weighted with ρ = 1.

Following Figure 3.6 and Table 3.3 we obtain better reconstruction p̃ when ap-
plying MSPAI in contrast to the unpreconditioned CG for G or GTG. We observed
similar behavior for other values of band and σ.

Table 3.3
Optimal reconstruction error ‖p − p̃‖2 at given iteration for the blur problem of [15] invoked

with blur(150,4,1) for noise of order 0.01%, 0.1%, 1%, and 10%. Subspace weight is ρ = 1.

Regularization method
noise level 0.01% noise level 0.1%
‖p− p̃‖2 at it. ‖p− p̃‖2 at it.

CG(G) 25.637 3 41.828 1
CG(GTG) 24.123 19 37.807 2
PCG(G), MSPAI with R5G1,G2,G3 23.620 6 39.007 1
PCG(GTG), MSPAI with R5G1,G2,G3 23.778 51 38.023 3

Regularization method
noise level 1% noise level 10%
‖p− p̃‖2 at it. ‖p− p̃‖2 at it.

CG(G) 591.0 1 13.820 · 103 1
CG(GTG) 82.5 1 1.253 · 103 1
PCG(G), MSPAI with R5G1,G2,G3 189.8 1 4.104 · 103 1
PCG(GTG), MSPAI with R5G1,G2,G3 69.7 1 0.962 · 103 1

As a last example we reduce the 2D blur example of Hansen to the 1D case. For
the blur operator we take the 1D analogon of G and reduce the 2D right hand side p
to appropriate size. The consideration of example H4

1 with original data x2 (Table 3.2
and Figure 3.2) shows that the preconditioner should take also into account the behav-
ior of the original or blurred data vector. Smoothing, e.g. with M = tridiag( 1

2 , 1,
1
2 )

makes sense to remove noisy components only as long as the data is continuous. At
discontinuities smoothing would cause additional errors. Therefore, we use a modi-
fied tridiagonal smoothing preconditioner with j-th row (0, . . . , 0, rj−1, 1, rj , 0, . . . , 0).
Here, rj ≈ 1

2 near continuous components xj , but rj ≈ 0 near discontinuities. In case
that we know the original data x we define Mr with j-th row

(Mr)j,: := (0, . . . , 0, rj−1, 1, rj , 0, . . . , 0) for r :=

(
1

2
· 1

1 + ρ |xj − xj+1|

)
j=1,...,n−1

.
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Otherwise we define the preconditioner Mr̃ with j-th row

(Mr̃)j,: := (0, . . . , 0, r̃j−1, 1, r̃j , 0, . . . , 0) via r̃ :=

(
1

2
· 1

1 + (ρ |bj − bj+1|)k

)
j=1,...,n−1

.

The parameters ρ and k have to be chosen in such a way that discontinuities are
revealed as good as possible.

Following Figure 3.7 the reconstruction is strongly improved if the preconditioner
is adjusted relative to the discontinuities of x. Also using only the observed data
improves the reconstruction. Therefore, we could also consider an iterative process
where a first approximation x1 on x is used to define the tridiagonal preconditioner
M1 delivering an improved approximation x2 which again gives a new preconditioner
M2, and so on.
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Fig. 3.7. Reconstruction error against iterations for the 1D blur problem of size n = 103 and
band = 4 affected by random noise of order 0.1%. G has σ = 1 (a) and σ = 10 (b), respectively.
CG is compared to PCG using Mr and Mr̃, respectively, for G and GTG.

4. Conclusion. We have considered the derivation of preconditioners with spe-
cial behavior on certain subspaces. For this purpose analytic minimization problems in
functions have been translated into MSPAI minimizations for vectors based on masks.
Such mask-based probing conditions can be different for each columnmk of the precon-
ditioner M and can be written in the form minm̂k

|ŝkm̂k−fk| with reduced vectors ŝk,
m̂k, and scalar fk ∈ R. Mask probing has the advantage that for each sparse column
mk we can use a different sparse probing vector sk. Furthermore, we have introduced
probing conditions based on probing vectors that are global for the whole matrix M
in the form minP(M)=P

∥∥eTM − fT∥∥
2

and minP(M)=P
∥∥eTAM − fT∥∥

2
, respectively,

with e, f ∈ Rn. The probing vectors are related to the low frequency or smooth
subspace, represented by eS = (1, 1, . . . , 1)T , or to the high frequency oscillatory sub-
space, represented e.g. by eN1 = (1,−1, 1,−1, . . .)T , eN2 = (1, 0,−1, 0, 1, . . .)T , or
eN3 = (0, 1, 0,−1, 0, . . .)T .

For Multigrid methods we have shown that the smoothing property of approxi-
mate inverses like SAI or SPAI can be improved significantly by using MSPAI with
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appropriate probing masks or probing vectors. In special cases we can analytically de-
termine the optimal approximate inverse smoother and its corresponding smoothing
factor. SPAI is far from being optimal in this class but including convenient individual
or global probing conditions we can nearly reach the optimal smoothing factor with
MSPAI. Moreover, an increasing weighting of the subspace leads to stable behavior.
Our tests on systems with varying coefficients and for the 2D case demonstrate that
even the usage of global probing conditions with action on A, only satisfying the ap-
proximation eTAM ≈ eT , reduces the smoothing factor in comparison to SPAI and
the damped Jacobi method.

A different subspace approach becomes necessary during the recovery process of
blurred signals. Here our main focus is to allow a better and more stable recon-
struction of the original signal. Applying a preconditioner in iterative regularization
can easily lead to a deterioration of the reconstruction by approximating the inverse
also in the noise subspace, or by removing high frequency components in the original
signal. Therefore, preconditioners have to be developed very carefully. We derive
approximate inverse preconditioners analytically based on generating functions, or by
applying MSPAI with probing masks or probing vectors. These preconditioners allow
to incorporate filtering for noise reduction, and they can be adjusted both to the
system matrix, e.g. the blur operator, and to the data vector x. So the deterioration
of the reconstruction at discontinuities of x can be reduced by modifying the probing
conditions relative to the variation of the signal data. We show that these precondi-
tioners can be used for faster convergence or better reconstruction. The application to
more general problems is an interesting and important task which will be investigated
in the future.
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