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T. Schulte-Herbrüggen, A. Spörl, K. Waldherr, T. Gradl, S.J. Glaser, and T. Huckle

Abstract The project encompasses matrix method developments, tailored paralleli-
sation as well as cutting-edge applications exploiting thepower of theHLRB-II clus-
ter: fast matrix exponential algorithms using Chebyshev series are devised in view
of calculating quantum dynamics of large systems. They outperform the standard
Padé-approximation by a speed-up of approximately 30% inCPU time while ob-
taining even better accuracy. The routines are incorporated into a fully parallelised
package of gradient-flow algorithms for optimal quantum control.
As an application, here we present a quantumCISC compiler: it breaks large target
unitary gates into modules of effectivem-qubit (i.e. two-level system) interactions.
We extend the standard restricted set of modules withm = 1,2 (RISC) to a scalable
toolbox of multi-qubit optimal controls withm ≤ 10 forming modules of complex
instruction sets (CISC). Typically, the instruction code (‘experimental controls’) by
our quantumCISC compiler is some three to ten times faster than byRISC compi-
lation thus dramatically saving the essential quantum coherences from unnecessary
relaxative decay with time. This advantage of our method over standard universal
gates is demonstrated for the indirectSWAP gate, the quantum Fourier transform as
well as for multiply-controlledNOT gates.
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Introduction

Quantum control plays a key role for steering quantum hardware systems in both
quantum- and nano-technology [1]. However, for exploitingthe power of quantum
systems, one has to steer them by classical controls with theshapes of these con-
trols critically determining the performance of the quantum system. Thus providing
computational infrastructure for devising optimal shapesby using high-performance
computer clusters is tantamount to exploiting the power of present and future quan-
tum resources. The task is computationally particularly demanding since the classi-
cal resources needed grow exponentially with the size of thequantum system.

More concretely, quantum dynamics of closed systems is unitary with the sys-
tem HamiltonianH being the generator of the one-parameter group of unitary time
evolutionU = e−itH . Numerical calculation of quantum dynamics thus hinges on
algorithms for fast matrix exponentials. Here, we devise Chebyshev-series methods
that exploit symmetries of pertinent Hamiltonians. They can be readily incorporated
into a fully parallelised programme package of optimal quantum control designed
to exploit the capacities of theHLRB-II cluster architecture by distributing matrix
operations to different nodes with little communication and storage cost. In systems
of 10 spin qubits, the time gain by parallelisation is beyonda factor of 500 on a
128-CPU cluster as compared to standard techniques on a single node of the same
cluster [2].

Also in terms of computation, quantum systems provide a unique potential for co-
herent parallelisation that may exponentially speed-up algorithms as in Shor’s prime
factorisation. Again, compiling a target quantum unitary module into the machine
code for steering a concrete quantum hardware device lends itself to be tackled by
means of optimal quantum control. To this end, there are two different approaches:
(i) one may use a decomposition into the restricted instruction set of so-called uni-
versal one- and two-qubit gates that in turn have prefabricated translations into the
machine code or (ii) one may prefer to generate the entire target module directly
by a complex instruction set of available controls. Here we advocate direct com-
pilation up to the limit of system size a classical computer cluster can reasonably
handle. For large systems we propose another way, namely (iii) to make recursive
use of medium-sized building blocks generated by optimal control in the sense of a
quantumCISC compiler. Implications for upper limits to time complexities are also
derived.

Scope and Organisation of the Paper

This account comprises two sections, the first of which is dedicated to develop-
ing numerical matrix exponential and matrix multiplication algorithms on parallel
clusters. The second section then presents novel applications, to wit a quantumCISC

compiler. In doing so, the account shows how fast matrix methods allowing to main-
tain full parallelisation on high-performance clusters provide the basis for cutting-
edge applications, e.g., in optimal quantum control. In turn, these control methods
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Figure 1 Comparison of theCPU times required for calculating one matrix exponential as a func-
tion of the system size, wheren qubits translate into a complex matrix of dimension 2n ×2n; (a)
logarithmic scale, (b) linear scale.

can be put to good use for finding optimised experimental steerings of quantum de-
vices in realistic settings as they occur in a broad array of applications comprising
quantum electronics, nanotechnology, spectroscopy, and quantum computation.

1 Development of Computational Methods

Faster algorithms for matrix exponentials on high-dimensional systems have been
developed in view of application to large quantum systems. We extended our paral-
lelisedC++ code of theGRAPEpackage described in [2] by adding more flexibility
allowing to efficiently exploit available parallel nodes independent of internal pa-
rameters. Thus computations could be performed on theHLRB-II supercomputer
cluster atLeibniz Rechenzentrum of the Bavarian Academy of Sciences Munich. It
provides anSGI Altix 4700 platform equipped with 9728 Intel Itanium2 Montecito
Dual Core processors with a clock rate of 1.6 GHz, which give a totalLINPACK

performance of 63.3 TFlops/s. Following our previous work on time-optimal con-
trol [3], we used theGRAPE algorithm [4] in order to realise unitary target gates in
shortest times still allowing for full fidelity.

1.1 Fast Matrix Exponentials

A task paramount to calculating time evolutions of quantum systems hinges on fast
numerics: it is the computation of the matrix exponentials of quantum mechanical
system HamiltoniansH. With H being complex Hermitian, the propagatore−iH is
unitary. The problem of computinge−iH can be reduced to two problems of the half
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size with real numbers by exploiting the persymmetry properties ofH. For details
see [2].

The matrix exponentiale−iH is defined by the infinite series

e−iH :=
∞

∑
k=0

(−iH)k/k! . (1)

Although over the years a plethora of different methods has been devised for cal-
culating matrix exponentials, none of them is fully satisfactory. This is why they
are sometimes referred to as ‘dubious’ [5, 6]. Standard algorithms include the Padé
approximation as well as the eigendecomposition, both of which we use as refer-
ences. Here, we advocate to calculate the matrix exponential by a Chebyshev series
expansion. To this end, we need the Chebyshev polynomials ofthe first kind given
by the following three-term recurrence formula

T0(x) = 1 (2)

T1(x) = x (3)

Tk+1(x) = 2xTk(x)−Tk−1(x) . (4)

With respect to the weight functionω(x) = (1− x2)−1/2, these polynomials are or-
thogonal. In this sense, a functionf (x) with arguments|x| ≤ 1 can be represented
by an infinite Chebyshev series according to

f (x) =
∞

∑
k=0

akTk(x) with coefficients ak =
2
π

∫ 1

−1
f (x)Tk(x)

dx√
1− x2

. (5)

Details can be found in [7, 8]. In our casef (x) = ex and the coefficients then take
the special formak = 2ikJk(−i) with the Bessel functionsJk. For |x| ≤ 1 this leads
to ex = J0(i)+2∑∞

k=1 ikJk(−i)Tk(x). Therefore the matrix exponential of−iH sat-
isfying the normalisation condition‖H‖ ≤ 1 is given by

e−iH = J0(i)1l+2
∞

∑
k=1

ikJk(−i)Tk(−iH) . (6)

Table 1 Matrix Multiplications Needed to Approximate Polynomialsof Different Degrees

degree of polynomialm 4 6 8 10 12 14 16 18 20

no. of matrix multiplications

for Horner scheme 3 5 7 9 11 13 15 17 19

for optim. reordering 2 3 4 5 5 6 6 7 7
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Figure 2 Compariing of the accuracy of different methods subject to the system size: (a) deviation
from unitarity measured by‖Ψ(−iH)†Ψ(−iH)−1l‖; (b) errors‖e−iH −Ψ(−iH)‖ of the different
approximation methodsΨ . These results could be obtained, when dealing with Hamiltonians of
special properties, which allow to get the exact target exponential.

For dealing with HamiltoniansH of arbitrary finite norm, the ‘scaling and squaring’
technique is applied. As shown before, the Chebyshev methodonly requires the
computation of a single matrix polynomial per matrix exponential. Since the cost of
matrix multiplications supersedes the cost of matrix additions by far, we are inter-
ested in reducing the number of required matrix multiplications. When using a con-
servative method like the Horner scheme,m−1 matrix multiplications are required
for evaluating a matrix polynomial of degreem. Moreover, as shown in Tab. 1, one
can reduce the number of matrix multiplications by a suitable ordering. For instance,
the matrix polynomial∑6

k=0 αkAk can be rewritten as∑3
k=0 αkAk +A3

(

∑3
k=1 αk+3Ak

)

where only three (instead of five) matrix multiplications are required. In general,
only O(

√
m) nonscalar multiplications are necessary to evaluate a polynomial of

degreem. In this sense the partial sum of the Chebyshev series expansion (6) can be
evaluated very efficiently [9].

As shown in Fig. 1, the new Chebyshev algorithm for taking matrix exponentials
outperforms the standard Padé approximation by a speed-upof 30% in CPU time.
Note this acceleration is even more pronounced than the timedifference between
eigendecomposition and Padé approximation. Moreover, numerical checks illustrate
(see Fig. 2) that in cases, where the target matrix exponential is exactly known, the
Chebyshev series allows for higher accuracy both in terms ofdeviation from the
target exponential, as well as in terms of deviation from unitarity

1.2 Adapting Parallelisation to the HLRB-II Cluster

In preparative work [2], we implemented two algorithms for multiplying a series of
matrices as repeatedly needed in theGRAPEprogramme package for optimal quan-
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Figure 3 (a) Slice-wise matrix multiplication provides a simple wayof parallelisation.U0k denotes
the(k +1)-fold productUkUk−1 · · ·U0 in theGRAPE-algorithm. The resulting complexity isO(M ·
N3/p). Communication between the processorsP is needed solely for broadcasting the matricesUk
prior to propagation. (b) Scheme for tree-like propagation. In this example, propagation is carried
out in three steps. Red lines indicate communication between different processors.

tum control. The algorithms differ in run-time and, most importantly, in memory
demand. Moreover, the memory redistribution was optimisedand tailored to the
specific needs of theGRAPEalgorithm.

1.2.1 Slice-Wise Propagation

The matrix matrix multiplicationAB, with A,B ∈ MatN×N(C) can most easily be
split into jobs distributed to differentCPUs by taking say the rowsaℓ of A separately
as

AB = (a1;a2; . . .aN)B = (a1B;a2B; . . . ;aNB) . (7)

This scheme is readily extendible tok out of the total ofM matrices multiplied in
the GRAPE-algorithm (see Fig. 3(a)). However, each processor then refers tok −
1 matrices, which means that they have to be broadcasted. Also, the workspace
required by each processor is of the order ofO(M ·N2). The time complexity in
this straightforward scheme can easily be evaluated, because the total number of
operations is evenly distributed among the available processors. So the order of
operations isO(M ·N3/p), wherep is the number of processors.

1.2.2 Tree-Like Propagation

A different approach for computing the propagation is the parallel prefix algorithm
[10] depicted in Fig. 3(b). In an extension to previous work [2], it is now applicable
to arbitrary combinations of number of processorsp and number of matricesM.
In contrast to slice-wise propagation, parallel prefix requires communication during
the propagation (red lines in Fig. 3(b)): they sum up to∑log2 M

l=2 [Broadcast(N3, p =
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Table 2 Contributions of Parallelised Matrix Operations to Overall Speed-up.

Subroutine Fraction ofCPU Time Weighted
with 1 CPU with 128CPUs Speed-up

maxStepSize 0.9 0.713 521
getGradient 0.091 0.287 52.6

expm 0.075 0.049 43.0
propagation 0.01 0.194 6.0
gradient 0.006 0.044 3.5

optimiseCG 1 1 576

2l−1) + (l − 1) · Send(N3)], provided the times forBroadcast and Send are not
influenced by other ongoing communication. Recalling the computation time of
O(M ·N3/p) for the slice-wise propagation, parallel prefix should never be faster
(neglecting effects like memory prefetching). On the otherhand, parallel prefix does
not require all the matricesUk in all processes, which eliminates the broadcast time
prior to the propagation step. It is this advantage that is large enough to outweigh
the slower propagation time. Even more important is the reduced memory demand.
In our current implementation the maximum number of matrices stored at a single
process isO(log2 M) [P0 produces one result in every level], which is already much
less than theO(M) of the slice-wise propagation.

As summarised in Tab. 2, for a 10-qubitQFT, the parallelisation techniques in
combination with other algorithmic improvements result ina speed-up by more
than a factor of 576 on 128 processors of theHLRB-II (PHASE 1) as compared
to using one node of the same computer. To further improve theefficiency of the
implementation, a hybrid method comprising slice-wise andtree-like propagation
is being developed. The data transfer will be optimised by combining blockwise
computation and hidden communication in a cache-obliviousway.

2 Application: Developing a Quantum CISC Compiler

Richard Feynman’s seminal conjecture of using experimentally controllable quan-
tum systems to perform computational tasks [11, 12] roots inreducing the com-
plexity of the problem when moving from a classical setting to a quantum setting.
The most prominent pioneering example being Shor’s quantumalgorithm of prime
factorisation [13, 14] which is of polynomial complexity (BQP) on quantum devices
instead of showing non-polynomial complexity on classicalones [15]. It is an exam-
ple of a class of quantum algorithms [16, 17] that solvehidden subgroup problems
in an efficient way [18], where in the Abelian case, the speed-up hinges on the quan-
tum Fourier transform (QFT). Whereas the network complexity of the fast Fourier
transform (FFT) for n classical bits is of orderO(n2n) [19, 20], theQFT for n qubits
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shows a complexity of orderO(n2). Moreover, Feynman’s second observation that
quantum systems may be used to efficiently predict the behaviour of other quantum
systems has inaugurated a research branch of Hamiltonian simulation [21–26].

Define byU(τ) := e−itMHM · · ·e−itkHk . . .e−it1H1 the propagator brought about
by a sequence of evolutions of the quantum system underM piece-wise constant
HamiltoniansHk. Then the compilation task is to approximate someUtargetby U(τ)
(i) with high fidelity and (ii) with least dissipative loss, e.g., with minimalτ := ∑k tk.

For implementing a quantum algorithm in an experimental setup, local opera-
tions and universal two-qubit quantum gates are required asa minimal set ensuring
every unitary module can be realised [27]. More recently, itturned out that generic
qubit and qudit pair interaction Hamiltonians suffice to complement local actions
to universal controls [28, 29]. Common sets of quantum computational instructions
comprise (i) local operations such as the Hadamard gate, thephase gate and (ii) the
entangling operationsCNOT, controlled-phase gates,

√
SWAP, i SWAPas well as (iii)

the SWAP operation. The number of elementary gates required for implementing a
quantum module then gives the network or gate complexity. However, gate com-
plexity often translates into too coarse an estimate for theactual time required to
implement a quantum module (see e.g. [30–32]), in particular, if the time scales of
a specific experimental setting have to be matched. Instead,effort has been taken
to give upper bounds on the actual time complexity [33], e.g., by way of numerical
optimal control [3].

Interestingly, in terms of quantum control theory, theexistence of universal gates
is equivalent to the statement that the quantum system isfully controllable as has
first been pointed out by Ramakrishna and Rabitz [34]. This is, e.g. the case in sys-
tems ofn spin-12 qubits that form Ising-type weak-coupling topologies described by
arbitrary connected graphs [35–37]. Therefore the usual approach to quantum com-
pilation in terms of local plus universal two-qubit operations [38–42] lends itself to
be complemented by optimal-control based direct compilation into machine code:
it may be seen as a technology-dependent optimiser in the sense of Ref. [41], how-
ever, tailored to deal with more complex instruction sets than the usual local plus
two-qubit building blocks. Not only is it adapted to the specific experimental setting,
it also allows to fight decoherence by either being near timeoptimal or by exploiting
decoherence-protected subspaces [43]. Devising quantum compilation methods for
optimised realisations of given quantum algorithms by admissible controls is there-
fore an issue of considerable practical interest. Here it isthe goal to show how quan-
tum compilation can favourably be accomplished by optimal control: the building
blocks for gate synthesis will be extended from the usual setof restricted local plus
universal two-qubit gates to a larger toolbox ofscalable multi-qubit gates tailored
to yield high fidelity in short time given concrete experimental settings.

Organisation of the Application Section

Following Ref. [44], the purpose of this section is to show that optimal control the-
ory can be put to good use for devising multi-qubit building blocks designed for
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Figure 4 Compilation in classical computation (left) and quantum computation (right). Quan-
tum machine code has to be time-optimal or protected againstdissipation, otherwise decoherence
wipes out the coherent superpositions. A quantumRISC-compiler (1) by universal gates leads to
unnecessarily long machine code. DirectCISC-compilation into a single pulse sequence (2) exploits
quantum control for a near time-optimal quantum machine code. Its classical complexity isNP, so
direct compilation by numerical optimal control resortingto a classical computer is unfeasible for
large quantum systems. The third way (3) promoted here pushes quantumCISC-compilation to the
limits of classical supercomputer clusters and then assembles the multi-qubit complex instructions
sets recursively into time-optimised or dissipation-protected quantum machine code.

scalable quantum computing in realistic settings. Note these building blocks are no
longer meant to be universalin the practical sense that any arbitrary quantum mod-
ule should be built from them (plus local controls). Rather they provide specialised
sets of complex instructions tailored for breaking down typical tasks in quantum
computation with substantial speed gains compared to the standard compilation by
decomposition into one-qubit and two-qubit gates. Thus aCISC quantum compiler
translates into significant progress towards the quantum error-correction threshold.

For demonstrating scalable quantum compilation, we choosesystems with lin-
ear coupling topology, i.e., qubit chains coupled by nearest-neighbour Ising inter-
actions. The section is then organised as follows:CISC quantum compilation by
optimal control will be illustrated in three different, yettypical examples

(1) the indirect 1,n-SWAP gate,
(2) the quantum Fourier transform (QFT) ,
(3) the generalisation of theCNOT gate to multiply-controlledNOT gates,CnNOT.

For every instance ofn-qubit systems, we analyse the effects of (i) sacrificing univer-
sality by going to special instruction sets tailored to the problem, (ii) extending pair
interaction gates to effective multi-qubit interaction gates s, and (iii) we compare
the time gain by recursivem-qubit CISC-compilation (m ≤ n) to the two limiting
cases of the standardRISC-approach (m = 2) on one hand and the (extrapolated)
time-complexity inferred from single-CISC compliation (withm = n).

2.1 Quantum Compilation as an Optimal Control Task

As shown in Fig. 4, the quantum compilation task can be addressed following differ-
ent principle guidelines:(1) by the standard decomposition into local operations and
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universal two-qubit gates, which by analogy to classical computation was termedre-
duced instruction set quantum computation (RISC) [45] or (2) by using direct com-
pilation into one singlecomplex instruction set (CISC) [45]. The existence of a such
a single effective gate is guaranteed simply by the unitaries forming a group: a se-
quence of local plus universal gates is a product of unitaries and thus a single unitary
itself.

As a consequence,CISCquantum compilation lends itself to be treated by numer-
ical optimal control. One thus resorts to clusters of classical computers for translat-
ing the unitary target module directly into the ‘machine code’ of evolutions of the
quantum system under combinations of the drift HamiltonianH0 and experimentally
available controlsH j.

In a number of studies on quantum systems up to 10 qubits, we have shown that
direct compilation by gradient-assisted optimal control [3, 4, 46] allows for substan-
tial speed-ups, e.g., by a factor of 5 for aCNOT and a factor of 13 for a Toffoli-gate
on coupled Josephson qubits [46]. However, the direct approach naturally faces the
limits of computing quantum systems on classical devices: upon parallelising our
C++ code for high-performance clusters [2], we found that extending the quantum
system by one qubit increases theCPU-time required for direct compilation into
the quantum machine code of controls by grossly a factor of eight. So the classical
complexity for optimal-control based quantum compilationis NP.

Therefore, here we advocate a third approach(3) that uses direct compilation into
units of multi-qubit complex instruction sets up to theCPU-time limits of optimal
quantum control on classical computers: these building blocks are to be taken as
fundamental units designed such as to allow for recursive scalable quantum compi-
lation in large quantum systems (i.e. those beyond classical computability).

Time Standards

When comparing times to implement unitary target gates by the RISC vs the CISC

approach, we will assume for simplicity that local unitary operations are ‘infinitely’
fast compared to the duration of the Ising coupling evolution scaled by the cou-
pling constantJZZ so that the total gate time is solely determined by the coupling
evolutions unless stated otherwise. Let us emphasise, however, this stipulation only
concerns the time standards. The optimal-control assistedCISC-compilation meth-
ods presented here are in no way limited to fast local controls. Also the assembler
step of concatenating theCISC-building blocks is independent of the ratio of times
for local operationsvs coupling interactions.

Error Propagation and Relaxative Losses

As the main figure of merit we refer to a quality functionq resulting from the fi-
delity Ftr and the dissipative decay with overall relaxation rate constantTR during a
durationτ
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q = Ftr e−τ/TR (8)

assuming independence. Moreover, forn qubits one defines as the trace fidelity of
an experimental unitary moduleUexp with respect to the target gateVtarget (thus
U,V ∈U(N) with N := 2n)

Ftr := 1
N Re tr{V †

targetUexp}

= 1− 1
2N ‖Vtarget−Uexp‖2

2 ,
(9)

which follows via the simple relation to the Euclidean distance

‖V −U‖2
2 = ‖U‖2

2+‖V‖2
2−2Retr{V†U}

= 2N −2N 1
N Retr{V †U}

= 2N(1−Ftr) ,

the latter two identities invoking unitarity.
Consider a multiqubit-interaction module (CISC) with quality qm = Fm e−τm/Tm

that decomposes intor universal two-qubit gates (RISC), out of whichr ′ ≤ r gates
have to be performedsequentially. Moreover, each 2-qubit gate shall be carried out
with the uniform qualityq2 = F2 e−τ2/T2. Henceforth we assume for simplicity equal
relaxation rate constants, soT2 = Tm are identified withTR. Then, as a first useful
rule of the thumb, it is advantageous to compile the multiqubit module directly if
Fm > (F2)

r, or more precisely taking relaxation into account, if the module can be
realised with a fidelity

Fm > (F2)
r e−(r ′·τ2−τm)/TR . (10)

2.2 1,n SWAP

The easiest and most basic example to illustrate the pertinent effects of optimal-
control basedCISC-quantum compilation is the respective indirect 1,n-SWAP gates
in spin chains ofn qubits coupled by nearest-neighbour Ising interactions with JZZ

denoting the coupling constant.
For the 1,2-SWAP unit there is a standard textbook decomposition into three

CNOTs. Thus for Ising-coupled systems and in the limit of fast local controls, the
total time required for an 1,2-SWAP is 3/(2JZZ), and there is no faster implementa-
tion [3, 47–49]. Note, however, that in systems coupled by the isotropic Heisenberg
interactionXXX , the 1,2-SWAPmay be directly implemented just by letting the sys-
tem evolve for a time of only 1/(2JXXX). Sacrificing universality, it may thus be ad-
vantageous to regard the 1,2-SWAP as basic unit for the 1,n-SWAP task rather than
the universalCNOT. Note, however, any 1,n-SWAP can be built from 1,2-SWAPs:
following the most obvious scheme of Fig. 5(a) shows how to decompose an even-
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1,2-SWAPs, (b) by three symmetric blocks of 1,m-SWAPs or (c) by two blocks of 1,m ′-SWAPs and
an interior 1,2-SWAP.
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Figure 6 Left: Times required for indirect 1,n-SWAPs on linear chains ofn Ising-coupled qubits
by assembling 1,m-SWAP building blocks reaching fromm = 2 (RISC) up to m = 8 (CISC). The
time units are expressed as 1/JZZ assuming the duration of local operations can be neglected com-
pared to coupling evolutions (details in the text). Right: Translation of the effective gate times into
over-all quality figuresq = (qm)rm for an effective gate assembled fromrm components of single
qualitiesqm := Fm e−τm/TR (with the respective component fidelities homogeneously falling into a
narrow intervalFm ∈ [0.99994,0.99999] for m = 3, . . . ,8). Data are shown for a uniform relaxation
rate constant of 1/TR = 0.004JZZ .

order 1,2n-SWAP into units of 1,2-SWAPs. For the odd-order counterpart, i.e., the
1,(2n− 1)-SWAP, just omit the qubit number 2n and all the building blocks con-
nected to it. Moreover, the generalisation to decomposing a1,(3m−2)-SWAP into
three 1,m-SWAP building blocks is also immediate, e.g., settingm = 2 in Fig. 5(b)
reproduces part (a).

Now, the 1,m-SWAP building blocks themselves can be precompiled into time-
optimised single complex instruction sets by exploiting the GRAPE-algorithm of
optimal control up to the current limits ofm imposed byCPU-time allowance.

Proceeding in the next step to largen, Fig. 6 underscores how the time required
for 1,n-SWAPs decreases significantly by assembling precompiled 1,m-SWAPbuild-
ing blocks asCISC units recursively up to a multi-qubit interaction size ofm = 8,
where the speed-up is by a factor of more than 1.96. Clearly, such a set of 1,m-SWAP

building blocks withm ∈ {2,3,4,5,6,7,8} allows for efficiently synthesising any
1,n-SWAP.
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Figure 7 For k ≥ 2, a (km)-qubit QFT can be assembled fromk times anm-qubit QFT and
(k

2

)

instances of 2m-qubit modules cP-SWAP
j
2m, where the indexj of different phase-rotation angles

takes the valuesj = 1,2, . . . ,k−1. The dashed boxes show the inductionk 7→ k +1.

However, deducing from Fig. 6 that the time complexity of 1,n-SWAPs is linear
is premature: although the slopes seem to converge to a non-zero limit, numerical
optimal control may become systematically inefficient for larger interaction sizes
m. Therefore, on the current basis of findings, a logarithmic time complexity cannot
ultimately be excluded.

Summarising the results for the indirectSWAPs in terms of the three criteria de-
scribed in the introduction, we have the following: (i) in Ising coupled qubit chains,
there is no speed-up by changing the basic unit from the universal CNOT into a
1,2-SWAP, whereas in isotropically coupled systems the speed-up amounts to a fac-
tor of three; (ii) extending the building blocks of 1,m-SWAPs fromm = 2 (RISC) to
m = 8 (CISC) gives a speed-up by a factor of nearly two (1.96) even under Ising-type
couplings; (iii) the numerical data are consistent with a time complexity converging
to a linear limit for the 1,n-SWAP task in Ising chains, however, there is no proof for
this yet.

2.3 Quantum Fourier Transform (QFT)

Since many quantum algorithms take their advantage by efficiently solving some
hidden subgroup problem, the quantum Fourier transform plays a central role.

In order to realise aQFT on large qubit systems, our approach is the following:
given anm-qubit QFT, we show that for obtaining a(k ·m)-qubit QFT by recursively
usingm-qubit building blocks, a second type of module is required,to wit a com-
bination of controlled phase gates andSWAPs, which henceforth we dubm-qubit
cP-SWAP for short.

One arrives at the desired block decomposition of a general(k ·m)-qubit QFT

as shown in Fig. 7: it requiresk times the samem-qubit QFT interdispersed with
(k

2

)

times an 2m-qubit cP-SWAP, out of whichk− 1 show different phase-rotation

angles. For allm and j = 1,2, . . . ,(k−1), one finds (i) a cP-SWAP
j
2m takes as least as
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Figure 8 Comparison ofCISC-compiledQFT (red) with standardRISC compilations following
the scheme by Saito [50] (black) or Blais [51] (blue): (a) times for implementation translate into
quality factors (b) for a relaxation rate constant of 1/TR = 0.004JZZ .

long as aQFTm ; (ii) a QFTm takes as least as long as a cP-SWAP
j
m; (iii) a cP-SWAP

j
m

takes least as long as a cP-SWAP
j+1
m . Thus the duration of a(k ·m)-qubit QFT built

from m-qubit and 2m-qubit modules amounts to

τQFT
k·m = 2·τ(QFTm)+ (k−1) · τ(cP-SWAP1

2m)+ (k−2) · τ(cP-SWAP2
2m) . (11)

In the following, we consider the overall quality of a(k · m)-qubit QFT in terms
of its two types of building blocks, namely the basicm-qubit QFT as well as the
constituent 2m-qubit cP-SWAPs with their respective different rotation angles. We
will neglect rotations as soon as their angle falls short of athreshold ofπ/210. This
approximation is safe since it is based on a calculation of a 20-qubit QFT, where
the truncation does not introduce any relative error beyond10−5. Following the
block decomposition of Fig. 7, thus three variants of cP-SWAPs are left, since all
cP-SWAP

j
10 elements withj ≥ 3 boil down to mereSWAP gates due to truncation of

small rotation angles.
With these stipulations, the task of assembling an(k · 10)-qubit QFT translates

into using 10-qubit cP-SWAPbuilding blocks (2m = 10) and the 5-qubitQFT (m = 5)
in the sense of a(2k ·5)-qubit QFT. Its durationτ(QFT2k·5) is then readily obtained
as in Eqn. 11 thus giving an overall quality of

qQFT2k·5 =

= (F QFT5
tr )2k (F

cP-SWAP1
10

tr )2k−1 (F
cP-SWAP2

10
tr )2k−2 (F

cP-SWAP3
10

tr )(
2k
2)−4k+3 e−τQFT

2k·5/TR .

(12)

Based on this relation, Fig. 8 shows the numerical results ofthe current calculations
on theHLRB-II cluster, where the quality of aCISC-compiled(k ·10)-qubit QFT is
notably superior to the standardRISC versions [50, 51].
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Figure 9 Comparison of implementations of theCnNOT on linear Ising-coupled spin chains using
2-, 3- and up to 6-qubit building blocks in terms of time (a) and quality factors (b) under relaxation
with a rate constant of 1/TR = 0.004JZZ .

2.4 Multiply-Controlled NOT Gate (CnNOT)

Multiply-controlledCNOT gates generalise Toffoli’s gate, which isC2NOT to CnNOT.
They frequently occur in error-correction schemes hence their practical relevance.

Here we address the task of decomposing aCnNOT into CmNOTs and 1,m SWAP

gates given the topology of a linear chain ofn + 2 qubits coupled by nearest-
neighbour Ising interactions. The reason forn +2 qubits being an ancilla qubit that
turns the problem to linear complexity [52]. As described elsewhere [44], there is
an analogous, yet more elaborate induction to prove recursive scalable assembling
schemes. Here, we just present the results. Fig. 9 convincingly demonstrates that
CISC-compilation to 10-qubit building blocks is a significant time saver thus trans-
lating into superior over-all qualities under realistic conditions. These results are of
great practical importance, since theCnNOT gates are a cornerstone in quantum error
correction.

3 Conclusion

By numerical developments using, e.g., Chebychev expansions for a fast matrix ex-
ponential and Strassen-type matrix multiplication techniques, a fully parallelised
programme package with parallel matrix operations on clusters has been provided.
Quantum control theory is a powerful framework for devisingalgorithms to steer
quantum devices with optimal figures of merit. Controlling quantum systems ex-
perimentally is central to many branches of quantum technology including nan-
otechnology, quantum information processing and spectroscopy. However, to find
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such steerings is a–classically–computationally demanding task, as the resource re-
quirements grow exponentially with the size of the quantum system. We have ex-
ploited recent progress allowing to use high-end parallel clusters. Building upon
these achievements, theHLRB-II cluster has been used for obtaining progress in the
following fields:

1. an optimal-control based quantumCISC compiler that recursively uses medium-
sized modules for addressing quantum systems of dimensionsthat are too large
to be handled otherwise;

2. a CISC compiler allows for assembling optimal quantum controls protected
against decoherence [43].

The cutting-edge applications of a quantumCISC compiler are based on parallel
matrix operations for clusters. They pave the way to anotherfrontier of research:
optimising the quantum assembler task on the extended toolbox of quantumCISC-
modules with effective many-qubit interactions. It is anticipated [53] that methods
developed in classical computer science, e.g., for fast Fourier transforms [19, 20,
54], can also be put to good use for systematically optimising quantum assemblers.

Acknowledgements

This work was supported in part by the integratedEU projectQAP and byDeutsche
Forschungsgemeinschaft, DFG, within the incentiveSFB-631. Via project h1051 ac-
cess to the high-performance parallel clusterHLRB-II at Leibniz Rechenzentrum of
the Bavarian Academy of Science is gratefully acknowledged.

References

[1] J. Dowling and G. Milburn, Phil. Trans. R. Soc. Lond. A361, 1655 (2003).
[2] T. Gradl, A. K. Spörl, T. Huckle, S. J. Glaser, and T. Schulte-Herbrüggen, Lect. Notes Comput.
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