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Abstract The project encompasses matrix method developmentggdifaralleli-
sation as well as cutting-edge applications exploitingotwer of theHLRB-11 clus-
ter: fast matrix exponential algorithms using Chebysheieseare devised in view
of calculating quantum dynamics of large systems. Theyeartmpm the standard
Padé-approximation by a speed-up of approximately 30%ria time while ob-
taining even better accuracy. The routines are incorpdiate a fully parallelised
package of gradient-flow algorithms for optimal quantumtomn

As an application, here we present a quantusc compiler: it breaks large target
unitary gates into modules of effectinequbit (i.e. two-level system) interactions.
We extend the standard restricted set of modules mith 1,2 (RISC) to a scalable
toolbox of multi-qubit optimal controls witim < 10 forming modules of complex
instruction sets¢isc). Typically, the instruction code (‘experimental cong’plby
our quantumcisc compiler is some three to ten times faster tharric compi-
lation thus dramatically saving the essential quantum i@ites from unnecessary
relaxative decay with time. This advantage of our method stendard universal
gates is demonstrated for the indirsgtap gate, the quantum Fourier transform as
well as for multiply-controlledvoT gates.
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I ntroduction

Quantum control plays a key role for steering quantum harewgstems in both
gquantum- and nano-technology [1]. However, for exploiting power of quantum
systems, one has to steer them by classical controls witkithpes of these con-
trols critically determining the performance of the quamtsystem. Thus providing
computational infrastructure for devising optimal shapgasing high-performance
computer clusters is tantamount to exploiting the poweresent and future quan-
tum resources. The task is computationally particulartypdeding since the classi-
cal resources needed grow exponentially with the size ofjttatum system.

More concretely, quantum dynamics of closed systems iagniith the sys-
tem HamiltoniarH being the generator of the one-parameter group of unitary ti
evolutionU = e ™. Numerical calculation of quantum dynamics thus hinges on
algorithms for fast matrix exponentials. Here, we devisel@fshev-series methods
that exploit symmetries of pertinent Hamiltonians. They ba readily incorporated
into a fully parallelised programme package of optimal quemcontrol designed
to exploit the capacities of theLRB-1I cluster architecture by distributing matrix
operations to different nodes with little communicationl@torage cost. In systems
of 10 spin qubits, the time gain by parallelisation is beyantictor of 500 on a
128-cpu cluster as compared to standard techniques on a single ridkde same
cluster [2].

Also in terms of computation, quantum systems provide aumpptential for co-
herent parallelisation that may exponentially speed-gprithms as in Shor’s prime
factorisation. Again, compiling a target quantum unitargcule into the machine
code for steering a concrete quantum hardware device l¢ésalbto be tackled by
means of optimal quantum control. To this end, there are fiferdnt approaches:
(i) one may use a decomposition into the restricted insvoctet of so-called uni-
versal one- and two-qubit gates that in turn have prefataittanslations into the
machine code or (ii) one may prefer to generate the entigeetanodule directly
by a complex instruction set of available controls. Here weogate direct com-
pilation up to the limit of system size a classical computaster can reasonably
handle. For large systems we propose another way, namiglio(inake recursive
use of medium-sized building blocks generated by optimatrabin the sense of a
quantumcisc compiler. Implications for upper limits to time complexis are also
derived.

Scope and Organisation of the Paper

This account comprises two sections, the first of which isicdd to develop-
ing numerical matrix exponential and matrix multiplicatialgorithms on parallel
clusters. The second section then presents novel apphsato wit a quanturaisc
compiler. In doing so, the account shows how fast matrix westallowing to main-
tain full parallelisation on high-performance clusters\ide the basis for cutting-
edge applications, e.g., in optimal quantum control. Imttinese control methods
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Figurel Comparison of theprutimes required for calculating one matrix exponential asre{
tion of the system size, wherequbits translate into a complex matrix of dimensidh-22"; (a)
logarithmic scale, (b) linear scale.

can be put to good use for finding optimised experimentatistge of quantum de-
vices in realistic settings as they occur in a broad arrayppfieations comprising
quantum electronics, nanotechnology, spectroscopy, aadtgm computation.

1 Development of Computational Methods

Faster algorithms for matrix exponentials on high-dimenal systems have been
developed in view of application to large quantum systene ewtended our paral-
lelisedc++ code of thesRAPE package described in [2] by adding more flexibility
allowing to efficiently exploit available parallel nodeglapendent of internal pa-
rameters. Thus computations could be performed orHtt®RB-11 supercomputer
cluster atleibniz Rechenzentrum of the Bavarian Academy of Sciences Munich. It
provides arsGlI Altix 4700 platform equipped with 9728 Intel Itanium2 Moot
Dual Core processors with a clock rate 06 IGHz, which give a totalINPACK
performance of 63 TFlops/s. Following our previous work on time-optimal eon
trol [3], we used thesRAPE algorithm [4] in order to realise unitary target gates in
shortest times still allowing for full fidelity.

1.1 Fast Matrix Exponentials

A task paramount to calculating time evolutions of quantystems hinges on fast
numerics: it is the computation of the matrix exponentidlguantum mechanical
system Hamiltoniansi. With H being complex Hermitian, the propagator™ is
unitary. The problem of computirgr™™ can be reduced to two problems of the half
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size with real numbers by exploiting the persymmetry proesiofH. For details
see [2]. _
The matrix exponentia M is defined by the infinite series

”W:W—Hkm. 1
e k;(l)/ 1)

Although over the years a plethora of different methods heenhdevised for cal-
culating matrix exponentials, none of them is fully sat$fay. This is why they
are sometimes referred to as ‘dubious’ [5, 6]. Standardrilgos include the Padé
approximation as well as the eigendecomposition, both atlwive use as refer-
ences. Here, we advocate to calculate the matrix expohbgt&aChebyshev series
expansion. To this end, we need the Chebyshev polynomidiedirst kind given
by the following three-term recurrence formula

To(x) =1 (2)
Ti(x) = x Q)
Ter1(X) = 2XTi(X) — Teea(x) . 4)

With respect to the weight functicm(x) = (1— x?)~1/2, these polynomials are or-
thogonal. In this sense, a functidiix) with argumentsx| < 1 can be represented
by an infinite Chebyshev series according to

[oe]

1
f(x) = aTk(x) with coefficients a = E/ f(X) Tk(X)
2 m) 1

dx
V1—x2

Details can be found in [7, 8]. In our ca$¢x) = e* and the coefficients then take
the special formay, = 2ikJ(—i) with the Bessel functiong. For|x| < 1 this leads
to e = Jo(i) + 251 i*X(~i)Tk(x). Therefore the matrix exponential ofiH sat-
isfying the normalisation conditiofH || < 1 is given by

(%)

e M= Jo(i)]J+2§ iKg (=D Te(—iH) . (6)
k=1

Table 1 Matrix Multiplications Needed to Approximate PolynomialsDifferent Degrees

degree of polynomiahn 4 6 8 10 12 14 16 18 20

no. of matrix multiplications
for Horner scheme 3 5 7 9 11 13 15 17 19

for optim. reordering 2 3 4 5 5 6 6 7 7
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Figure2 Compariing of the accuracy of different methods subjedhéostystem size: (a) deviation
from unitarity measured by’ (—iH)TW(—iH) — 1]|; (b) errors|e " — W(—iH)|| of the different
approximation method¥’. These results could be obtained, when dealing with Hamétts of
special properties, which allow to get the exact target erptal.

For dealing with Hamiltoniansl of arbitrary finite norm, the ‘scaling and squaring’
technique is applied. As shown before, the Chebyshev meathbdrequires the
computation of a single matrix polynomial per matrix expotied. Since the cost of
matrix multiplications supersedes the cost of matrix addg by far, we are inter-
ested in reducing the number of required matrix multiplaras. When using a con-
servative method like the Horner scheme;- 1 matrix multiplications are required
for evaluating a matrix polynomial of degre®e Moreover, as shown in Tab. 1, one
can reduce the number of matrix multiplications by a suéaistiering. For instance,
the matrix polynomiap _, a A can be rewritten aS;_o oA+ A3 (32_; oy, 3AX)
where only three (instead of five) matrix multiplication® aequired. In general,
only ¢'(/m) nonscalar multiplications are necessary to evaluate anpatyal of
degream. In this sense the partial sum of the Chebyshev series expai® can be
evaluated very efficiently [9].

As shown in Fig. 1, the new Chebyshev algorithm for takingrir@&xponentials
outperforms the standard Padé approximation by a speed-8@% incpPu time.
Note this acceleration is even more pronounced than thediffexence between
eigendecomposition and Padé approximation. Moreovengnical checks illustrate
(see Fig. 2) that in cases, where the target matrix expadesngxactly known, the
Chebyshev series allows for higher accuracy both in terndesfation from the
target exponential, as well as in terms of deviation fromaurtty

1.2 Adapting Parallelisation to the HLRB-I1 Cluster

In preparative work [2], we implemented two algorithms faultiplying a series of
matrices as repeatedly needed in &raPE programme package for optimal quan-
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Figure3 (a) Slice-wise matrix multiplication provides a simple wafyparallelisationUg, denotes
the (k+ 1)-fold productUyUg_1 - - -Up in the GRAPE-algorithm. The resulting complexity i8(M -
N2/p). Communication between the process®is needed solely for broadcasting the matridgs
prior to propagation. (b) Scheme for tree-like propagatlorthis example, propagation is carried
out in three steps. Red lines indicate communication betwééerent processors.

tum control. The algorithms differ in run-time and, most ongantly, in memory
demand. Moreover, the memory redistribution was optimiaed tailored to the
specific needs of theraPEalgorithm.

1.2.1 Slice-Wise Propagation

The matrix matrix multiplicatiorAB, with A,B € Matn«n(C) can most easily be
splitinto jobs distributed to differertPus by taking say the roway of A separately
as

AB = (ag;ap;...an)B= (ayB;asB; ... ;anB) . (7)

This scheme is readily extendible kaout of the total ofM matrices multiplied in

the GRAPEalgorithm (see Fig. 3(a)). However, each processor thfsrsg¢ok —

1 matrices, which means that they have to be broadcasted, tis workspace
required by each processor is of the orderM - N?). The time complexity in

this straightforward scheme can easily be evaluated, Isecthe total number of
operations is evenly distributed among the available m®mes. So the order of
operations ig7(M -N3/p), wherep is the number of processors.

1.2.2 Tree-Like Propagation

A different approach for computing the propagation is theafhel prefix algorithm
[10] depicted in Fig. 3(b). In an extension to previous wdk [t is now applicable
to arbitrary combinations of number of processprand number of matriced!.
In contrast to slice-wise propagation, parallel prefix isggicommunication during

the propagation (red lines in Fig. 3(b)): they sum u@@gzzM[Broadcast(m, p=
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Table 2 Contributions of Parallelised Matrix Operations to Oveggeed-up.

Subroutine Fraction ofpPu Time Weighted
with 1 cpu with 128cpPus Speed-up
maxStepSize 0.9 0.713 521
getGradient 0.091 0.287 52.6
expm 0.075 0.049 43.0
propagation 0.01 0.194 6.0
gradient 0.006 0.044 35
optimiseCG 1 1 576

271y + (I — 1) - Send(N3)], provided the times foBroadcast and Send are not
influenced by other ongoing communication. Recalling theygotation time of
O(M -N3/p) for the slice-wise propagation, parallel prefix should meye faster
(neglecting effects like memory prefetching). On the oteand, parallel prefix does
not require all the matricddy in all processes, which eliminates the broadcast time
prior to the propagation step. It is this advantage thatrigel@&nough to outweigh
the slower propagation time. Even more important is theeedumemory demand.

In our current implementation the maximum number of magristered at a single
process i/ (log, M) [Py produces one result in every level], which is already much
less than th&' (M) of the slice-wise propagation.

As summarised in Tab. 2, for a 10-qulgitT, the parallelisation techniques in
combination with other algorithmic improvements resultairspeed-up by more
than a factor of 576 on 128 processors of therB-11 (PHASE 1) as compared
to using one node of the same computer. To further improveffigency of the
implementation, a hybrid method comprising slice-wise &eé-like propagation
is being developed. The data transfer will be optimised bylwaing blockwise
computation and hidden communication in a cache-oblivweays

2 Application: Developing a Quantum CISC Compiler

Richard Feynman’s seminal conjecture of using experintigrcantrollable quan-
tum systems to perform computational tasks [11, 12] rooteeducing the com-
plexity of the problem when moving from a classical settin@tquantum setting.
The most prominent pioneering example being Shor’s quaiigorithm of prime
factorisation [13, 14] which is of polynomial complexitg@pP) on quantum devices
instead of showing non-polynomial complexity on classaats [15]. It is an exam-
ple of a class of quantum algorithms [16, 17] that sdiidden subgroup problems

in an efficient way [18], where in the Abelian case, the spegtiinges on the quan-
tum Fourier transformdrT). Whereas the network complexity of the fast Fourier
transform €FT) for n classical bits is of ordef’(n2") [19, 20], theQFT for n qubits
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shows a complexity of orde? (n?). Moreover, Feynman’s second observation that
guantum systems may be used to efficiently predict the bebawf other quantum
systems has inaugurated a research branch of Hamiltommrtegion [21-26].

Define byU (1) := e mHum...eiHk e ihi the propagator brought about
by a sequence of evolutions of the quantum system ukbprece-wise constant
HamiltoniansHy. Then the compilation task is to approximate sdvgggetby U (T)
(i) with high fidelity and (ii) with least dissipative loss,ge, with minimalt := 3 ti.

For implementing a quantum algorithm in an experimentalselocal opera-
tions and universal two-qubit quantum gates are requiredramimal set ensuring
every unitary module can be realised [27]. More recentlyrited out that generic
qubit and qudit pair interaction Hamiltonians suffice to @d@ment local actions
to universal controls [28, 29]. Common sets of quantum cdatmnal instructions
comprise (i) local operations such as the Hadamard gatphége gate and (i) the
entangling operationsNOT, controlled-phase gateg,SWAP, i SwAP as well as (iii)
the swAP operation. The number of elementary gates required foramphting a
quantum module then gives the network or gate complexityvéver, gate com-
plexity often translates into too coarse an estimate foraitteal time required to
implement a quantum module (see e.g. [30-32]), in particiilthe time scales of
a specific experimental setting have to be matched. Insedtdt has been taken
to give upper bounds on the actual time complexity [33],,dagway of numerical
optimal control [3].

Interestingly, in terms of quantum control theory, gxestence of universal gates
is equivalent to the statement that the quantum systemiliscontrollable as has
first been pointed out by Ramakrishna and Rabitz [34]. Thie.t the case in sys-
tems ofn spin-% qubits that form Ising-type weak-coupling topologies dixsd by
arbitrary connected graphs [35—-37]. Therefore the usyaicgzh to quantum com-
pilation in terms of local plus universal two-qubit opeacais [38—42] lends itself to
be complemented by optimal-control based direct compitaitito machine code:
it may be seen as a technology-dependent optimiser in tree sgrRef. [41], how-
ever, tailored to deal with more complex instruction setmtthe usual local plus
two-qubit building blocks. Not only is it adapted to the siie@xperimental setting,
it also allows to fight decoherence by either being near tptiewl or by exploiting
decoherence-protected subspaces [43]. Devising quardamitation methods for
optimised realisations of given quantum algorithms by adibie controls is there-
fore an issue of considerable practical interest. Herdlitdgyoal to show how quan-
tum compilation can favourably be accomplished by optinmaitol: the building
blocks for gate synthesis will be extended from the usuabsedstricted local plus
universal two-qubit gates to a larger toolboxsoélable multi-qubit gates tailored
to yield high fidelity in short time given concrete experirtadrsettings.

Organisation of the Application Section

Following Ref. [44], the purpose of this section is to shoattbptimal control the-
ory can be put to good use for devising multi-qubit buildingdks designed for
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Figure 4 Compilation in classical computation (left) and quantunmpatation (right). Quan-
tum machine code has to be time-optimal or protected agdissipation, otherwise decoherence
wipes out the coherent superpositions. A quantusic-compiler (1) by universal gates leads to
unnecessarily long machine code. Direcs c-compilation into a single pulse sequence (2) exploits
guantum control for a near time-optimal quantum machinesctid classical complexity isP, so
direct compilation by numerical optimal control resortitoga classical computer is unfeasible for
large quantum systems. The third way (3) promoted here gugientuncisc-compilation to the
limits of classical supercomputer clusters and then askesntie multi-qubit complex instructions
sets recursively into time-optimised or dissipation-padéd quantum machine code.

scalable quantum computing in realistic settings. Noteahmuiilding blocks are no
longer meant to be universal the practical sensethat any arbitrary quantum mod-
ule should be built from them (plus local controls). Ratheytprovide specialised
sets of complex instructions tailored for breaking downidgptasks in quantum
computation with substantial speed gains compared to #melatd compilation by
decomposition into one-qubit and two-qubit gates. Thass quantum compiler
translates into significant progress towards the quantuon-eorrection threshold.
For demonstrating scalable quantum compilation, we chegsems with lin-

ear coupling topology, i.e., qubit chains coupled by ndamegyhbour Ising inter-
actions. The section is then organised as follomsc quantum compilation by
optimal control will be illustrated in three different, ytypical examples

(1) the indirect In-swApP gate,

(2) the quantum Fourier transformkT) ,

(3) the generalisation of thenoT gate to multiply-controllesioT gatesC"NOT.

For every instance af-qubit systems, we analyse the effects of (i) sacrificingeini
sality by going to special instruction sets tailored to thetyem, (ii) extending pair
interaction gates to effective multi-qubit interactiontegms, and (iii) we compare
the time gain by recursiverqubit cisc-compilation (n < n) to the two limiting
cases of the standarisc-approach ifh = 2) on one hand and the (extrapolated)
time-complexity inferred from singleisc compliation (withm = n).

2.1 Quantum Compilation as an Optimal Control Task

As shown in Fig. 4, the quantum compilation task can be addefllowing differ-
ent principle guidelineg1) by the standard decomposition into local operations and
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universal two-qubit gates, which by analogy to classicatpotation was termes-
duced instruction set quantum computatiorr{sc) [45] or (2) by using direct com-
pilation into one singleomplex instruction set (C1sc) [45]. The existence of a such
a single effective gate is guaranteed simply by the unggoeming a group: a se-
quence of local plus universal gates is a product of unsaum thus a single unitary
itself.

As a consequencejsc quantum compilation lends itself to be treated by numer-
ical optimal control. One thus resorts to clusters of clzdstomputers for translat-
ing the unitary target module directly into the ‘machine e€oaf evolutions of the
quantum system under combinations of the drift Hamiltomaand experimentally
available controlsi;.

In a number of studies on quantum systems up to 10 qubits, weediwn that
direct compilation by gradient-assisted optimal contBoH], 46] allows for substan-
tial speed-ups, e.g., by a factor of 5 focaoT and a factor of 13 for a Toffoli-gate
on coupled Josephson qubits [46]. However, the direct ambraaturally faces the
limits of computing quantum systems on classical devicpsnyparallelising our
c++ code for high-performance clusters [2], we found thaeeging the quantum
system by one qubit increases theu-time required for direct compilation into
the quantum machine code of controls by grossly a factorgifte5o the classical
complexity for optimal-control based quantum compilati®nPp.

Therefore, here we advocate a third appra@}tthat uses direct compilation into
units of multi-qubit complex instruction sets up to theu-time limits of optimal
quantum control on classical computers: these buildingksiare to be taken as
fundamental units designed such as to allow for recursiaabte quantum compi-
lation in large quantum systems (i.e. those beyond cldssicaputability).

Time Standards

When comparing times to implement unitary target gates byrtsc vs the cisc
approach, we will assume for simplicity that local unitapeoations are ‘infinitely’
fast compared to the duration of the Ising coupling evoluscaled by the cou-
pling constantlzz so that the total gate time is solely determined by the cagpli
evolutions unless stated otherwise. Let us emphasise MeoyiRis stipulation only
concerns the time standards. The optimal-control ass@ted compilation meth-
ods presented here are in no way limited to fast local comtAlso the assembler
step of concatenating thmsc-building blocks is independent of the ratio of times
for local operationss coupling interactions.

Error Propagation and Relaxative L osses
As the main figure of merit we refer to a quality functigmesulting from the fi-

delity Ry and the dissipative decay with overall relaxation rate tamdg during a
durationt
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q=FRre /TR (8)
assuming independence. Moreover, fiaqubits one defines as the trace fidelity of
an experimental unitary moduléex, with respect to the target gat&arget (thus
U,V € U(N) with N :=2")

R % Re tr{vtgrgepexp}

(9)

= 1— 5y [Viarget— Uexpll3
which follows via the simple relation to the Euclidean dista
IV =V =lU[3+ V|5 - 2Ret{VU}
=2N - 2Ni Ret{V'U}
=2N(1-Fy) ,

the latter two identities invoking unitarity.

Consider a multiqubit-interaction moduleiéc) with quality gm = Fy e ™/
that decomposes intouniversal two-qubit gateR(sc), out of whichr ’ < r gates
have to be performesbquentially. Moreover, each 2-qubit gate shall be carried out
with the uniform qualityg, = F» e 2/T2. Henceforth we assume for simplicity equal
relaxation rate constants, 36 = Ty, are identified withTg. Then, as a first useful
rule of the thumb, it is advantageous to compile the multigoiodule directly if
Fm > ()", or more precisely taking relaxation into account, if thedumle can be
realised with a fidelity

Fin> (Fp) e ("2 (10)

2.2 1,n SWAP

The easiest and most basic example to illustrate the pattaféects of optimal-
control basea1sc-quantum compilation is the respective indirech-BWAP gates
in spin chains of qubits coupled by nearest-neighbour Ising interactiork Wi,
denoting the coupling constant.

For the 12-swaP unit there is a standard textbook decomposition into three
CNOTs. Thus for Ising-coupled systems and in the limit of fastlarontrols, the
total time required for an,2-swApis 3/(2Jzz), and there is no faster implementa-
tion [3, 47—-49]. Note, however, that in systems coupled igbtropic Heisenberg
interactionXXX, the 1 2-swAP may be directly implemented just by letting the sys-
tem evolve for a time of only A(2Jxxx ). Sacrificing universality, it may thus be ad-
vantageous to regard theZkswAP as basic unit for the /h-swAP task rather than
the universalcNOT. Note, however, any,h-swapP can be built from 12-swaAps:
following the most obvious scheme of Fig. 5(a) shows how todgpose an even-



12 T. Schulte-Herbriiggen, A. Sporl, K. Waldherr, T. Gy&lU. Glaser, and T. Huckle
(@) (b) (©

11— — 2m’

! 1 1 —] = 3m-2

(1,m)SWAP (1,m)SWAP ©| (Lm)SWAP Lo @m)SWAP | !

2 2 mo— = " m' — — m'
: i | (m)swap I

ii | mswar (Lm)SWAP © | (Lm)SwaAP | ©o@m)swAP |t

1 1 3m-2 — 1 2m' — — 1

Figure5 Assembling the In-swap gate from different building blocks: (a) by recursive use of
1,2-swAPs, (b) by three symmetric blocks ofri-swAPs or (c) by two blocks of Im’-swaps and
an interior 12-SwAP.
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Figure 6 Left: Times required for indirect,h-swaAPs on linear chains afi Ising-coupled qubits
by assembling dm-swap building blocks reaching frorm = 2 (Ri1SC) up tom= 8 (ci1sC). The
time units are expressed asJt; assuming the duration of local operations can be neglected ¢
pared to coupling evolutions (details in the text). Rigthrarislation of the effective gate times into
over-all quality figuresy = (qm)™ for an effective gate assembled fram components of single
qualitiesq, := Fm e ™ TR (with the respective component fidelities homogeneouslingginto a
narrow intervaFmy € [0.999940.99999 for m= 3, ..., 8). Data are shown for a uniform relaxation
rate constant of ATg = 0.004Jzz.

order 12n-swAp into units of 12-swaps. For the odd-order counterpatrt, i.e., the
1,(2n— 1)-swAP, just omit the qubit numberrRand all the building blocks con-
nected to it. Moreover, the generalisation to decomposihg3m— 2)-SWAP into
three 1m-swAP building blocks is also immediate, e.g., settimg= 2 in Fig. 5(b)
reproduces part (a).

Now, the 1 m-swaP building blocks themselves can be precompiled into time-
optimised single complex instruction sets by exploiting #rRAPE-algorithm of
optimal control up to the current limits ofiimposed bycpPu-time allowance.

Proceeding in the next step to langeFig. 6 underscores how the time required
for 1,n-swAPs decreases significantly by assembling precompiledwap build-
ing blocks ascisc units recursively up to a multi-qubit interaction sizerof= 8,
where the speed-up is by a factor of more th&@61Clearly, such a set of i-swApP
building blocks withm € {2,3,4,5,6,7,8} allows for efficiently synthesising any
1,n-SWAP.
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Figure 7 Fork > 2, a(km)-qubit QFT can be assembled frolntimes anm-qubit QFT and (;)

instances of 2rqubit modules B-SWAP’Zm, where the indey of different phase-rotation angles

takes the valueg=1,2,..., k—1. The dashed boxes show the inductior k+ 1.

However, deducing from Fig. 6 that the time complexity ofi-EwAPs is linear
is premature: although the slopes seem to converge to aeronimit, numerical
optimal control may become systematically inefficient fargler interaction sizes
m. Therefore, on the current basis of findings, a logarithimetcomplexity cannot
ultimately be excluded.

Summarising the results for the indirextvapPs in terms of the three criteria de-
scribed in the introduction, we have the following: (i) ifng coupled qubit chains,
there is no speed-up by changing the basic unit from the tsaleNoOT into a
1,2-swAP, whereas in isotropically coupled systems the speed-upatado a fac-
tor of three; (ii) extending the building blocks ofrswapPs fromm = 2 (RISC) to
m= 8 (CISC) gives a speed-up by a factor of nearly two (1.96) even ursilegitype
couplings; (iii) the numerical data are consistent withmaeticomplexity converging
to a linear limit for the 1n-swaptask in Ising chains, however, there is no proof for
this yet.

2.3 Quantum Fourier Transform (QFT)

Since many quantum algorithms take their advantage by eftiyi solving some
hidden subgroup problem, the quantum Fourier transforiysgacentral role.

In order to realise ®FT on large qubit systems, our approach is the following:
given anm-qubit QFT, we show that for obtaining @- m)-qubitQFT by recursively
usingm-qubit building blocks, a second type of module is requitedyit a com-
bination of controlled phase gates asdiaps, which henceforth we dubm-qubit
cP-SWAP for short.

One arrives at the desired block decomposition of a gerf&rah)-qubit QFT
as shown in Fig. 7: it requirdstimes the samen-qubit QFT interdispersed with
(;) times an n-qubit cP-swaP, out of whichk — 1 show different phase-rotation

angles. Foralmandj =1,2,...,(k— 1), onefinds (i) a B-SWAP%m takes as least as
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Figure 8 Comparison ofcisc-compiledQrFT (red) with standardrkisc compilations following
the scheme by Saito [50] (black) or Blais [51] (blue): (a)esrfor implementation translate into
quality factors (b) for a relaxation rate constant gTd = 0.004Jzz.

long as aQF Ty, ; (i) @ QF Ty, takes as least as long asrEWARY; (i) a cP-SWAF)
takes least as long as B-sWAPL * . Thus the duration of 8- m)-qubit QFT built
from m-qubit and 2n-qubit modules amounts to

108 = 2.1(QFT) + (K— 1) - T(CP-SWAPy,) + (k—2) - T(CP-SWAFS,) . (11)
In the following, we consider the overall quality of(&- m)-qubit QFT in terms
of its two types of building blocks, namely the basiequbit QFT as well as the
constituent rqubit cP-swaps with their respective different rotation angles. We
will neglect rotations as soon as their angle falls shortiirashold ofrr/21°. This
approximation is safe since it is based on a calculation dd-gubit QFT, where
the truncation does not introduce any relative error beybdic. Following the
block decomposition of Fig. 7, thus three variants pfswaps are left, since all
CcP-SWAP], elements withj > 3 boil down to mereswaP gates due to truncation of
small rotation angles.

With these stipulations, the task of assembling(lan10)-qubit QFT translates
into using 10-qubit B-swaP building blocks (2n= 10) and the 5-qubihFT (m=>5)
in the sense of &k - 5)-qubit QFT. Its durationt (QFT.s) is then readily obtained
as in Egn. 11 thus giving an overall quality of

qQFT2k~5 —
(RO (thP'SWAPllO)Zkfl (thP'SWApzlo)Zk*Z (Ft(;P'SWAP310)(22k)74k+3 o /TR

(12)

Based on this relation, Fig. 8 shows the numerical resultiseoturrent calculations
on theHLRB-1I cluster, where the quality of asc-compiled (k- 10)-qubit QFT is
notably superior to the standarasc versions [50, 51].
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Figure9 Comparison of implementations of tk@NoT on linear Ising-coupled spin chains using
2-, 3- and up to 6-qubit building blocks in terms of time (ajl@uality factors (b) under relaxation
with a rate constant of g = 0.004z;.

2.4 Multiply-Controlled NOT Gate (C"NQOT)

Multiply-controlledcNOT gates generalise Toffoli’s gate, whichd$NoT to C"NOT.
They frequently occur in error-correction schemes heneg firactical relevance.

Here we address the task of decomposimfeoT into cC™NOTs and 1m swAP
gates given the topology of a linear chain mf- 2 qubits coupled by nearest-
neighbour Ising interactions. The reasonfiier 2 qubits being an ancilla qubit that
turns the problem to linear complexity [52]. As describeseaihere [44], there is
an analogous, yet more elaborate induction to prove ra@ussialable assembling
schemes. Here, we just present the results. Fig. 9 conglycttemonstrates that
cisc-compilation to 10-qubit building blocks is a significanhg saver thus trans-
lating into superior over-all qualities under realistimditions. These results are of
great practical importance, since 0T gates are a cornerstone in quantum error
correction.

3 Conclusion

By numerical developments using, e.g., Chebychev expas$i a fast matrix ex-
ponential and Strassen-type matrix multiplication teghes, a fully parallelised
programme package with parallel matrix operations on ehsstas been provided.
Quantum control theory is a powerful framework for devisailgorithms to steer
quantum devices with optimal figures of merit. Controllingagtum systems ex-
perimentally is central to many branches of quantum teauwincluding nan-
otechnology, quantum information processing and spexms However, to find
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such steerings is a—classically—computationally denmgidisk, as the resource re-
quirements grow exponentially with the size of the quantystean. We have ex-
ploited recent progress allowing to use high-end paralledters. Building upon
these achievements, theRB-II cluster has been used for obtaining progress in the
following fields:

1. an optimal-control based quantwrsc compiler that recursively uses medium-
sized modules for addressing quantum systems of dimen#ianare too large
to be handled otherwise;

2. a cisc compiler allows for assembling optimal quantum controlstgcted
against decoherence [43].

The cutting-edge applications of a quantansc compiler are based on parallel
matrix operations for clusters. They pave the way to anditostier of research:
optimising the quantum assembler task on the extendedawabquantunmcisc
modules with effective many-qubit interactions. It is aigated [53] that methods
developed in classical computer science, e.g., for fasti€otransforms [19, 20,
54], can also be put to good use for systematically optirgigimantum assemblers.
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