Preprint version

http://link.springer.com/chapter/10.1007%2F978-3-642-40047-6_50

Cluster Optimization and Parallelization of
Simulations with Dynamically Adaptive Grids

Martin Schreiber, Tobias Weinzierl, and Hans-Joachim Bungartz

Technische Universitdat Miinchen,
Boltzmannstrasse 3,
85748 Garching

{martin.schreiber,weinzier,bungartz}@in.tum.de

Abstract. The present paper studies solvers for partial differential equa-
tions that work on dynamically adaptive grids stemming from spacetrees.
Due to the underlying tree formalism, such grids efficiently can be decom-
posed into connected grid regions (clusters) on-the-fly. A graph on those
clusters classified according to their grid invariancy, workload, multi-core
affinity, and further meta data represents the inter-cluster communica-
tion. While stationary clusters already can be handled more efficiently
than their dynamic counterparts, we propose to treat them as atomic
grid entities and introduce a skip mechanism that allows the grid traver-
sal to omit those regions completely. The communication graph ensures
that the cluster data nevertheless are kept consistent, and several shared
memory parallelization strategies are feasible. A hyperbolic benchmark
that has to remesh selected mesh regions iteratively to preserve con-
forming tessellations acts as benchmark for the present work. We discuss
runtime improvements resulting from the skip mechanism and the impli-
cations on shared memory performance and load balancing.

Keywords: dynamic adaptivity, cluster skipping, shared memory load balanc-
ing, space-filling curve

1 Introduction

Mesh-based solvers for partial differential equations (PDEs) that rely on the com-
bination of recursive spatial sub-refinement with space-filling curves (SFCs) are
popular in multiple application fields [1, 6,13, 15,21]. They embed the computa-
tional domain into a geometric primitive or a strip of primitives, and subdivide
the primitives locally and recursively into smaller primitives. Those primitives
are ordered along the SFC. Such a spacetree formalism facilitates dynamically
adaptive grids and parallel mesh processing, as the curve prescribes a unique
total mesh element order that can be cut into equally sized partitions for paral-
lelization. In particular matrix-free solvers with heterogeneous solution smooth-
ness such as explicit schemes for hyperbolic conservation laws resolving shock
fronts benefit from the dynamic adaptivity [11]. They then usually sweep the

Fig. 1. Shock wave runs through domain while the grid changes dynamically and de-
composes into clusters. Some of them were removed from the right illustration.

grid once per time step and update (partially) the solution in each grid cell [7,
20].

An efficient single compute node grid traversal here is essential. Multiple
spacetree codes report on memory-efficient encodings, while the space-filling
curve implies high memory access locality due to hash tables [9] or stack-based
grid data schemes [1, 21, 22], e.g. Both ingredients tackle the memory bandwidth
challenge which is expected to be one of the most crucial challenges in upcoming
architectures [4] . We refer to [21,22] and remarks therein for measurements.
Skipping coarser levels of the tree and to traverse only its leaves are further
techniques reducing the total workload [2, 6] if the geometric multi-scale struc-
ture is not required. Tree cuts developed for geometric multigrid solvers in turn
allow to skip grid regions under-running a given mesh size threshold [21]. To the
best of our knowledge, there is however neither a formalism nor an analysis of a
technique that allows to skip whole grid regions independent of their resolution.

The present paper discusses an approach where multi-scale grid regions are
skipped throughout the subsequent traversal. This speeds up algorithmic phases
where either only spatial subregions are of interest or a holistic mesh processing
does not justify the effort . Examples are meshing traversals reconstructing a
proper 2: 1 balancing [17] or local time stepping where regions lagging behind
in time have to be updated prior to other mesh elements [7,20]. An example for
the latter are solvers for linear equation systems that update preferentially sets
of unknowns with significant residuals [16]. While the present work focuses on
triangle-based meshing in combination with the Sierpiniski space-filling curve [3],
all paradigms can directly be applied to other SFC-based codes.

Obviously, an on-the-fly choice of spatial subsets handled by the traversal
interplays with the traversal’s concurrency and the parallelization—in partic-
ular if massive numbers of tightly coupled cores have to be handled that are
sensitive to NUMA effects, ill-balancing, latency, and tasking overhead [4, 18].
We introduce a shared memory parallelization that does not deteriorate due to
the skipping and compare it to straightforward task-based parallelization. Re-
duced memory access and improved data affinity here compensate the reduced
concurrency level.

The remainder is organized as follows: We first briefly describe the mesh
paradigm and define the term cluster (Sect. 2). In Sect. 3, we then pick up
this formalism to introduce the cluster skip mechanism. Implications of this
mechanism on the shared memory load balancing and communication behavior

are subject of the subsequent section, where we also introduce our affinity-aware
implementation. Some results for a benchmark exhibit promising performance
properties, before a brief conclusion and outlook in Sec. 7 close the discussion.

2 Grid construction and clustering

Our grid follows the spacetree/-forest formalism [1, 6,21, 22]: The computational
domain is embedded into a triangle or a strip of triangles . For each triangle,
we autonomously decide whether this triangle shall be split once. Such a scheme
yields a binary tree or forest where triangles obtained due to a split are children
of their preimage. Both the splitting rule and the order of the two children
follow the construction scheme of the Sierpiiiski space-filling curve (SFC), i.e. the
curve prescribes which triangle faces may be split, and the curve induces an
order on the children [1,2,18]. The SFC in combination with depth-first defines
a total order on all triangles of all levels. Let the level of a triangle be the
minimum number of refinement steps required to construct the triangle. The
initial triangle or the initial triangle strip , respectively, have level zero. Unrefined
triangles are leaves. Unknowns are assigned to leaves only. We reiterate from [21,
22] that a depth-first traversal of the spacetree induces an element-wise traversal
of the leaves. Such a depth-first traversal can be formalized and realized as stack
automaton [14, 21] triggering in turn a matrix-free solver.

Starting from the notion of a binary triangle tree yielding the adaptive grid
or a binary forest, respectively, we introduce the following notions: A cluster is
a subtree of the binary mesh tree. It is identified by a unique tree node (empty
circle in Fig. 2). If a triangle belongs to a cluster, all its successors, i.e. all finer
triangles covered by it, belong to the same cluster, too. As the SFC defines a
depth-first total order on all triangles, it induces an order on the clusters.

Let C be the set of clusters, and let each cluster have a list of neighbor clusters,
i.e. clusters whose triangles shared at least one face or a part of it with a triangle
from the respective cluster. The following algorithm clusters the spacetree:

— Assign each leaf a weight W = 1 and a marker R = 0.

— Let each cluster in C hold exactly one unrefined triangle and vice versa.
Each cluster has at most three neighbors. The cluster cardinality equals the
number of leaves.

— Run through the spacetree bottom-up:

D\ N
N\,
N N\
N \P

Fig. 2. Domain triangulation with clusters marked with thick borders (left). Represen-
tation of same grid by a binary tree constructed with the Sierpiniski SFC (right).

e Set a refined node’s weight to the sum of the left and the right child,
ie. W =Wips + Wips.

o If W < Wijoin being a given threshold, merge the two clusters of the
right and the left child. Replace these two cluster triangles in C by their
parent, i.e. reduce C’s cardinality by one. Also merge the neighbor lists
of the two children. This is an operation with linear complexity.

— Run through the spacetree top-down:

o If a node is the left child of a parent triangle, set R = Rpgrent-
o If a node is a right child of a parent triangle, set R = Rparent + Wins.

The algorithm assigns each leaf to one cluster (Fig. 2). The clusters’ size is
controlled via Wjsy,. Each cluster has a distinguished coarsest triangle holding
its W and R value, and each cluster knows all of its neighbor clusters. Once such
a clustering is found, we easily can adopt it whenever the grid changes. For this,
it also does make sense to introduce a split weight W+ as counterpart of Ws, .
Whenever a triangle is refined, its two children inherit the cluster affiliation. If a
cluster exceeds the threshold Wy, it decomposes into two clusters—each one
represented by the two triangles on the 1st recursion level. There is no need to
construct clusters from scratch several times.

The clusters define a graph on the mesh where each graph node is a cluster.
Two nodes are connected if their clusters shared a common face. This graph is
small compared to the connectivity graph of the original mesh.

Our algorithm refers to a binary tree. An extension to a binary forest is
straightforward. Furthermore, a bottom-up construction of the clusters starting
from the whole tree or forest in practice is not an optimal choice. Instead, it does
make sense to create the binary tree up to given level. The triangles of this initial
level then prescribe an initial clustering. Starting from the initial clustering, the
grid is refined further and the clustering is adopted.

Our cluster analysis and mesh traversal fits to a recursive realization. Though
straightforward, in practice it might make sense to reduce recursion overhead.
One approach is to replace it by an iterative scheme to avoid call stack overhead
[2,8]. Formally, such a transformation equals recursion unrolling. If recursion
unrolling is applied within clusters only and if clusters hold exclusively totally
balanced subtrees, i.e. all leaves within one particular cluster have the same level,
clustering and non-recursive realization mirror the optimization from [8] . Such
an approach however relies on invariant grid regions and has to be used carefully
if the grid changes frequently . Related work furthermore stores the leaves of the
clusters only and reconstructs the coarser levels of the tree bottom-up [2,15].
Our implementation holds the whole tree and sticks with a recursive realiza-
tion, but case distinctions within the recursive code are eliminated aggressively
: Automaton states together with their possible transitions are rewritten by a
code-generator into specialized functions with a minimal set of case distinctions
[19] severely reducing branching mis-predictions. Argument-controlled context
profiling validates that this pays off [10] . Furthermore, PDE-specific operations
are invoked on the leaves only.

3 Dynamically adaptive cluster reordering and skipping

Let f be a marker operation on triangles that identifies those to be refined or
coarsened next. Our element-wise traversal runs through the grid or tree, re-
spectively, and evaluates f on each triangle. The subsequent mesh sweep then
refines or coarsens which might yield non-conforming grids, i.e. grids with hang-
ing nodes. As we rely on conforming tessellations, the non-conform refinement
or coarsening mark further triangles. We have to traverse the grid multiple times
until the global grid becomes conform again (Fig. 3), i.e. grid modifications might
trigger a cascade of grid traversals propagating the grid updates.

Let each triangle hold a state S € {0,7} and one marker per face encoded
in a 3-tuple Ty = (000). If f modifies a triangle, it updates its state as well
as the face meta information. The number of possible refinements and meta
information updates is fixed (Fig. 4). From the face meta data adjacent cells
can derive how they have to adopt to make the grid conform. Along the SFC
this information propagation resembles Gauf-Seidel. Otherwise it is a Jacobi-
like information spreading which motivates the fact that multiple sweeps are
typically necessary to make the grid conforming.

The state encodes the triangle’s local state, the incoming marker adjacent
refinement/coarsening information. The following table gives the new triangle
state as well as the marker forwarded to adjacent triangles:
incoming edge marker
state| 000 [001 | 010 | 011 | 100 | 101 | 110 | 111

no request| 0 [000,0{100,5(100,6]100,7(000,4|000,5(000,6]000,7

INVALID 000,1]000,1]000,1(000,1]000,1]000,1{000,1]000,1

local coarsening request 000,2]100,5(100,6100,7{000,4(000,5]000,6{000,7
local refine request 100,4]100,5]100,6{100,7{000,4{000,5(000,6[/000,7
refined: hyp 000,4/000,5]000,6 {000,7]000,4]000,5{000,6/000,7

refined: hyp, left 000,5|000,5]000,7[000,7]000,5]000,5{000,7|000,7
refined: hyp, right 000,6/000,7]000,6 {000,7]000,6/000,7{000,6/000,7
refined: hyp, right, left| 7]000,7[000,7|000,7[000,7[000,7|000,7{000,7/000,7

We consider clusters to be atomic entities coupled to other clusters via their
one-dimensional boundary sub-manifold. Let an active cluster be a cluster where
f has marked elements. Obviously, this property can be reduced throughout a
traversal of the cluster tree. If all triangles hold Ty = (000) after the traversal,
the cluster is not active. A cluster’s active flag is an or-combination of all triangle
meta data.

I AN AN

Fig. 3. From left to right: grid with three triangles A,B, and C. As B is refined, A has
to be refined twice to preserve a conform tessellation.

(=2] ML) N VU])

(0) Nothing (4/3) Refine:
Hypotenuse

(7) Refine:
All edges

| (2) Coarsening: (6) Refine: (5) Refine:
d Join two Hypot. and Hypotenuse
4 triangles I right edge and left edge

Fig. 4. Different states from the automaton to form a conforming grid. The dashed
lines are new edges of the refined triangle.

The marker propagation is a face data exchange. It directly implies a marker
semantics on clusters. A cluster without local refinement becomes active if and
only if a neighbouring cluster has set a face marker in the iteration along a
common face. As we have the neighbourhood relation at hand, this leads to a
publish-poll pattern:

— If a cluster is active, the traversal automaton has to run through its grid.
Marker information from the boundary faces is polled. This might set the
cluster’s state to active again. It also might set markers along the cluster’s
boundary, i.e. publish new markers.

— If a cluster is not active, the traversal automaton runs over the boundary
markers published by the neighbors. If all of them are unset, no grid updates
within the cluster are necessary. If one marker is set, the cluster is active
and is traversed.

With the second case distinction at hand, we are able to skip clusters through-
out the traversal when we know a priori, i.e. when the automaton enters the
cluster’s coarsest triangle, that they are not active. In this case, we continue
with grid elements of another not yet processed cluster. As each sweep polls the
marker information and updates only subregions of the grid, the overall data
flow pattern resembles a petri net on the cluster graph.

For the realization of data exchange along clusters representing fractions of
the SFC, we refer to [1,2,18] and [21,22] for d > 2 with hypercubes instead
of triangles. The SFC distinguishes right from left neighbours uniquely, i.e. the
published markers’ cardinality is bounded by the surface. As the triangles are
lined up like pearls on a string along the Sierpinski SFC, the cluster partitions
are connected and exhibit a quasi-optimal surface-volume ratio [5]. The SFC fur-
thermore linearises the left and right boundary uniquely whereas the boundary
fractions of relevance for one particular neighbour are connected, continuous,
and already published in the read order [5, 18, 21].

Though it can happen that clusters are set active multiple times due to
grid conformity sweeps, we do not observe such a behavior often. Furthermore,
if we assume f to be idempotent on the triangle, the proof is straightforward
that the marker update mechanism does not induce cycles. While the order for
the refinement and coarsening here is given implicitly, reordering for different
purposes (local time stepping, e.g.) might yield additional benefit.

4 Cluster-based parallelization

Without considering parallelization so far, we observe that leaves are coupled
due to their faces to neighbouring triangles. For our present applications, leaves
write data to their common faces in one sweep. At the end of the traversal, both
triangles adjacent to any face have accumulated their data on the face. These
data typically are input parameters to flux computations. In the next iteration,
the data is read within the triangle and the triangle’s values are updated. Such
a data flow mirrors the marker pattern of the previous section.

With cluster based parallelisation and by considering clusters to be atomic
grid entities, we can split the data exchange into two phases. First, clusters write
data to their interface faces: faces shared with other cluster. If grid cluster in-
terface faces are duplicated per cluster, this write process is thread-safe. With a
stack- and stream-based approach, the data for each adjacent cluster is consec-
utively stored in memory. We can run length encode which face data are sent to
which neighbour and exchange data belonging to a particular neighbor en block
and efficiently. Then, we can merge the duplicated interfaces explicitly prior to
the next grid traversal. By running the merge operation with consideration of
the order of clusters along the SFC, duplicate flux computations can be avoided
at the cluster interface. Due to the sub-manifold and the minimal surface prop-
erty [5], these merge operations are cheap compared to the overall updates and
the memory overhead is small.

Depth-first traversals of trees are a classic demonstrator for task-based par-
allelism where a shared data structure’s disjoint subsets are handled by different
threads. No data overhead besides cluster surface communication buffers is in-
duced. We pick up this property to derive two different parallelization schemes.
In combination with skipping, minimal cluster sizes, software-based affinities as
supported by TBB, and the comparison of TBB and OpenMP tasks, this yields
a multitude of different parallel algorithmic flavors.

For our massive tree split approach, we make the traversal automaton traverse
the grid top-down. In each node, it spawns a right and a left task. If a child
identifies a cluster, this subtask is not split up further. As the number of clusters
typically exceeds the number of tasks, the grid traversal floods the system with
tasks, delegates the distribution of tasks to threads to the runtime system, and
relies on work stealing to achieve well-balanced workload. Subdomains handled
by one thread might be discontinuous. Due to nondeterministic work stealing, the
assignment to threads even might change from grid traversal to grid traversal. We
expect data affinity penalties from this property that has to be compensated by
a high concurrency level, and point out that Threading Building Blocks supports
a manual choice of task affinities.

For our owner-computes approach, we analyse the tree attributes: The prop-
erty W on the spacetree’s root determines the total workload on the grid. Given
p threads, a thread ¢ knows that each cluster with R € [iW/p, (i + 1)W/p] is
to be handled by this thread for a rather balanced work decomposition. Con-
sequently, each thread can run through the tree processing only triangles or
clusters, respectively, fitting into its work interval. This is a concurrent read due

16 "Computation time units"

=K

==L

core0 corel cure2 core3

== Scheduling
overhead

10 "Computation time units"

L —

E:E.EE.

core0 corel core2 core3

Fig. 5. Left image: A cluster size which leads to as many cluster as there are cores
available on the system would lead to a workload imbalance. Right image: Creating
more clusters than there are cores available leads to a better balanced problem even
by considering the tasking overhead marked with dark-yellow boxes.

to publish-poll. Such a behavior mirrors the logical merge of multiple subsequent
clusters along the Sierpinski curve for one task.

Traditional SFC parallelization [5,6,9,15,17,18,21] cuts the curve into
equally sized chunks and distributes these chunks among the cores. With thresh-
old based cluster splitting, such an equal balancing is not possible anymore, and
it is obvious that an owner-computes scheme suffers from ill-balancing whereas
flood filling might compensate ill-balancing due to work stealing. We point out
that clusters of size one with an owner-computes scheme mirror a traditional
SFC-based parallelization where the workload is cut into equally sized pieces
along the curve. Our clustering either has to compensate ill-balancing due to an
efficiency gain, or clustering has to tackle potential ill-balancing explicitly.

For the latter approach, we use scan clustering decomposing clusters on-the-
fly into their tree if a cluster overlaps with an optimal SFC partitioning. This
mechanism weakens the clusters’ atomic property, but allows for a fine granular a
priori load balancing. An additional parallization degree of freedom arises if any
cluster exceeding a given size is decomposed automatically, while the big clusters
are preserved for the skip mechanism. We then again rely on work stealing to
tackle ill-balancing (Fig. 5).

5 Benchmark scenario

A setup based on the shallow water equations (SWE) computing a radial break-
ing damn in a basin acts as benchmark for the present paper. The rectangular
basin has side length of 5000m. It is filled with fluid of a depth of 10m (sea
level). The initial condition is a radial breaking dam with radius 500m around
the point (—2000m,2500m)T relative to the origin at (0,0)7. Its height relative
to the sea level is 1m. We apply non-reflecting boundary conditions (Fig. 1).
The system is discretized using discontinuous Galerkin method with 1st order
cell basis functions and 3rd order Gaussian quadrature on each face. An explicit
Euler time-stepping scheme with Rusanov fluxes acts as time stepping.
Throughout the simulation, we refine each triangle with a water surface dis-
placement relative to the normal sea level exceeding the threshold 0.1m and
allow coarsening for triangles with a threshold above 0.01m. The refinement is
bounded by the maximal triangle level 8. Different algorithmic phases realized by
grid traversals do exist: Setup and visualization, time stepping, and consistency

traversals recovering the mesh conformity. The latter typically modify only few
triangles.

6 Results

All experiments were conducted on an Intel Westmere with 4 Intel Xeon CPUs
(E7-4850@2.00GHz) and 256 GB memory totally available on the platform. This
gives 4 x 10 physical cores plus hyper-threading. For the parallelization, we have
a TBB and OpenMP realization due to Intel Composer XE (ver. 2013.1.117).
We used affinity bit-masks to hard-limit the number of threads and avoid TBB’s
automatic worker task creation.

Thread affinities are set such that they map the first ten threads to the ten
physical cores on the CPU on the first socket. Thread numbers 41-80 are mapped
onto hyper-threading cores.

Prior to algorithmic studies, we first determined for a good cluster size for
both OpenMP and TBB (Fig. 6). It results from extensive search. While TBB
outperforms OpenMP for most settings,8192 is a natural choice for the cluster
size threshold. This value is used from hereon. We also stick with TBBs.

Next, we studied cluster skipping distinguishing adaptivity traversals, com-
putation traversals, as well as cluster construction (Fig. 7). The construction
time is negligible, the simulation time itself is independent of the skipping. The
skipping however reduces the time spent to make the grid conforming when it
has changed before.

We observe that this improvement is the better the fewer threads are used
which is a natural result from the inhomogeneity of the workload due to split-
ting, i.e. work balancing gains impact but also introduces overhead. However,
the splitting optimization is robust. A normalization of the run-times without
skipping reveals that the normalized speedup degradation is marginal.

For one hundred time steps, we compared different combinations of skipping
and parallelization strategies (Fig. 8).

The skipping again pays off and allows us to obtain linear speedup in some
cases, i.e. the algorithmic optimization helps to close the gap between optimal
and observed scaling—however only compared to non-skipping algorithms. Mas-
sive tree splits outperform the other parallel approaches as long as the cluster

70

—o—TBB 2048 Hyperthreadin
~m—O0MP 2048 N
60 -, TBB8192
° —>=OMP 8192
c
§ 50 |- ——TBB32768 7.
2 —o—O0MP 32768
5 40 TBB 131072 /.’,
o OMP 131072 g
2 5 |~ TBB524288 r
8 OMP 524288
s
= 20
= N 4/
10 g
0 - Number of threads

0 10 20 30 40 50 60 70 80

Fig. 6. OpenMP vs. TBB tasking comparing different cluster sizes.

10

Q
2 180
]
£ 160 Cluster
2 140 | = Adaptivity ——
% 120 - = Simulation ——
8 100
3
S g
o
8 60
7]
T 40
()]
g 20
Z
Q) Q Q Q Q N QN
\6&“&@“ e,e@“%%\%*‘ \éé@“&@*\ Y %@\"*\ Ty %Q,@“‘\é@ %Q,\e*‘ & %%\6*‘ e@“(b%@“
u/&e W@ o g P o m/\ PN Q,@ Q/\ IS g PN
A ?®

Fig. 7. Detailed timings for each simulation phase. Time taken for clustering phase is
invisible small.

size is chosen reasonable (Fig. 6) and does not hinder the algorithm to ex-
ploit all cores. The owner-computes scheme cannot compete even though we use
scan clustering obtaining theoretically almost perfectly balanced work decom-
positions. However, owner-computes with its manual data affinity yields better
performance than TBB’s task affinity feature. For this experiment, flooding the
runtime system with tasks and cluster skipping are the methods of choice.

With first simulation results for a short run at hand, we studied the same
setup for 15000 time steps (Fig. 9). Longer observation intervals imply more grid
changes. Cluster splitting still is improved by task affinities, but not significantly.
Though we assume the massive tree splits to yield good balancing due to work
stealing, it is the only strategy that is not robust with respect to simulation
time.

We ascribe this to NUMA effects in combination with a touch-first data
policy. In contrast, the owner-computes scheme outperforms the other strategies.

Our experiments reveal that for our setups, a equally balanced workload due
to task stealing, e.g., is essential for the first grid traversals. When the grid

80 80
Cluster skipping disabled / Cluster skipping enabled /
0 / * F/
e 60
N : /
o
g 0|8 "
5 g / Vi
3 -3
) Qo
3 /i : /"
£ 30 e
i_) —o— massive tree splits g === massive tree splits
E = scan cIusféring L 2 = —@— scan clustering
- task affinities & scan clustering task affinities & scan clustering
=== Owner-compute)
10 { = linear (10 cores) 10 ! linear (10 cores)
0 Number of threads o Number of threads
0 20 40 60 80 0 20 40 60 80

Fig. 8. Comparison of different parallelization strategies with an without skipping for
short simulation time with few adaptivity traversals and few skips.

11

\
M 15000 time steps
[15000 time steps
W 15000 time steps
M 100 time steps

task affinities
scan clustering
cluster skipping

task affinities
scan clustering

owner-compute

scan clustering
cluster skipping

scan clustering

cluster skipping
massive tree splits

massive Million cells per second
tree splits

6 1‘0 2‘0 3;0 4‘0 50 60 70
Fig. 9. Runtime per time step averaged over all algorithm phases. One measurement
with 100 time steps, three samples with 15,000 time steps.

changes significantly and the per-cluster workload as well as cluster distribu-
tion become inhomogeneous as well, affinity effects gain importance. A scheme
that fixes the affinities due to a lack of task concurrency then outperforms task
affinities assigned manually. The better work distribution with task stealing or
equally cutting the SFC cannot compensate that.

7 Outlook

Future work comprises the development of an appropriate cost model antici-
pating skipping, workload inhomogeneity, and affinity issues. Furthermore, the
interplay of the skip mechanism with a distributed memory parallelization is
interesting as skips reduce cluster communication. Finally, we expect a better
support of user-controlled affinity in programming languages and libraries.

We are looking forward to use this or to contribute to this ourselves. Method-
ologically, an important locality-aware aspect for Invasive Computing [12] was
created with forced affinities providing better performance for long simulation
runs. On the application side, the present algorithms have to proof of value for
implicit schemes where clusters and skips interplay with equation system solvers.

Acknowledgements

This work was supported by the German Research Foundation (DFG) as part of
the Transregional Collaborative Research Centre “Invasive Computing (SFB/TR
89). It is partially based on work supported by Award No. UK-c0020, made by
the King Abdullah University of Science and Technology (KAUST).

All software is freely available at http://wwws.in.tum.de/sierpinski.

References

1. M. Bader, C. Bock, J. Schwaiger, and C. A. Vigh. Dynamically Adaptive Simula-
tions with Minimal Memory Requirement - Solving the Shallow Water Equations
Using Sierpinski Curves. SISC, 32(1), 2010.

12

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

. M. Bader, K. Rahnema, and C. A. Vigh. Memory-Efficient Sierpinski-Order Traver-

sals on Dynamically Adaptive, Recursively Structured Triangular Grids. In Applied
Parallel and Scientific Comp., PARA 2010, volume 7134 of LNCS. Springer, 2012.
J. J. Bartholdi and P. Goldsman. Vertex-labeling algorithms for the hilbert space-
filling curve. Software: Practice and Ezperience, 31(5):395-408, 2001.

S. Borkar and A. A. Chien. The future of microproc. Commun. ACM, 54, 2011.
H.-J. Bungartz, M. Mehl, and T. Weinzierl. A Parallel Adaptive Cartesian PDE
Solver Using Space-Filling Curves. In Furo-Par 2006, Parallel Processing, 12th
Int. Euro-Par Conf., volume 4128 of LNCS, pages 1064-1074. Springer, 2006.

C. Burstedde, L. C. Wilcox, and O. Ghattas. p4est: Scalable Algorithms for
Parallel Adaptive Mesh Refinement on Forests of Octrees. SISC, (3), 2011.

M. Dumbser, M. Késer, and E. Toro. An Arbitrary High Order Discontinuous
Galerkin Method for Elastic Waves on Unstructured Meshes V: Local Time Step-
ping and p-Adaptivity. Geophysical Journal Int., 171(2):695-717, 2007.

W. Eckhardt and T. Weinzierl. A Blocking Strategy on Multicore Architectures
for Dynamically Adaptive PDE Solvers. In PPAM 2009, LNCS, 2010.

M. Griebel and G. Zumbusch. Parallel multigrid in an adaptive PDE solver based
on hashing and space-filling curves. Parallel Comp., 25(7):827-843, 1999.

T. Kiistner, J. Weidendorfer, and T. Weinzierl. Argument contr. context prof. In
Europar 2009, Parallel Proc. - Workshops, volume 6043 of LNCS. Springer, 2010.
R. J. LeVeque, D. L. George, and M. J. Berger. Tsunami modelling with adaptively
refined finite volume methods. Acta Numerica, 20:211-289, 2011.

H.-J. Bungartz M. Bader and M. Schreiber. Invasive computing on high perfor-
mance shared memory systems. In Facing the Multicore-Challenge 111, 2012.

W. B. March et al. Optimizing the comp. of n-point correlations on large-scale
astronomical data. In Proc. of the Int. Conf. on High Perf. Comp., Netw., Stor.
and Analysis, SC ’12. IEEE Computer Society Press, 2012.

Oliver Meister, Kaveh Rahnema, and Michael Bader. A software concept for cache-
efficient simulation on dynamically adaptive structured triangular grids. In Koen
De Boschhere, Erik H. D’Hollander, Gerhard R. Joubert, David Padua, and Frans
Peters, editors, Applications, Tools and Techniques on the Road to Exascale Com-
puting, volume 22 of Advances in Parallel Computing, pages 251-260, Gent, May
2012. ParCo 2012, IOS Press.

A. Rahimian, I. Lashuk, S. Veerapaneni, A. Chandramowlishwaran, D. Malhotra,
L. Moon, R. Sampath, A. Shringarpure, J. Vetter, R. Vuduc, D. Zorin, and G. Biros.
Petascale direct numerical simulation of blood flow on 200k cores and heterog.
arch. In Proc. of the 2010 ACM/IEEE Int. Conf. for HPC, Networking, Storage
and Analysis, SC ’10, pages 1-11. IEEE Computer Society, 2010.

U. Riide. Mathematical and computational techniques for multilevel adaptive meth-
ods, volume 13 of Frontiers in Applied Mathematics. STAM, 1993.

R.S. Sampath and G. Biros. A parallel geometric multigrid method for finite
elements on octree meshes. SISC, 32(3):1361-1392, 2010.

M. Schreiber, H.-J. Bungartz, and M. Bader. Shared memory parallelization of
fully-adaptive simulations using a dynamic tree-split and -join approach. IEEE
Int. Conf. on High Performance Comp. (HiPC), 2012.

M. Schreiber et al. Generation of parameter-optimised algorithms for recursive
mesh traversal algorithms, 2013. to be published.

K. Unterweger, T. Weinzierl, D. Ketcheson, and A. Ahmadia. Peanoclaw—a
functionally-decomposed approach to adaptive mesh refinement with local time
stepping for hyperb. conservation law solvers. Technical report, Technische Uni-
versitat Miinchen, 2013.

13

21. T. Weinzierl. A Framework for Parallel PDE Solvers on Multiscale Adaptive Carte-
sian Grids. Verlag Dr. Hut, 2009.

22. T. Weinzierl and M. Mehl. Peano — A Traversal and Storage Scheme for Octree-
Like Adaptive Cartesian Multiscale Grids. SIAM Journal on Scientific Comp.,
33(5):2732-2760, October 2011.

