
ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

ATHENS 2007 –
Parallel Numerical Simulation

Iterative Solution of Linear Systems

Michael Bader

March, 20th–24th, 2006

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Part I: Relaxation Methods

2 Residual-Based Correction

3 Relaxation

4 Jacobi Relaxation

5 Gauss-Seidel Relaxation

6 Successive-Over-Relaxation (SOR)

7 Does It Always Work?

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Part II: Conjugate Gradients

8 Quadratic Forms

9 Steepest Descent

10 Conjugate Directions

11 A-Orthogonality

12 Conjugate Gradients

13 CG Algorithm

14 CG Convergence

15 Preconditioning

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Part III: Multigrid Methods

16 The Smoothing Property

17 Multigrid Idea No. 1

18 Multigrid Idea No. 2

19 A Two-Grid Method

20 Correction Scheme – Components

21 The Multigrid V-Cycle

22 More Multigrid Schemes

23 Speed of Convergence

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Systems of Linear Equations in
Scientific Computing

discretization of both ODE and PDE leads to
large systems of linear equations (LSE)

solving these LSE is one of the most
important/expensive tasks in scientific
computing
LSE resulting from ODE or PDE are typically:

sparse
(because of the local discretization stencils)
large
(because of the desired accuracy)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Direct Solvers for Sparse LSEs

Direct solvers are often not competitive:
computing time grows quickly with the
number of unknowns:

2D-Poisson:
O(N2) required for band elimination
O(N3/2) required for nested dissection

classical elimination destroys sparsity:
hence, additional memory is required
2D-Poisson:
O(N3/2) required for band elimination
O(N logN) required for nested dissection

exact solution is not necessarily required, as
the SLE itself is only an approximation

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Iterative Solvers for Sparse LSEs
Goals for iterative solvers:

take advantage of the sparsity pattern;
use little or no additional memory

compute a series of approximations

x(0) → x(1) → . . .→ x(i) → . . .→ lim
i→∞

x(i) = x

that converges quickly and uniformly
to the solution x

modest growth of computing time; objective:
rule-of-thumb like

“for 3 digits, you need 10 steps”

(regardless of number of unknowns)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Families of Iterative Solvers

relaxation methods:
Jacobi-, Gauss-Seidel-Relaxation, . . .
Over-Relaxation-Methods

Krylov methods:
Steepest Descent, Conjugate Gradient, . . .
GMRES, . . .

Multilevel/Multigrid methods,
Domain Decomposition, . . .

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Part I

Relaxation Methods

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

The Residual Equation

for Ax = b, we define the residual:

r(i) = b−Ax(i)

and the error: e(i) := x−x(i)

(thus x := x(i) +e(i));

short computation:

r(i) = b−Ax(i) = Ax−Ax(i) = A(x−x(i)) = Ae(i).

residual equation:

Ae(i) = r(i)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Residual Based Correction

Solve Ax = b using the residual equation Ae(i) = r(i)

r (which can be computed) is an indicator for
the size of the error e (which is not known).

use residual equation to compute a correction
to x(i)

basic idea: solve a modified (easier) SLE:

Bê(i) = r(i) where B∼ A

use ê(i) as an approximation for e(i), and set

x(i+1) = x(i) + ê(i).

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Relaxation

How should we choose B?

B∼ A (B “similar” to A),
i.e. B−1 ≈ A−1,
or at least B−1y ≈ A−1y for most vectors y.

Be = r should be easy/fast to solve

Examples:

B = diag(A) = DA (diagonal part of A)
⇒ Jacobi iteration

B = LA (lower triangular part of A)
⇒ Gauss-Seidel iteration

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Jacobi Relaxation

Iteration formulas in matrix-vector notation:
1 residual notation:

x(i+1) = x(i) +D−1
A r(i) = x(i) +D−1

A

(
b−Ax(i)

)
2 for implementation:

x(i+1) = D−1
A

(
b− (A−DA)x(i)

)
3 for analysis:

x(i+1) =
(

I−D−1
A A

)
x(i) +D−1

A b =: Mx(i) +Nb

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Jacobi Relaxation – Algorithm
based on: x(i+1) = D−1

A

(
b− (A−DA)x(i)

)
for i from 1 to n do

xnew[i] := (b[i]

- sum(A[i,j]*x[j], j=1..i-1)

- sum(A[i,j]*x[j], j=i+1..n)

) / A[i,i];

end do;

for i from 1 to n do

x[i] := xnew[i];

end do;

properties:
additional storage required (xnew)
x, xnew can be computed in any order
x, xnew can be computed in parallel

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Gauss-Seidel Relaxation

Iteration formulas in matrix-vector notation:
1 residual notation:

x(i+1) = x(i) +L−1
A r(i) = x(i) +L−1

A

(
b−Ax(i)

)
2 for implementation:

x(i+1) = L−1
A

(
b− (A−LA)x(i)

)
3 for analysis:

x(i+1) =
(

I−L−1
A A

)
x(i) +L−1

A b =: Mx(i) +Nb

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Gauss-Seidel Relaxation – Algorithm

based on: x(i+1) = L−1
A

(
b− (A−LA)x(i)

)
solve LAx(i+1) = b− (A−LA)x(i)

via backwards substitution:

for i from 1 to n do

x[i] := (b[i]

- sum(A[i,j]*x[j], j=1..i-1)

- sum(A[i,j]*x[j], j=i+1..n)

) / A[i,i];

end do;

properties:
no additional storage required
inherently sequential computation of x
usually faster than Jacobi

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Successive-Over-Relaxation (SOR)

observation: Gauss-Seidel corrections are “too
small”

add an over-relaxation-factor α:

for i from 1 to n do

x[i] := x[i] + alpha * (b[i]

- sum(A[i,j]*x[j], j=1..n)

) / A[i,i];

end do;

for 2D-Poisson: optimal α (≈ 1.7) improves
convergence: O(n2)→O(n3/2)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Does It Always Work?

simple answer: no (life is not that easy . . .)

Jacobi: matrix A needs to be diagonally
dominant

Gauß-Seidel: matrix A needs to be positive
definite

How about performance?
→ usually quite slow

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Part II

Conjugate Gradients

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Quadratic Forms
A quadratic form is a scalar, quadratic function of a
vector of the form:

f(x) =
1
2

xTAx−bTx + c, where A = AT

4
-4

0
2

-2

40

00
-2

80

y2x
-4

120

4
-66

160
-2

-2

x
y

0
2

-6

4

4

-4

60

2

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Quadratic Forms (2)

The gradient of a quadratic form is defined as

f ′(x) =


∂

∂x1
f(x)
...

∂

∂xn
f(x)


f ′(x) = Ax−b

f ′(x) = 0 ⇔ Ax−b = 0 ⇔ Ax = b

⇒ Ax = b equivalent to a minimisation problem
(if A positive definite)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Steepest Descent

gradient f ′(x): direction of “steepest ascent”

f ′(x) = Ax−b =−r (with residual r = b−Ax)

residual r: direction of “steepest descent”

-2

y

6
x

4

2

-4

2

-6

-2

0
0 4

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Steepest Descent (2)

basic idea to find minimum:
move into direction of steepest descent

most simple scheme:

x(i+1) = x(i) +αr(i)

α constant ⇒ Richardson iteration
(often considered as a relaxation method)

better choice of α:
move to lowest point in that direction
⇒ Steepest Descent

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Steepest Descent – find α

task: line search along the line
x(1) = x(0) +αr(0)

choose α such that f(x(1)) is minimal:

∂

∂α
f(x(1)) = 0

use chain rule:

∂

∂α
f(x(1)) = f ′(x(1))T ∂

∂α
x(1) = f ′(x(1))Tr(0)

remember f ′(x(1)) =−r(1), thus:

−
(

r(1)
)T

r(0) !
= 0

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Steepest Descent – find α (2)

(
r(1)

)T
r(0) =

(
b−Ax(1)

)T
r(0) = 0(

b−A(x(0) +αr(0))
)T

r(0) = 0(
b−A(x(0)

)T
r(0)−α

(
Ar(0)

)T
r(0) = 0(

r(0)
)T

r(0)−α

(
r(0)

)T
Ar(0) = 0

Solve for α:

α =

(
r(0)

)T
Ar(0)(

r(0)
)T r(0)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Steepest Descent – Algorithm

1 r(i) = b−Ax(i)

2 α =
(r(0))

T
Ar(0)

(r(0))
T
r(0)

3 x(i+1) = x(i) +αr(i)

Observations:

-2 4
x

y
2

-2

2
0

4

-4

6

-6

0

rather slow convergence∥∥∥e(i)
∥∥∥

A
≤

(
κ−1
κ+1

)i
∥∥∥e(0)

∥∥∥
A
, where κ = λmax/λmin

(largest/smallest eigenvalues of A)

many steps in the same direction

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Conjugate Directions

steepest descent takes repeated steps in the
same direction

obvious idea:
try to do only one step in each direction

possible approach:
choose orthogonal search directions
d(0)⊥d(1)⊥d(2)⊥ . . .

notice: errors orthogonal to previous
directions: e(1)⊥d(0),e(2)⊥d(1)⊥d(0), . . .

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Conjugate Directions (2)

compute α from(
d(0)

)T
e(1) =

(
d(0)

)T (
e(0) +αd(0)

)
= 0

formula for α:

α =−

(
d(0)

)T
e(0)(

d(0)
)T d(0)

but: we don’t know e(0)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A-Orthogonality
make the search directions A-orthogonal:(

d(i)
)T

Ad(j) = 0

again: errors orthogonal to previous directions:(
e(i+1)

)T
Ad(i) !

= 0

equiv. to minimisation in search direction d(i):

∂

∂α
f
(

x(i+1)
)

= f ′
((

x(i+1)
)T ∂

∂α
x(i+1)

)
= 0

⇔ −
(

r(i+1)
)T

d(i) = 0

⇔
(

d(i)
)T

Ae(i+1) = 0

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A-Conjugate Directions

remember the formula for conjugate
directions:

α =−
(
d(0)

)Te(0)(
d(0)

)Td(0)

with A-orthogonality:

α =−
(
d(i))TAe(i)(
d(i)

)TAd(i)
=

(
d(i))Tr(i)(

d(i)
)TAd(i)

only one task left:
find A-orthogonal search directions

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A-Conjugate Directions (2)
classical approach to find orthogonal directions:
conjugate Gram-Schmidt process:

from linearly independent vectors
u(0),u(1), . . . ,u(i−1)

construct orthogonal directions
d(0),d(1), . . . ,d(i−1)

d(i) = u(i) +
i−1

∑
k=0

βikd(k)

βik = − (u(i))TAd(k)

(d(k))TAd(k)

keep all old search vectors in memory

O(n3) computational complexity

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Conjugate Gradients
use residuals to construct conjugate directions:

d(i) = r(i) +
i−1

∑
k=0

βikd(k)

directions d(i) should be A-orthogonal:

0 !
=

(
d(i))TAd(j) =

(
r(i))TAd(j) +

i−1

∑
k=0

βik
(
d(k)

)TAd(j)

d-vectors are A-orthogonal, hence:

0 =
(
r(i))TAd(j)+βij

(
d(j))TAd(j) ⇒ βij =−

(
r(i))TAd(j)(
d(j)

)TAd(j)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Conjugate Gradients – Status

1 conjugate directions:

αi =

(
d(i))Tr(i)(

d(i)
)TAd(i)

x(i+1) = x(i) +αid
(i)

2 use residuals to compute search directions:

d(i) = r(i) +
i−1

∑
k=0

βikd(k)

βik = −
(
r(i))TAd(k)(
d(k)

)TAd(k)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A Miracle Occurs – Part 1

Two small contributions:
1 propagation of the error

x(i+1) = x(i) +αid
(i)

x(i+1)−x = x(i)−x +αid
(i)

e(i+1) = e(i) +αid
(i)

2 propagation of residuals

r(i+1) = −Ae(i+1) =−A
(

e(i) +αid
(i)

)
⇒ r(i+1) = r(i)−αiAd(i)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A Miracle Occurs – Part 2
Orthogonality of the residuals:

search directions are A-orthogonal

only one step in each directions

hence: error is A-orthogonal to previous search
directions:

(
d(i))TAe(j) = 0, for i < j

residuals are orthogonal to previous search
directions:

(
d(i))Tr(j) = 0, for i < j

search directions are built from residuals:
span

{
d(0), . . . ,d(i−1)

}
= span

{
r(0), . . . , r(i−1)

}
hence: residuals are orthogonal(

r(i))Tr(j) = 0, i < j

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A Miracle Occurs – Part 3

combine orthogonality and recurrence for
residuals:(

r(i))Tr(j+1) =
(
r(i))Tr(j)−αj

(
r(i))TAd(j)

⇒ αj
(
r(i))TAd(j) =

(
r(i))Tr(j)−

(
r(i))Tr(j+1)

(
r(i))Tr(j) = 0, if i 6= j:

(
r(i))TAd(j) =


1
αi

(
r(i))Tr(i), i = j

− 1
αi−1

(
r(i))Tr(i), i = j+1

0 otherwise.

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

A Miracle Occurs – Part 4

computation of βij:

βik = −
(
r(i))TAd(k)(
d(k)

)TAd(k)

=

 −
(
r(i))Tr(i)

αi
(
d(i−1)

)TAd(i−1)
, i = j+1

0 i > j+1

remember: αi = (d(i))Tr(i)

(d(i))TAd(i)

⇒ βi =−
(
r(i))Tr(i)(

d(i−1)
)Tr(i−1)

=

(
r(i))Tr(i)(

r(i−1)
)Tr(i−1)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Conjugate Gradients – Algorithm

Start: d(0) = r(0) = b−Ax(0)

1 αi = (r(i))Tr(i)

(d(i))TAd(i)

2 x(i+1) = x(i) +αid(i)

3 r(i+1) = r(i)−αiAd(i)

4 βi+1 =

(
r(i+1)

)T
r(i+1)(

r(i)
)T

r(i)

5 d(i+1) = r(i+1) +βi+1d(i)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Conjugate Gradients – Convergence

Convergence Analysis:

uses Krylow subspace:

span
{

r(0),Ar(0),A2r(0), . . . ,Ai−1r(0)
}

“Krylow subspace method”

Convergence Results:

in principle: direct method (n steps)

in practice: iterative scheme

∥∥∥e(i)
∥∥∥

A
≤2

(√
κ−1√
κ +1

)i ∥∥∥e(0)
∥∥∥

A
, κ = λmax/λmin

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Preconditioning

convergence depends on matrix A

idea: modify linear system

Ax = b M−1Ax = M−1b,

then: convegence depends on matrix M−1A

optimal preconditioner: M−1 = A−1:

A−1Ax = A−1b⇔ x = A−1b.

in practice:
avoid explicit computation of M−1A
find an M similar to A, compute effect of M−1

find an M−1 similar to A−1

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

CG and Preconditioning

just replace A by M−1A in the algorithm??

problem: M−1A not necessarily symmetric
(even if M and A both are)

workaround: find EET = M, then:

Ax = b E−1AE−T x̂ = E−1b, x̂ = ETx

undesirable, because E has to be computed
(however, neither M nor M−1 might be known
explicitly

some re-computations → next slide

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

CG with Preconditioner

Start: r(0) = b−Ax(0); d(0) = M−1r(0)

1 αi = (r(i))TM−1r(i)

(d(i))TAd(i)

2 x(i+1) = x(i) +αid(i)

3 r(i+1) = r(i)−αiAd(i)

4 βi+1 =

(
r(i+1)

)T
M−1r(i+1)(

r(i)
)T

M−1r(i)

5 d(i+1) = M−1r(i+1) +βi+1d(i)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

Implementation

Preconditioning steps: M−1r(i),M−1r(i+1)

M−1 known then multiply M−1r(i)

M known, then solve My = r(i) to obtain
y = M−1r(i)

neither M, nor M−1 are known explicitly:
algorithm to solve My = r(i) is sufficient!
→ any approximate solver for Ae = r(i)

algorithm to compute M−1 is sufficient!
→ compute (sparse) approximate inverse

Examples: Mutigrid, Jacobi, ILU, SPAI, . . .

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Part III

Multigrid Methods

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Convergence of Relaxation Methods

Observation

slow convergence

high frequency error components are damped
more efficiently

smooth error components are reduced very
slowly

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Convergence Analysis

remember iteration scheme: x(i+1) = Mx(i) +Nb

derive iterative scheme for the error
e(i) := x−x(i):

e(i+1) = x−x(i+1) = x−Mx(i)−Nb

for consistent scheme, x is a fixpoint of the
iteration (x = Mx−Nb)

hence:

e(i+1) = Mx +Nb−Mx(i)−Nb = Me(i)

e(i) = Mie(0).

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Convergence Analysis (2)

iteration equation for error: e(i) = Mie(0)

consider eigenvalues λj and eigenvectors vj of
iteration matrix M:

Mvj = λjvj ⇒ M
(
∑
j

αjvj︸ ︷︷ ︸
=:e(0)

)
= ∑

j
λjαjvj

⇒ Mie(0) = Mi(∑
j

αjvj
)

= ∑
j

λ
i
j αjvj

convergence, if all
∣∣λj

∣∣ < 1

speed of convergence dominated by largest λj

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

The Smoothing Property

for 1D-Poisson: eigenvectors: sin(kπ j/n)

eigenvalues: 4sin2(kπ

2n

)
decompose the error e(i) into eigenvector
(sin(kπxj), Fourier mode analysis)

smallest eigenvalue of A (for k = 1): O(n−2)

largest eigenvalue of M = I−D−1
A A: O(1−n−2)

convergence determined by O(1−n−2)

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

The Smoothing Property (2)

Result of convergence analysis:

The high frequency part (with respect to the
underlying grid) is reduced quite quickly.

The low frequency part (w.r.t. the grid)
decreases only very slowly; actually the slower,
the finer the grid is.

⇒ “smoothing property”

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Multigrid Idea No. 1

result from convergence analysis:
“high-frequency error” is relative to mesh size

on a sufficiently coarse grid, even very low
frequencies can be “high-frequency”
(if the mesh size is big)

“Multigrid”:

use multiple grids to solve the system of
equations

on each grid, a certain range of error
frequencies will be reduced efficiently

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Multigrid Idea No. 2

Solve the problem on a coarser grid:

will be comparably (very) fast
can give us a good initial guess:

nested iteration/“poor man’s multigrid”
unfortunately, will not improve a fine grid
solution any further

⇒ Idea No. 2: use the residual equation:

solve Ae = r on a coarser grid

leads to an approximation of the error e

add this approximation to the fine-grid
solution

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

A Two-Grid Method

Algorithm:
1 relaxation/smoothing on the fine level system
⇒ solution xh

2 compute the residual rh = bh−Ahxh

3 restriction of rh to the coarse grid ΩH

4 compute a solution to AHeH = rH

5 interpolate the coarse grid solution eH to the
fine grid Ωh

6 add the resulting correction to xh

7 again, relaxation/smoothing on the fine grid

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Correction Scheme – Components

smoother: reduce the high-frequency error
components, and get a smooth error

restriction: transfer residual from fine grid to
coarse grid, for example by

injection
(full) weighting

coarse grid equation: (acts as) discretisation of the
PDE on the coarse grid

interpolation: transfer coarse grid
solution/correction from coarse grid to
fine grid

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

The Multigrid V-Cycle

1 smoothing on the fine level system
⇒ solution xl

2 compute the residual rl = bl−Alxl

3 restriction of rl to the coarse grid Ωl−1

4 solve coarse grid system Al−1el−1 = rl−1 by a
recursive call to the V-cycle algorithm

5 interpolate the coarse grid solution el−1 to the
fine grid Ωl

6 add the resulting correction to xl

7 post-smoothing on the fine grid

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

V-Cycle – Implementation

on the coarsest grid: direct solution

number of smoothing steps is typically very
small (1 or 2)

Cost (storage and computing time):

1D: c ·n+ c ·n/2+ c ·n/4+ . . .≤ 2c ·n
2D: c ·n+ c ·n/4+ c ·n/16+ . . .≤ 4/3c ·n
3D: c ·n+ c ·n/8+ c ·n/64+ . . .≤ 8/7c ·n
overall costs are dominated by the costs of the
finest grid

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

The W-Cycle

perform two coarse grid correction steps
instead of one

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ωh Ωh

AU ��

AU ��

AU ��

Ω8h Ω8h

Ω4h Ω4h Ω4h

Ω8h Ω8h

Ω4h Ω4h Ω4h

Ω2h Ω2h Ω2h

Ωh Ωh

AU ��

AU ��

AU ��

AU �� AU �� AU ��

AU ��

(V-cycle and W-cycle)

more expensive

useful in situations where the coarse grid
correction is not very accurate

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

The Full Multigrid V-Cycle (FMV)

Recursive algorithm:

perform an FMV-cycle on the next coarser grid
to get a good initial solution

interpolate this initial guess to the current grid

perform a V-cycle to improve the solution

Ω8h Ω8h

Ω4hΩ4h

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ωh Ωh

�� AU ��

�� AU ��

AU ��

�� AU ��

AU ��

AU ��

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Speed of Convergence

fastest method around
(if all components are chosen carefully)

“textbook multigrid efficiency”:∥∥∥e(m+1)
∥∥∥≤ γ

∥∥∥e(m)
∥∥∥ ,

where convergence rate γ < 1 (esp. γ << 1) is
independent of the number of unknowns
⇒ constant number of multigrid steps to obtain a

given number of digits
⇒ overall computational work increases only

linearly with the number of unknowns

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Convergence Rates (2)

For Poisson Problems (“Model Problem”):

O(n) to solve up to “level of truncation”

“level of truncation”: O(h2)

O(n) is achieved by FMV-Cycle
(1 or 2 cycles sufficient)

For Other Problems:

OK for strongly elliptic problems

multigrid variants for non-linear problems,
parabolic/hyperbolic, . . .

achieving “textbook efficiency” usually a
demanding task

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Literature

General:

Gander, Hrebicek: Solving Problems in
Scientific Computing Using Maple and
MATLAB.

Golub, Ortega: Scientific Computing and
Differential Equations.

Dongarra, et. al.: Numerical linear algebra for
high-performance computers.

ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

The Smoothing
Property

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Literature (2)

Multigrid:

Briggs, Henson, McCormick: A Multigrid
Tutorial (2nd ed.).

Conjugate Gradients:

Shewchuk: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain.

	Outlines
	Part I: Relaxation Methods
	Part II: Conjugate Gradients
	Part III: Multigrid Methods

	Iterative Solution of Systems of Linear Equations
	Relaxation Methods
	Residual-Based Correction
	Relaxation
	Jacobi Relaxation
	Gauss-Seidel Relaxation
	Successive-Over-Relaxation (SOR)
	Does It Always Work?

	Conjugate Gradients
	Quadratic Forms
	Steepest Descent
	Conjugate Directions
	A-Orthogonality
	Conjugate Gradients
	CG Algorithm
	CG Convergence
	Preconditioning

	Multigrid Methods
	The Smoothing Property
	Multigrid Idea No. 1
	Multigrid Idea No. 2
	A Two-Grid Method
	Correction Scheme -- Components
	The Multigrid V-Cycle
	More Multigrid Schemes
	Speed of Convergence

