ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

ATHENS 2007 -
Parallel Numerical Simulation

Iterative Solution of Linear Systems

Michael Bader

March, 20th-24th, 2006

Part |: Relaxation Methods

a Residual-Based Correction

© Relaxation

@ Jacobi Relaxation

© Gauss-Seidel Relaxation

@ Successive-Over-Relaxation (SOR)

e Does It Always Work?

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Part I: Relaxation Methods

Part Ill: Conjugate Gradients

© Quadratic Forms

e Steepest Descent
@ Conjugate Directions
@ A-Orthogonality

@ Conjugate Gradients
@ <G Algorithm

@ CG Convergence

@ Preconditioning

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Part II: Conjugate Gradients

Part Ill: Multigrid Methods

@ The Smoothing Property

@ Multigrid Idea No. 1

@ Multigrid Idea No. 2

@ A Two-Grid Method

@ Correction Scheme — Components
€@ The Multigrid V-Cycle

@ More Multigrid Schemes

@ Speed of Convergence

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Part Ill: Multigrid Methods

ATHENS 2007 -

Systems of Linear Equations in poralle Nameria
Scientific Computing

@ discretization of both ODE and PDE leads to

Iterative Solution

large systems of linear equations (LSE) of Systems of

Linear Equations

@ solving these LSE is one of the most
important/expensive tasks in scientific
computing

@ LSE resulting from ODE or PDE are typically:

@ sparse
(because of the local discretization stencils)
e large
(because of the desired accuracy)

. ATHENS 2007 —
Direct Solvers for Sparse LSEs paraliel Numericl

Michael Bader

Direct solvers are often not competitive:

@ computing time grows quickly with the
number of unknowns:

Iterative Solution

@ 2D-Poisson: of Systems of

Linear Equations

O(N?) required for band elimination
O(N3/2) required for nested dissection
@ classical elimination destroys sparsity:
e hence, additional memory is required
e 2D-Poisson:
O(N3/2) required for band elimination
O(NlogN) required for nested dissection

@ exact solution is not necessarily required, as
the SLE itself is only an approximation

ATHENS 2007 -

Iteratlve SO|VerS for Sparse LSES Parallel Numerical

Simulation

Michael Bader

Goals for iterative solvers:

@ take advantage of the sparsity pattern;
use little or no additional memory

. . . Iterative Solution
@ compute a series of approximations of Systems of

Linear Equations

xO x5 xS imx) =x

j—00
that converges quickly and uniformly
to the solution x

@ modest growth of computing time; objective:
rule-of-thumb like

“for 3 digits, you need 10 steps”
(regardless of number of unknowns)

Families of Iterative Solvers

@ relaxation methods:

@ Jacobi-, Gauss-Seidel-Relaxation, ...
@ Over-Relaxation-Methods

@ Krylov methods:

o Steepest Descent, Conjugate Gradient, ...

o GMRES, ...

@ Multilevel/Multigrid methods,
Domain Decomposition, ...

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Iterative Solution
of Systems of
Linear Equations

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Part |

Relaxation Methods

ATHENS 2007 -

The Residual Equation prle amerc
Michael Bader
o for Ax = b, we define the residual: E TS

F0) — b — ax()

@ and the error: el) := x — x(1)
(thus x := x() +e()y;
@ short computation:

rf) = b —Ax) = Ax — Ax() :A(x—x(i)) = Ael),
@ residual equation:

Ae(i) — r(i)

Residual Based Correction

Solve Ax = b using the residual equation Ae() = (/)

@ r (which can be computed) is an indicator for
the size of the error e (which is not known).

@ use residual equation to compute a correction
to x{/)

@ basic idea: solve a modified (easier) SLE:
el — () where B~ A
@ use é() as an approximation for e(), and set

XU — (i) | a0

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Residual-Based
Correction

Relaxation

How should we choose B?
@ B~ A (B “similar” to A),
ie. B ' ~ATT,
or at least B~y ~ A~y for most vectors y.
@ Be =r should be easy/fast to solve

Examples:
@ B=diag(A) = D4 (diagonal part of A)
= Jacobi iteration

@ B =L, (lower triangular part of A)
= Gauss-Seidel iteration

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Relaxation

Jacobi Relaxation

Iteration formulas in matrix-vector notation:
@ residual notation:

(1) — (@) +D;1r(") — x(+D;" (b —Ax(i)>
@ for implementation:
X+ = pt (b —(A- DA)x("))
© for analysis:

X+ — (/ - DA71A> XD 4D 1b = Mx + Nb

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Jacobi Relaxation

ATHENS 2007 -

JaCObI Relaxation —_ Algorithm Parallel Numerical

Simulation

@ based on: x(*+1) = p 1 (b —(A —DA)x(i)) et
for i from 1 to n do
xnew[i] := (b[i]
- sum(A[i,jl*x[j], j=1..i-1)
- sum(A[i,jl*x[j], j=i+l..n)
) / Ali,il;

Jacobi Relaxation

end do;

for i from 1 to n do
x[i] := xnew[i];

end do;

@ properties:
e additional storage required (xnew)

@ x, xnew can be computed in any order
@ x, xnew can be computed in parallel

Gauss-Seidel Relaxation

Iteration formulas in matrix-vector notation:
@ residual notation:

XD = X0 1310 =017 (b Ax))
@ for implementation:
X — (b —(A- LA)x(">)
© for analysis:

x(+1) = (/ - LA71A) XD 41716 = Mx) + Nb

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Gauss-Seidel
Relaxation

Gauss-Seidel Relaxation — Algorithm

@ based on: x(+1) =1 (b —(A —LA)x(i))

@ solve Lax(1) =p — (A —Ly)x1)
via backwards substitution:

for i from 1 to n do
x[i] := (b[i]

- sum(A[i,jl*x[j], j=1..i-1)
- sum(A[i,jl*x[j], j=i+l..n)
) / Ali,i];

end do;

@ properties:
e no additional storage required

e inherently sequential computation of x
e usually faster than Jacobi

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Gauss-Seidel
Relaxation

ATHENS 2007 -

S U CceSS Ive—ove r— Relaxatlo n (SO R) Parallel Numerical

Simulation

Michael Bader

@ observation: Gauss-Seidel corrections are “too
small”

@ add an over-relaxation-factor o:

for i from 1 to n do Successive-Over-
x[i] := x[i] + alpha * (b[il oo
- sum(A[i,jI=*x[jl, j=1..n)
) / Ali,il;

end do;

@ for 2D-Poisson: optimal o (=~ 1.7) improves
convergence: O(n?) — O(n3/?)

Does It Always Work?

@ simple answer: no (life is not that easy ...)

@ Jacobi: matrix A needs to be diagonally
dominant

@ GauB-Seidel: matrix A needs to be positive
definite

@ How about performance?
— usually quite slow

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Does It Always
Work?

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Part |l

Conjugate Gradients

Quadratic Forms

A quadratic form is a scalar, quadratic function of a
vector of the form:

1
f(x) = EXTAX—bTX—i—C, where A =AT

%
0
K777
OQNTH T
R TI#7711]
0‘}*::92{“;‘4;1[;][[1[1

S
Q %
SRR
R
R
X QL
X ":’:"17 71771
N7

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Quadratic Forms

Quadratic Forms (2)

The gradient of a quadratic form is defined as

2-£(x)
Fo)=|
%)
o f(x)=Ax—b

o ff(x)=0 & Ax—-b=0 & Ax=b

= Ax = b equivalent to a minimisation problem
(if A positive definite)

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Quadratic Forms

ATHENS 2007 -

Steepest Descent Parallel Numerical

Simulation

Michael Bader

@ gradient f/(x): direction of “steepest ascent”
("] f/(X) :AX—b = —r (W|th I’eSIdua| r= b _AX) Steepest Descent
@ residual r: direction of “steepest descent”

SN NN NN
x

SIS S NN NN NN

Sy s NN N NN

VOV N A Y N N NN NN

SENONON Y N NN

DOV N ST N Y N NN NN
A Y O N N N NN

LNENENENEN
[SENE RN
<
<
«

Steepest Descent (2)

@ basic idea to find minimum:
move into direction of steepest descent

@ most simple scheme:
XU — x() 1 g ()

@ o constant = Richardson iteration
(often considered as a relaxation method)

@ better choice of a:
move to lowest point in that direction
= Steepest Descent

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Steepest Descent

Steepest Descent — find o

@ task: line search along the line
x(1) = x(0) 1 gr(0)

@ choose o such that f(x(1)) is minimal:

d
— f(x(MY) =
8ocf(x)=0

@ use chain rule:

d

0
T MY — F (O 2 (1) — £, (1T (0)
8ocf(x)y=Ff(x\") aocx fF(x")'r

e remember f'(x(1)) = —r(1), thus:

_ <,(1))T,(0> 1o

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Steepest Descent

Steepest Descent — find o (2)

b Ax(°)+ar0))T
(b-AK®)" 1O o (ar®)" 1O
(()) 0) (,(0))TA,()

r

() 0= o) 0
<

Solve for a:

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Steepest Descent

Steepest Descent — Algorithm

@ i) — b Ax()

B (,(0))TA,<0>
Qa= (r(o>)Tr(o>

Q xU+1) — x() + or®

('

Observations:

@ rather slow convergence

(Iargest/smallest eigenvalues of A)

K' 1

e(O)H where & = Amax/Amin

@ many steps in the same direction

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Steepest Descent

Conjugate Directions

steepest descent takes repeated steps in the
same direction

obvious idea:

try to do only one step in each direction
possible approach:

choose orthogonal search directions
d®1dM1d] ...

notice: errors orthogonal to previous
directions: e(") 1 d(® () | g(1) | ¢(O) .

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Conjugate
Directions

ATHENS 2007 -

Conjugate Directions (2) parlel Numerica

Simulation

Michael Bader

@ compute o from

(d(0)> Tall) _ (d(0)> r (e(m n ad<°)) 0

Conjugate
Directions

@ formula for «a:

(d(m)rem)
C=——7_
(d©)7d()

@ but: we don’t know e(?)

A-Orthogonality

@ make the search directions A-orthogonal:
(0 4d® = 0
@ again: errors orthogonal to previous directions:
(e(i+1)>T Ad® L0
@ equiv. to minimisation in search direction d(?):
%f((i+1)) _ g ((X(im))T%X(m)) _ 0
e G

o (d<f>)TAe<f+1> ~ 0

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

A-Orthogonality

A-Conjugate Directions

@ remember the formula for conjugate

directions:
(d(O))Te(O)

(d©)7d(®)
@ with A-orthogonality:

o=—

dNT ael® dMNT)
U)

() AdD) (dD)T Ad()

@ only one task left:
find A-orthogonal search directions

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

A-Orthogonality

ATHENS 2007 -

A-Conjugate Directions (2) prlel i

Simulation

classical approach to find orthogonal directions: e B
conjugate Gram-Schmidt process:

@ from linearly independent vectors
u©® M el

@ construct orthogonal directions
d© d(), . di~")

A-Orthogonality

i—1
d) = 05 B d®
2"

(u(i))TAd(k)

P = = (d®NTAdK)

@ keep all old search vectors in memory

@ O(n?) computational complexity

ATHENS 2007 -

CO nJ u g ate G ra d Ients Paral!el Numerical

Simulation

Michael Bader

use residuals to construct conjugate directions:

i1
4 =)+ 'S B d®
&

directions d(/) should be A-orthogonal: s

Gradients

0= (d?)7ad®) = (r)7 AdV) + Z Bi (d®)T adl)

d-vectors are A-orthogonal, hence:

(r™) TAd)

0= (KN Ad0) 4 B (d agl) = g, _ () AdY

ATHENS 2007 -

Conjugate Gradients — Status parallel Numericl

Simulation

Michael Bader

@ conjugate directions:

(d(i)) T (i)
o = ——F
(d(l)) Ad()
X(I+1) — X(I) _|_ ald(l) Conjugate

Gradients

@ use residuals to compute search directions:
, L]
d0 — 04 z Bird®
k=0

(r)7 Ad®)

P = aw) a0

“I think you should be more explicit here in step two.”

from What's so Funmy about Scierce? by Sidney Harris (1377

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Quadratic Forms
Steepest Descent

Conjugate
Directions

A-Orthogonality

Conjugate
Gradients

CG Algorithm

CG Convergence

Preconditioning

ATHENS 2007 -

A I\/I I ra Cle Occu rS —_ Pa rt 1 Parallel Numerical

Simulation

Michael Bader

Two small contributions:

@ propagation of the error

X+ —) 4 gl

X(I+1) —-x = X(I) X+ Ot,d(’) Conjugate

Gradients

et = o) 4 g,d)
© propagation of residuals

A1) _pelit) — _p <e<f>+a,d<f>)

= =) _ gAdl)

ATHENS 2007 -

A I\/I I ra Cle Occu rS -_ Pa rt 2 Parallel Numerical

Simulation

Michael Bader

Orthogonality of the residuals:
@ search directions are A-orthogonal
@ only one step in each directions

@ hence: error is A-orthogonal to previous search
d|rect|ons (d(l))TAe(j) - O, fOr‘ I <j Conjugate

Gradients

@ residuals are orthogonal to previous search
directions: (d(’))TrU) =0, fori<j

@ search directions are built from residuals:
span {d(0)7 o ,d("’”} = span {r(o), . ,r("”)}

@ hence: residuals are orthogonal

(r(i))TrU) =0, i<j

ATHENS 2007 -

A I\/I I ra Cle Occu rS -_ Pa rt 3 Parallel Numerical

Simulation

Michael Bader

@ combine orthogonality and recurrence for

residuals:
(r(i))Tr(i+1) _ (r(i))T,(j)_aj(r(i))TAd(i)
= o;(r) Ad = (rD) D) — (rD)7 G+ Gradnts

° (r(i))TrU) =0, ifi #j:

o %(r(i))Tr(i), i=j
(r) AdV = ¢ L (k)0 =iy 1
0 otherwise.

A Miracle Occurs — Part 4

@ computation of f;:

(r(i))TAd(k)
(d)” Ad(K)
(r®) T (i)
= o (d-1)T Ad-1)’
0

Bk =

. (d(i))Tr(i)

@ remember: o; = (dMTAdD

RONG!
= Bi=-) =

(r®) 0

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Conjugate
Gradients

i=j+1

I>j+1

(d(m)) Toi-1)

(r=1)Trl=1)

Conjugate Gradients — Algorithm

Start: d(© =r(0) = p — Ax(0)

L (r(i))Tr(i)
Q o = wyraqo

Q x(1) = x() + g gl()
Q rli+1) — () — (X,‘Ad(i)

r(i+1))Tr(i+1)

e ﬁi—H :W

(s dUi+1) — (i+1) +Bi+1d(i)

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

CG Algorithm

ATHENS 2007 -

ConJugate Gradlents _ Convergence Parallel Numerical

Simulation

Michael Bader

Convergence Analysis:
@ uses Krylow subspace:

span {r(o),Ar(O),Azr(O), . ,A"‘1 r(o)}

@ "“Krylow subspace method”

Convergence Results:

CG Convergence

@ in principle: direct method (n steps)
@ in practice: iterative scheme

2 (1) =1,

o0

3 K-:}L'maX/lmin

ATHENS 2007 -

Preconditioning i

Simulation

Michael Bader

@ convergence depends on matrix A

@ idea: modify linear system
Ax=b ~ M 'Ax=M""p,

then: convegence depends on matrix M~'A
@ optimal preconditioner: M~ =A"":

A_1AX :A_1b X = A—1b. Preconditioning

@ in practice:
e avoid explicit computation of M~'A
e find an M similar to A, compute effect of M~!
e find an M~ similar to A~

ATHENS 2007 -

CG and Precondltloning Parallel Numerical

Simulation

Michael Bader

@ just replace A by M~'A in the algorithm??
@ problem: M~'A not necessarily symmetric
(even if M and A both are)

@ workaround: find EE" = M, then:

Ax=b ~ ETAETTRx=E'p, %=EF"x

Preconditioning

@ undesirable, because E has to be computed
(however, neither M nor M~ might be known
explicitly

@ some re-computations — next slide

CG with Preconditioner

Start: r(©) = p — Ax(9): g(0) — pg-1,(0)

o (r(i))TM*1r(i)
Q o = "oyragn

Q xU+1) — x() + Ot,'d(i)
Q i) —) _ g Adl)

i1)) T =1 p0+1)
() " -1100)

Q B =

o d(i+1) _ M—1r(i+1) +Bi+1d(i)

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Preconditioning

ATHENS 2007 -

I mplementation Parallel Numerical

Simulation

Michael Bader

Preconditioning steps: M~ 'r() p—17(+1)
e M~ known then multiply M~1r()
@ M known, then solve My = r()) to obtain
y=mM1r0)
@ neither M, nor M~ are known explicitly:

e algorithm to solve My = r() is sufficient!
— any approximate solver for Ae = r(!) Preconditioning

e algorithm to compute M~ is sufficient!
— compute (sparse) approximate inverse

@ Examples: Mutigrid, Jacobi, ILU, SPAI, ...

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Part Ill
Multigrid Methods

Convergence of Relaxation Methods

Observation
@ slow convergence

@ high frequency error components are damped
more efficiently

@ smooth error components are reduced very
slowly

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

The Smoothing
Property

ATHENS 2007 -

Convergence AnalySIS Parallel Numerical

Simulation

Michael Bader

@ remember iteration scheme: x(1) = Mx() + Nb [iaiis

@ derive iterative scheme for the error
ell) -— x — x()-

el 1) = x — x(F) — x — Mx() — Nb

@ for consistent scheme, x is a fixpoint of the
iteration (x = Mx — Nb)

@ hence:

e = Mx 4 Nb— MxD — Nb = Me)
e — el

Convergence Analysis (2)

e iteration equation for error: e() = Mie(0)

@ consider eigenvalues A; and eigenvectors v; of
iteration matrix M:

Mv;=4v; = M(o)) = Aoy,
J J

@ convergence, if all |A;| <1
@ speed of convergence dominated by largest A;

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

The Smoothing
Property

The Smoothing Property

@ for 1D-Poisson: eigenvectors: sin(kmj/n)

o eigenvalues: 4sin® (k%)

@ decompose the error e) into eigenvector
(sin(kmx;), Fourier mode analysis)

@ smallest eigenvalue of A (for k=1): O(n?)

@ largest eigenvalue of M :I—D;1A: O(1—n~

@ convergence determined by O(1—n—?)

?)

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

The Smoothing
Property

The Smoothing Property (2)

Result of convergence analysis:
@ The high frequency part (with respect to the
underlying grid) is reduced quite quickly.

@ The low frequency part (w.r.t. the grid)
decreases only very slowly; actually the slower,
the finer the grid is.

= “smoothing property”

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

The Smoothing

Property

Multigrid Idea No. 1

@ result from convergence analysis:
“high-frequency error” is relative to mesh size

@ on a sufficiently coarse grid, even very low
frequencies can be “high-frequency”
(if the mesh size is big)

“Multigrid”:
@ use multiple grids to solve the system of
equations

@ on each grid, a certain range of error
frequencies will be reduced efficiently

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Multigrid Idea No.
1

Multigrid Idea No. 2

Solve the problem on a coarser grid:
@ will be comparably (very) fast

@ can give us a good initial guess:

e nested iteration/“poor man’s multigrid”
e unfortunately, will not improve a fine grid
solution any further

= ldea No. 2: use the residual equation:

@ solve Ae =r on a coarser grid
@ leads to an approximation of the error e

@ add this approximation to the fine-grid
solution

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Multigrid Idea No.
2

A Two-Grid Method

Algorithm:

@ relaxation/smoothing on the fine level system
= solution xp

© compute the residual r;, = by, — Apxp,

© restriction of ry, to the coarse grid Qy

© compute a solution to Ayey =ry

© interpolate the coarse grid solution ey to the
fine grid Q,

@ add the resulting correction to x,

@ again, relaxation/smoothing on the fine grid

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

A Two-Grid

Method

Correction Scheme — Components

smoother: reduce the high-frequency error
components, and get a smooth error
restriction: transfer residual from fine grid to
coarse grid, for example by
@ injection
@ (full) weighting
coarse grid equation: (acts as) discretisation of the
PDE on the coarse grid
interpolation: transfer coarse grid
solution/correction from coarse grid to
fine grid

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

Correction Scheme
— Components

ATHENS 2007 -

The Multigrid V-Cycle pralle Nomercl

Simulation

Michael Bader

@ smoothing on the fine level system
= solution x;

@ compute the residual ry=b;—Ayx,

© restriction of r; to the coarse grid Q;_,

@ solve coarse grid system A;_1e;_1 =r/_1 by a
recursive call to the V-cycle algorithm

.) . The Multigrid
@ interpolate the coarse grid solution ;_; to the J&S&EE

fine grid Q,

Q@ add the resulting correction to x;
@ post-smoothing on the fine grid

V-Cycle — Implementation

@ on the coarsest grid: direct solution

@ number of smoothing steps is typically very
small (1 or 2)

Cost (storage and computing time):

@ 1D:c-n+c-n/2+c-n/4+...<2c-n

@ 2D:c-n+c-n/4+c-n/16+...<4/3c-n

@ 3D:c-n+c-n/8+c-n/64+...<8/7c-n

@ overall costs are dominated by the costs of the
finest grid

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

The Multigrid
V-Cycle

The W-Cycle

@ perform two coarse grid correction steps
instead of one

h
_ ,\i ,,,,,,,,,,, \i ,,,,,,,,,,,,,,,,,,,,,,,
Q\Zh f{2h QZh fiZh d;h
Qqp f{zth Q4h Q4h f{(4h Q4h Q4h f{(
(V-cycle and W—cycle)
@ more expensive

@ useful in situations where the coarse grid
correction is not very accurate

ATHENS 2007 -
Parallel Numerical
Simulation

Michael Bader

More Multigrid
Schemes

ATHENS 2007 -

The Full Multigrid V-Cycle (FMV) parallel Numerical

Simulation

Michael Bader

Recursive algorithm:

@ perform an FMV-cycle on the next coarser grid
to get a good initial solution

@ interpolate this initial guess to the current grid
@ perform a V-cycle to improve the solution

More Multigrid
_ ,\‘ 7777777777777777777 Schemes

PR S

ATHENS 2007 -

Speed Of Convergence Parallel Numerical

Simulation

Michael Bader

o fastest method around
(if all components are chosen carefully)

o "textbook multigrid efficiency”:
e < e

where convergence rate y < 1 (esp. y<< 1) is
independent of the number of unknowns
= constant number of multigrid steps to obtain a
given number of digits

Speed of
= overall computational work increases only Convergence

linearly with the number of unknowns

ATHENS 2007 -

Convergence Rates (2) Parallel Numerical

Simulation

Michael Bader

For Poisson Problems (“Model Problem”):
@ O(n) to solve up to “level of truncation”
e “level of truncation”: O(h?)
@ O(n) is achieved by FMV-Cycle
(1 or 2 cycles sufficient)
For Other Problems:
@ OK for strongly elliptic problems

@ multigrid variants for non-linear problems,
parabolic/hyperbolic, . ..

Speed of
Convergence

@ achieving “textbook efficiency” usually a
demanding task

ATHENS 2007 -

the ratu re Parallel Numerical

Simulation

Michael Bader

General:

@ Gander, Hrebicek: Solving Problems in
Scientific Computing Using Maple and
MATLAB.

@ Golub, Ortega: Scientific Computing and
Differential Equations.

@ Dongarra, et. al.: Numerical linear algebra for
high-performance computers.

Speed of
Convergence

ATHENS 2007 -

Literature (2) parale Numercl

Simulation

Michael Bader

Multigrid:

@ Briggs, Henson, McCormick: A Multigrid
Tutorial (2nd ed.).

Conjugate Gradients:

@ Shewchuk: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain.

Speed of
Convergence

	Outlines
	Part I: Relaxation Methods
	Part II: Conjugate Gradients
	Part III: Multigrid Methods

	Iterative Solution of Systems of Linear Equations
	Relaxation Methods
	Residual-Based Correction
	Relaxation
	Jacobi Relaxation
	Gauss-Seidel Relaxation
	Successive-Over-Relaxation (SOR)
	Does It Always Work?

	Conjugate Gradients
	Quadratic Forms
	Steepest Descent
	Conjugate Directions
	A-Orthogonality
	Conjugate Gradients
	CG Algorithm
	CG Convergence
	Preconditioning

	Multigrid Methods
	The Smoothing Property
	Multigrid Idea No. 1
	Multigrid Idea No. 2
	A Two-Grid Method
	Correction Scheme -- Components
	The Multigrid V-Cycle
	More Multigrid Schemes
	Speed of Convergence

