ATHENS 2007 – Parallel Numerical Simulation Iterative Solution of Linear Systems

Michael Bader

March, 20th-24th, 2006

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part I: Relaxation Methods Part II: Conjugate Gradient

Part I: Relaxation Methods

- Residual-Based Correction
- Relaxation
- 4 Jacobi Relaxation
- Gauss-Seidel Relaxation
- Successive-Over-Relaxation (SOR)
- Does It Always Work?

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part I: Relaxation Methods

Part II: Conjugate Gradients

Part II: Conjugate Gradients

- Quadratic Forms
- Steepest Descent
- Conjugate Directions
- Machine A. Orthogonality
- Conjugate Gradients
- CG Algorithm
- CG Convergence
- Preconditioning

ATHENS 2007 – Parallel Numerical

Michael Bader

Outlines

Part II: Relaxation Methods
Part II: Conjugate Gradients

Part III: Multigrid Methods

- 16 The Smoothing Property
- 🕡 Multigrid Idea No. 1
- 18 Multigrid Idea No. 2
- A Two-Grid Method
- 20 Correction Scheme Components
- The Multigrid V-Cycle
- More Multigrid Schemes
- Speed of Convergence

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part II: Relaxation Methods
Part III: Conjugate Gradient
Part III: Multigrid Methods

Systems of Linear Equations in Scientific Computing

- discretization of both ODE and PDE leads to large systems of linear equations (LSE)
- solving these LSE is one of the most important/expensive tasks in scientific computing
- LSE resulting from ODE or PDE are typically:
 - sparse (because of the local discretization stencils)
 - large
 (because of the desired accuracy)

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part II: Relaxation Methods Part II: Conjugate Gradients

Direct Solvers for Sparse LSEs

Direct solvers are often not competitive:

- computing time grows quickly with the number of unknowns:
 - 2D-Poisson:
 - $\mathcal{O}(N^2)$ required for band elimination $\mathcal{O}(N^{3/2})$ required for nested dissection
- classical elimination destroys sparsity:
 - hence, additional memory is required
 - 2D-Poisson: $\mathcal{O}(N^{3/2})$ required for band elimination $\mathcal{O}(N\log N)$ required for nested dissection
- exact solution is not necessarily required, as the SLE itself is only an approximation

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part I: Relaxation Methods Part II: Conjugate Gradients

Iterative Solvers for Sparse LSEs

Goals for iterative solvers:

- take advantage of the sparsity pattern; use little or no additional memory
- compute a series of approximations

$$x^{(0)} \rightarrow x^{(1)} \rightarrow \ldots \rightarrow x^{(i)} \rightarrow \ldots \rightarrow \lim_{i \to \infty} x^{(i)} = x$$

that converges *quickly* and *uniformly* to the solution *x*

 modest growth of computing time; objective: rule-of-thumb like

"for 3 digits, you need 10 steps" (regardless of number of unknowns)

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part I: Relaxation Methods
Part II: Conjugate Gradients

Families of Iterative Solvers

- relaxation methods:
 - Jacobi-, Gauss-Seidel-Relaxation, . . .
 - Over-Relaxation-Methods
- Krylov methods:
 - Steepest Descent, Conjugate Gradient, . . .
 - GMRES, ...
- Multilevel/Multigrid methods, Domain Decomposition, . . .

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Outlines

Part II: Relaxation Methods
Part III: Conjugate Gradients
Part III: Multigrid Methods

Part I Relaxation Methods

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Does It Always

The Residual Equation

• for Ax = b, we define the **residual**:

$$r^{(i)} = b - Ax^{(i)}$$

- and the error: $e^{(i)} := x x^{(i)}$ (thus $x := x^{(i)} + e^{(i)}$);
- short computation:

$$r^{(i)} = b - Ax^{(i)} = Ax - Ax^{(i)} = A(x - x^{(i)}) = Ae^{(i)}.$$

residual equation:

$$Ae^{(i)}=r^{(i)}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Residual Based Correction

Solve Ax = b using the residual equation $Ae^{(i)} = r^{(i)}$

- r (which can be computed) is an indicator for the size of the error e (which is not known).
- use residual equation to compute a *correction* to $x^{(i)}$
- basic idea: solve a modified (easier) SLE:

$$B\hat{\mathbf{e}}^{(i)} = \mathbf{r}^{(i)}$$
 where $B \sim A$

• use $\hat{e}^{(i)}$ as an approximation for $e^{(i)}$, and set

$$x^{(i+1)} = x^{(i)} + \hat{\mathbf{e}}^{(i)}.$$

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Does It Always

Relaxation

How should we choose *B*?

- $B \sim A$ (B "similar" to A), i.e. $B^{-1} \approx A^{-1}$, or at least $B^{-1}y \approx A^{-1}y$ for most vectors y.
- Be = r should be easy/fast to solve

Examples:

- $B = diag(A) = D_A$ (diagonal part of A) \Rightarrow Jacobi iteration
- B = L_A (lower triangular part of A)
 ⇒ Gauss-Seidel iteration

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Relaxation (SOR)

Jacobi Relaxation

Iteration formulas in matrix-vector notation:

residual notation:

$$x^{(i+1)} = x^{(i)} + D_A^{-1}r^{(i)} = x^{(i)} + D_A^{-1}(b - Ax^{(i)})$$

for implementation:

$$x^{(i+1)} = D_A^{-1} \left(b - (A - D_A) x^{(i)} \right)$$

for analysis:

$$x^{(i+1)} = (I - D_A^{-1}A)x^{(i)} + D_A^{-1}b =: Mx^{(i)} + Nb$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Jacobi Relaxation - Algorithm

• based on: $x^{(i+1)} = D_A^{-1} (b - (A - D_A)x^{(i)})$ for i from 1 to n do xnew[i] := (b[i]- sum(A[i,j]*x[j], j=1..i-1) - sum(A[i,j]*x[j], j=i+1..n)) / A[i,i]; end do; for i from 1 to n do x[i] := xnew[i];end do;

properties:

- additional storage required (xnew)
- x, xnew can be computed in any order
- x, xnew can be computed in parallel

ATHENS 2007 – Parallel Numerica Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Gauss-Seidel Relaxation

Iteration formulas in matrix-vector notation:

residual notation:

$$x^{(i+1)} = x^{(i)} + L_A^{-1} r^{(i)} = x^{(i)} + L_A^{-1} (b - Ax^{(i)})$$

for implementation:

$$x^{(i+1)} = L_A^{-1} \left(b - (A - L_A) x^{(i)} \right)$$

for analysis:

$$x^{(i+1)} = (I - L_A^{-1}A)x^{(i)} + L_A^{-1}b =: Mx^{(i)} + Nb$$

ATHENS 2007 –
Parallel Numerical

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Relaxation (SOR)

Gauss-Seidel Relaxation - Algorithm

- based on: $x^{(i+1)} = L_A^{-1} \left(b (A L_A) x^{(i)} \right)$
- solve $L_A x^{(i+1)} = b (A L_A) x^{(i)}$ via backwards substitution:

properties:

- no additional storage required
- \bullet inherently sequential computation of \boldsymbol{x}
- usually faster than Jacobi

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Residual-Based

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Does It Always

Successive-Over-Relaxation (SOR)

- observation: Gauss-Seidel corrections are "too small"
- add an over-relaxation-factor α :

• for 2D-Poisson: optimal α (\approx 1.7) improves convergence: $\mathcal{O}(n^2) \rightarrow \mathcal{O}(n^{3/2})$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Does It Always Work?

- simple answer: no (life is not that easy . . .)
- Jacobi: matrix A needs to be diagonally dominant
- Gauß-Seidel: matrix A needs to be positive definite
- How about performance?
 - → usually quite slow

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Residual-Based Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel Relaxation

Successive-Over-Relaxation (SOR)

Does It Always

Part II Conjugate Gradients

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descen

Conjugate Directions

A-Orthogonality

Gradients

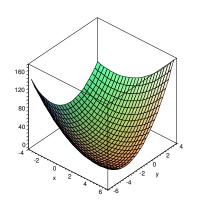
CG Algorithm

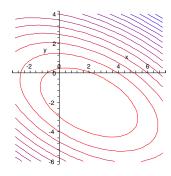
CG Convergence

Quadratic Forms

A *quadratic form* is a scalar, quadratic function of a vector of the form:

$$f(x) = \frac{1}{2}x^{T}Ax - b^{T}x + c$$
, where $A = A^{T}$





ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Gradients

ca Aigontiiii

CG Convergence

Quadratic Forms (2)

The gradient of a quadratic form is defined as

$$f'(x) = \begin{pmatrix} \frac{\partial}{\partial x_1} f(x) \\ \vdots \\ \frac{\partial}{\partial x_n} f(x) \end{pmatrix}$$

•
$$f'(x) = Ax - b$$

•
$$f'(x) = 0 \Leftrightarrow Ax - b = 0 \Leftrightarrow Ax = b$$

 \Rightarrow Ax = b equivalent to a **minimisation problem** (if A positive definite)

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

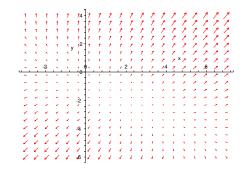
radients

CG Algorithm

cG Convergence

Steepest Descent

- gradient f'(x): direction of "steepest ascent"
- f'(x) = Ax b = -r (with residual r = b Ax)
- residual r: direction of "steepest descent"



ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

iradients

G Algorithm

CG Convergence

Steepest Descent (2)

- basic idea to find minimum: move into direction of steepest descent
- most simple scheme:

$$\mathbf{x}^{(i+1)} = \mathbf{x}^{(i)} + \alpha \mathbf{r}^{(i)}$$

- α constant ⇒ Richardson iteration (often considered as a relaxation method)
- better choice of α: move to lowest point in that direction
 ⇒ Steepest Descent

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

 $A\hbox{-}Or thogonality$

onjugate radients

CG Algorithm

CG Convergence
Preconditioning

Steepest Descent – find α

- task: *line search* along the line $x^{(1)} = x^{(0)} + \alpha r^{(0)}$
- choose α such that $f(x^{(1)})$ is minimal:

$$\frac{\partial}{\partial \alpha} f(x^{(1)}) = 0$$

use chain rule:

$$\frac{\partial}{\partial \alpha} f(x^{(1)}) = f'(x^{(1)})^T \frac{\partial}{\partial \alpha} x^{(1)} = f'(x^{(1)})^T r^{(0)}$$

• remember $f'(x^{(1)}) = -r^{(1)}$, thus:

$$-\left(r^{(1)}\right)^{\prime}r^{(0)}\stackrel{!}{=}0$$

ATHENS 2007 – Parallel Numerica Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

iradients

CG Algorithm

CG Convergence

Steepest Descent – find α (2)

$$(r^{(1)})^T r^{(0)} = (b - Ax^{(1)})^T r^{(0)} = 0$$

$$(b - A(x^{(0)} + \alpha r^{(0)}))^T r^{(0)} = 0$$

$$(b - A(x^{(0)})^T r^{(0)} - \alpha (Ar^{(0)})^T r^{(0)} = 0$$

$$(r^{(0)})^T r^{(0)} - \alpha (r^{(0)})^T Ar^{(0)} = 0$$

Solve for α :

$$\alpha = \frac{\left(r^{(0)}\right)^T A r^{(0)}}{\left(r^{(0)}\right)^T r^{(0)}}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

radients

G Algorithm

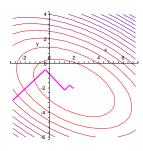
CG Convergence

Steepest Descent – Algorithm

$$r^{(i)} = b - Ax^{(i)}$$

$$\alpha = \frac{(r^{(0)})^T A r^{(0)}}{(r^{(0)})^T r^{(0)}}$$

$$x^{(i+1)} = x^{(i)} + \alpha r^{(i)}$$



Observations:

- rather slow convergence
- $\|\mathbf{e}^{(i)}\|_{A} \leq \left(\frac{\kappa-1}{\kappa+1}\right)^{i} \|\mathbf{e}^{(0)}\|_{A}$, where $\kappa = \lambda_{\max}/\lambda_{\min}$ (largest/smallest eigenvalues of A)
- many steps in the same direction

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Gradients

CG Convergence

La Convergence

Conjugate Directions

- steepest descent takes repeated steps in the same direction
- obvious idea: try to do only one step in each direction
- possible approach: choose orthogonal search directions $d^{(0)} \perp d^{(1)} \perp d^{(2)} \perp ...$
- notice: errors orthogonal to previous directions: $e^{(1)} \perp d^{(0)}, e^{(2)} \perp d^{(1)} \perp d^{(0)}, \dots$

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Gradients

G Algorithm

CG Convergence

Conjugate Directions (2)

 \bullet compute α from

$$\left(d^{(0)}\right)^T e^{(1)} = \left(d^{(0)}\right)^T \left(e^{(0)} + \alpha d^{(0)}\right) = 0$$

• formula for α :

$$\alpha = -\frac{\left(d^{(0)}\right)^T e^{(0)}}{\left(d^{(0)}\right)^T d^{(0)}}$$

• **but**: we don't know $e^{(0)}$

ATHENS 2007 –
Parallel Numerical
Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

iradients

2G Algorithm

CG Convergence

A-Orthogonality

• make the search directions A-orthogonal:

$$\left(d^{(i)}\right)^T A d^{(j)} = 0$$

again: errors orthogonal to previous directions:

$$\left(e^{(i+1)}\right)^T A d^{(i)} \stackrel{!}{=} 0$$

• equiv. to minimisation in search direction $d^{(i)}$:

$$\frac{\partial}{\partial \alpha} f\left(x^{(i+1)}\right) = f'\left(\left(x^{(i+1)}\right)^T \frac{\partial}{\partial \alpha} x^{(i+1)}\right) = 0$$

$$\Leftrightarrow -\left(r^{(i+1)}\right)^T d^{(i)} = 0$$

$$\Leftrightarrow \left(d^{(i)}\right)^T A e^{(i+1)} = 0$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Directions

A-Orthogonality

CC Algorithm

CG Algorithm

CG Convergence

A-Conjugate Directions

remember the formula for conjugate directions:

$$\alpha = -\frac{\left(d^{(0)}\right)^T e^{(0)}}{\left(d^{(0)}\right)^T d^{(0)}}$$

with A-orthogonality:

$$\alpha = -\frac{(d^{(i)})^T A e^{(i)}}{(d^{(i)})^T A d^{(i)}} = \frac{(d^{(i)})^T r^{(i)}}{(d^{(i)})^T A d^{(i)}}$$

 only one task left: find A-orthogonal search directions ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

radients

G Algorithm

CG Convergence

A-Conjugate Directions (2)

classical approach to find orthogonal directions: conjugate Gram-Schmidt process:

- from linearly independent vectors $u^{(0)}, u^{(1)}, \dots, u^{(i-1)}$
- construct orthogonal directions $d^{(0)}, d^{(1)}, \dots, d^{(i-1)}$

$$d^{(i)} = u^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)}$$
$$\beta_{ik} = -\frac{(u^{(i)})^T A d^{(k)}}{(d^{(k)})^T A d^{(k)}}$$

- keep all old search vectors in memory
- $\mathcal{O}(n^3)$ computational complexity

ATHENS 2007 – Parallel Numerica Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

radients

CG Algorithm

CG Convergence

Conjugate Gradients

use residuals to construct conjugate directions:

$$d^{(i)} = r^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)}$$

directions $d^{(i)}$ should be A-orthogonal:

$$0 \stackrel{!}{=} (d^{(i)})^{T} A d^{(j)} = (r^{(i)})^{T} A d^{(j)} + \sum_{k=0}^{i-1} \beta_{ik} (d^{(k)})^{T} A d^{(j)}$$

d-vectors are *A*-orthogonal, hence:

$$0 = (r^{(i)})^{T} A d^{(j)} + \beta_{ij} (d^{(j)})^{T} A d^{(j)} \quad \Rightarrow \beta_{ij} = -\frac{(r^{(i)})^{T} A d^{(j)}}{(d^{(j)})^{T} A d^{(j)}}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Conjugate Gradients

CG Algorithm

CG Convergence

Conjugate Gradients – Status

conjugate directions:

$$\alpha_{i} = \frac{(d^{(i)})^{T} r^{(i)}}{(d^{(i)})^{T} A d^{(i)}}$$

$$x^{(i+1)} = x^{(i)} + \alpha_{i} d^{(i)}$$

use residuals to compute search directions:

$$d^{(i)} = r^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)}$$
$$\beta_{ik} = -\frac{(r^{(i)})^T A d^{(k)}}{(d^{(k)})^T A d^{(k)}}$$

ATHENS 2007 –
Parallel Numerical
Simulation

Michael Bader

Quadratic Forms

Steepest Descent

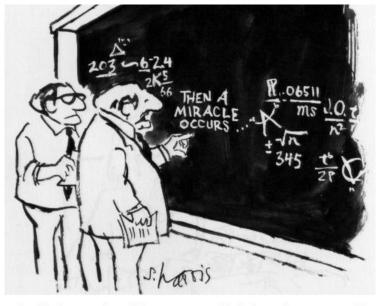
Conjugate Directions

A-Orthogonality

Conjugate Gradients

CG Algorithm

G Convergence



"I think you should be more explicit here in step two."

from What's so Funny about Science? by Sidney Harris (1977)

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

uadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Conjugate Gradients

G Algorithm

2G Convergence

A Miracle Occurs – Part 1

Two small contributions:

propagation of the error

$$x^{(i+1)} = x^{(i)} + \alpha_i d^{(i)}$$

 $x^{(i+1)} - x = x^{(i)} - x + \alpha_i d^{(i)}$
 $e^{(i+1)} = e^{(i)} + \alpha_i d^{(i)}$

propagation of residuals

$$r^{(i+1)} = -Ae^{(i+1)} = -A\left(e^{(i)} + \alpha_i d^{(i)}\right)$$

 $\Rightarrow r^{(i+1)} = r^{(i)} - \alpha_i Ad^{(i)}$

ATHENS 2007 –
Parallel Numerical

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Conjugate Gradients

CG Convergence

ed convergence

A Miracle Occurs – Part 2

Orthogonality of the residuals:

- search directions are A-orthogonal
- only one step in each directions
- hence: error is A-orthogonal to previous search directions: $(d^{(i)})^T A e^{(j)} = 0$, for i < j
- residuals are orthogonal to previous search directions: $(d^{(i)})^T r^{(j)} = 0$, for i < j
- search directions are built from residuals: span $\left\{d^{(0)}, \dots, d^{(i-1)}\right\}$ = span $\left\{r^{(0)}, \dots, r^{(i-1)}\right\}$
- hence: residuals are orthogonal

$$(r^{(i)})^{T}r^{(j)} = 0, \quad i < j$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

Conjugate

A-Orthogonality

Gradients

G Algorithm

G Convergence

A Miracle Occurs – Part 3

combine orthogonality and recurrence for residuals:

$$(r^{(i)})^{T} r^{(j+1)} = (r^{(i)})^{T} r^{(j)} - \alpha_{j} (r^{(i)})^{T} A d^{(j)}$$

$$\Rightarrow \alpha_{j} (r^{(i)})^{T} A d^{(j)} = (r^{(i)})^{T} r^{(j)} - (r^{(i)})^{T} r^{(j+1)}$$

• $(r^{(i)})^T r^{(j)} = 0$, if $i \neq j$:

$$(r^{(i)})^T A d^{(j)} = \left\{ \begin{array}{ll} \frac{1}{\alpha_i} (r^{(i)})^T r^{(i)}, & i = j \\ -\frac{1}{\alpha_{i-1}} (r^{(i)})^T r^{(i)}, & i = j+1 \\ 0 & \text{otherwise.} \end{array} \right.$$

ATHENS 2007 –
Parallel Numerical
Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Gradients

Conjugate

CG Algorithm

CG Convergence

A Miracle Occurs - Part 4

• computation of β_{ii} :

$$\beta_{ik} = -\frac{(r^{(i)})^{T} A d^{(k)}}{(d^{(k)})^{T} A d^{(k)}}$$

$$= \begin{cases} -\frac{(r^{(i)})^{T} r^{(i)}}{\alpha_{i} (d^{(i-1)})^{T} A d^{(i-1)}}, & i = j+1 \\ 0 & i > j+1 \end{cases}$$

• remember: $\alpha_i = \frac{(d^{(i)})^T r^{(i)}}{(d^{(i)})^T A d^{(i)}}$

$$\Rightarrow \beta_{i} = -\frac{(r^{(i)})^{T} r^{(i)}}{(d^{(i-1)})^{T} r^{(i-1)}} = \frac{(r^{(i)})^{T} r^{(i)}}{(r^{(i-1)})^{T} r^{(i-1)}}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

Conjugate

A-Orthogonality

Gradients

CG Convergence

Conjugate Gradients - Algorithm

Start:
$$d^{(0)} = r^{(0)} = b - Ax^{(0)}$$

2
$$x^{(i+1)} = x^{(i)} + \alpha_i d^{(i)}$$

$$r^{(i+1)} = r^{(i)} - \alpha_i Ad^{(i)}$$

$$\beta_{i+1} = \frac{\left(r^{(i+1)}\right)^T r^{(i+1)}}{\left(r^{(i)}\right)^T r^{(i)}}$$

$$d^{(i+1)} = r^{(i+1)} + \beta_{i+1} d^{(i)}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

 $A\hbox{-}Or thogonality$

Gradients

CG Algorithm

G Convergence

Conjugate Gradients – Convergence

Convergence Analysis:

uses Krylow subspace:

span
$$\left\{r^{(0)}, Ar^{(0)}, A^2r^{(0)}, \dots, A^{i-1}r^{(0)}\right\}$$

"Krylow subspace method"

Convergence Results:

- in principle: direct method (n steps)
- in practice: iterative scheme

$$\left\| \mathbf{e}^{(i)} \right\|_{A} \le 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^{t} \left\| \mathbf{e}^{(0)} \right\|_{A}, \quad \kappa = \lambda_{\text{max}} / \lambda_{\text{min}}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

radients

CG Algorithm

CG Convergence

Preconditioning

- convergence depends on matrix A
- idea: modify linear system

$$Ax = b \quad \rightsquigarrow \quad M^{-1}Ax = M^{-1}b,$$

then: convegence depends on matrix $M^{-1}A$

• optimal preconditioner: $M^{-1} = A^{-1}$:

$$A^{-1}Ax = A^{-1}b \Leftrightarrow x = A^{-1}b.$$

- in practice:
 - avoid explicit computation of $M^{-1}A$
 - find an M similar to A, compute effect of M^{-1}
 - find an M^{-1} similar to A^{-1}

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Gradients

CG Algorithm

CG Convergence

CG and **Preconditioning**

- just replace A by $M^{-1}A$ in the algorithm??
- problem: $M^{-1}A$ not necessarily symmetric (even if M and A both are)
- workaround: find $EE^T = M$, then:

$$Ax = b \quad \leadsto \quad E^{-1}AE^{-T}\hat{x} = E^{-1}b, \quad \hat{x} = E^{T}x$$

- undesirable, because E has to be computed (however, neither M nor M^{-1} might be known explicitly
- $\bullet \ \ \text{some re-computations} \to \text{next slide}$

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

onjugate radients

CG Algorithm

CG Convergence

CG with Preconditioner

Start:
$$r^{(0)} = b - Ax^{(0)}$$
; $d^{(0)} = M^{-1}r^{(0)}$

2
$$x^{(i+1)} = x^{(i)} + \alpha_i d^{(i)}$$

$$r^{(i+1)} = r^{(i)} - \alpha_i A d^{(i)}$$

$$\beta_{i+1} = \frac{\left(r^{(i+1)}\right)^T M^{-1} r^{(i+1)}}{\left(r^{(i)}\right)^T M^{-1} r^{(i)}}$$

$$d^{(i+1)} = M^{-1}r^{(i+1)} + \beta_{i+1}d^{(i)}$$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

Gradients

G Algorithm

CG Convergence

Implementation

Preconditioning steps: $M^{-1}r^{(i)}, M^{-1}r^{(i+1)}$

- M^{-1} known then multiply $M^{-1}r^{(i)}$
- M known, then solve $My = r^{(i)}$ to obtain $y = M^{-1}r^{(i)}$
- neither M, nor M^{-1} are known explicitly:
 - algorithm to solve $My = r^{(i)}$ is sufficient!
 - → any approximate solver for Ae = r⁽ⁱ⁾
 algorithm to compute M⁻¹ is sufficient!
 - compute (sparse) approximate inverse
 - ightarrow compute (sparse) approximate inverse
- Examples: Mutigrid, Jacobi, ILU, SPAI, . . .

ATHENS 2007 – arallel Numerical Simulation

Michael Bader

Quadratic Forms

Steepest Descent

Conjugate Directions

A-Orthogonality

radients

CG Algorithm

CG Convergence

Part III

Multigrid Methods

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No 1

> nuitigria idea No !

A Two-Grid Method

Correction Scheme
- Components

The Multigri V-Cycle

More Multigrid Schemes

Convergence of Relaxation Methods

Observation

- slow convergence
- high frequency error components are damped more efficiently
- smooth error components are reduced very slowly

ATHENS 2007 –
Parallel Numerical
Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

Method

Correction Scheme

– Components

The Multigrid V-Cycle

More Multigrid Schemes

Convergence Analysis

- remember iteration scheme: $x^{(i+1)} = Mx^{(i)} + Nb$
- derive iterative scheme for the error $e^{(i)} := x x^{(i)}$:

$$e^{(i+1)} = x - x^{(i+1)} = x - Mx^{(i)} - Nb$$

- for **consistent** scheme, x is a fixpoint of the iteration (x = Mx Nb)
- hence:

$$e^{(i+1)} = Mx + Nb - Mx^{(i)} - Nb = Me^{(i)}$$

 $e^{(i)} = M^{i}e^{(0)}$.

ATHENS 2007 –
Parallel Numerical

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

Method

- Components

V-Cycle

More Multigrid Schemes

Convergence Analysis (2)

- iteration equation for error: $e^{(i)} = M^i e^{(0)}$
- consider eigenvalues λ_j and eigenvectors v_j of iteration matrix M:

$$Mv_j = \lambda_j v_j \quad \Rightarrow \quad M(\underbrace{\sum_j \alpha_j v_j}_{=:e^{(0)}}) = \sum_j \lambda_j \alpha_j v_j$$

$$\Rightarrow \quad M^i e^{(0)} = M^i (\sum_j \alpha_j v_j) = \sum_j \lambda_j^i \alpha_j v_j$$

- ullet convergence, if all $|\lambda_i| < 1$
- ullet speed of convergence dominated by largest λ_j

ATHENS 2007 –
Parallel Numerical
Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme
– Components

he Multigrid /-Cycle

More Multigrid Schemes

The Smoothing Property

- for 1D-Poisson: eigenvectors: $\sin(k\pi j/n)$
- eigenvalues: $4\sin^2(\frac{k\pi}{2n})$
- decompose the error $e^{(i)}$ into eigenvector $(\sin(k\pi x_j)$, Fourier mode analysis)
- smallest eigenvalue of A (for k = 1): $\mathcal{O}(n^{-2})$
- largest eigenvalue of $M = I D_A^{-1}A$: $\mathcal{O}(1 n^{-2})$
- convergence determined by $\mathcal{O}(1-n^{-2})$

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No. 1

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme
– Components

he Multigrio '-Cycle

More Multigrid

The Smoothing Property (2)

Result of convergence analysis:

- The high frequency part (with respect to the underlying grid) is reduced quite quickly.
- The low frequency part (w.r.t. the grid) decreases only very slowly; actually the slower, the finer the grid is.
- ⇒ "smoothing property"

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No. 1

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme
– Components

he Multigrio /-Cycle

More Multigrid Schemes

Multigrid Idea No. 1

- result from convergence analysis:
 "high-frequency error" is relative to mesh size
- on a sufficiently coarse grid, even very low frequencies can be "high-frequency" (if the mesh size is big)

"Multigrid":

- use multiple grids to solve the system of equations
- on each grid, a certain range of error frequencies will be reduced efficiently

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No. 1

> Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme
- Components

Γhe Multigric V-Cycle

More Multigrid Schemes

Multigrid Idea No. 2

Solve the problem on a coarser grid:

- will be comparably (very) fast
- can give us a good initial guess:
 - nested iteration/"poor man's multigrid"
 - unfortunately, will not improve a fine grid solution any further

⇒ Idea No. 2: use the residual equation:

- solve Ae = r on a coarser grid
- leads to an approximation of the error e
- add this approximation to the fine-grid solution

ATHENS 2007 – arallel Numerical

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme

Γhe Multigric V-Cycle

More Multigrid Schemes

A Two-Grid Method

Algorithm:

- relaxation/smoothing on the fine level system \Rightarrow solution x_h
- 2 compute the **residual** $r_h = b_h A_h x_h$
- **9** restriction of r_h to the coarse grid Ω_H
- **a** compute a **solution** to $A_H e_H = r_H$
- **1 interpolate** the coarse grid solution e_H to the fine grid Ω_h
- $oldsymbol{\circ}$ add the resulting **correction** to x_h
- again, relaxation/smoothing on the fine grid

ATHENS 2007 –
Parallel Numerical

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No.

A Two-Grid Method

Correction Scheme

– Components

V-Cycle

More Multigrid Schemes

Correction Scheme – Components

smoother: reduce the high-frequency error

components, and get a smooth error

restriction: transfer residual from fine grid to coarse grid, for example by

- injection
- (full) weighting

coarse grid equation: (acts as) discretisation of the PDE on the coarse grid

interpolation: transfer coarse grid solution/correction from coarse grid to fine grid

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No.

A Two-Grid Method

Correction Scheme
– Components

V-Cycle

More Multigrid Schemes

The Multigrid V-Cycle

- smoothing on the fine level system \Rightarrow solution x_l
- 2 compute the residual $r_l = b_l A_l x_l$
- **1** restriction of r_l to the coarse grid Ω_{l-1}
- solve coarse grid system $A_{l-1}e_{l-1} = r_{l-1}$ by a recursive call to the V-cycle algorithm
- interpolate the coarse grid solution e_{l-1} to the fine grid Ω_l
- $oldsymbol{\circ}$ add the resulting correction to x_l
- post-smoothing on the fine grid

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme
– Components

The Multigrid V-Cycle More Multigrid

More Multigrid Schemes

V-Cycle – Implementation

- on the coarsest grid: direct solution
- number of smoothing steps is typically very small (1 or 2)

Cost (storage and computing time):

- 1D: $c \cdot n + c \cdot n/2 + c \cdot n/4 + ... \le 2c \cdot n$
- 2D: $c \cdot n + c \cdot n/4 + c \cdot n/16 + ... \le 4/3c \cdot n$
- 3D: $c \cdot n + c \cdot n/8 + c \cdot n/64 + ... \le 8/7c \cdot n$
- overall costs are dominated by the costs of the finest grid

ATHENS 2007 –
Parallel Numerical

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

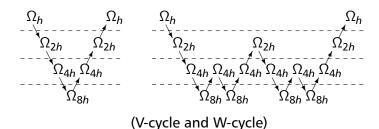
- Components

The Multigrid V-Cycle

More Multigrid Schemes

The W-Cycle

 perform two coarse grid correction steps instead of one



- more expensive
- useful in situations where the coarse grid correction is not very accurate

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme – Components

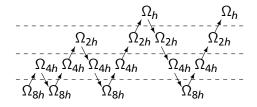
ne Multigrid Cycle

More Multigrid Schemes

The Full Multigrid V-Cycle (FMV)

Recursive algorithm:

- perform an FMV-cycle on the next coarser grid to get a good initial solution
- interpolate this initial guess to the current grid
- perform a V-cycle to improve the solution



ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No. 1

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme

- Components

The Multigrid V-Cycle

More Multigrid Schemes

Speed of Convergence

- fastest method around (if all components are chosen carefully)
- "textbook multigrid efficiency":

$$\left\| e^{(m+1)} \right\| \leq \gamma \left\| e^{(m)} \right\|,$$

where convergence rate γ < 1 (esp. γ << 1) is independent of the number of unknowns

- ⇒ constant number of multigrid steps to obtain a given number of digits
- ⇒ overall computational work increases only linearly with the number of unknowns

ATHENS 2007 – arallel Numerical

Michael Bader

The Smoothing Property

Multigrid Idea No. 1

Multigrid Idea No. 2

> A Two-Grid Method

Correction Scheme

- Components

/-Cycle

More Multigrid Schemes

Convergence Rates (2)

For Poisson Problems ("Model Problem"):

- $\mathcal{O}(n)$ to solve up to "level of truncation"
- "level of truncation": $\mathcal{O}(h^2)$
- O(n) is achieved by FMV-Cycle
 (1 or 2 cycles sufficient)

For Other Problems:

- OK for strongly elliptic problems
- multigrid variants for non-linear problems, parabolic/hyperbolic, . . .
- achieving "textbook efficiency" usually a demanding task

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

- Components

The Multigrio /-Cycle

More Multigrid Schemes

Literature

General:

- Gander, Hrebicek: Solving Problems in Scientific Computing Using Maple and MATLAB.
- Golub, Ortega: Scientific Computing and Differential Equations.
- Dongarra, et. al.: Numerical linear algebra for high-performance computers.

ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No. 1

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme

he Multigrio /-Cycle

More Multigrid Schemes

Literature (2)

Multigrid:

 Briggs, Henson, McCormick: A Multigrid Tutorial (2nd ed.).

Conjugate Gradients:

 Shewchuk: An Introduction to the Conjugate Gradient Method Without the Agonizing Pain. ATHENS 2007 – Parallel Numerical Simulation

Michael Bader

The Smoothing Property

Multigrid Idea No.

Multigrid Idea No. 2

A Two-Grid Method

Correction Scheme

The Multigrid V-Cycle

More Multigrid