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Systems of Linear Equations in
Scientific Computing

discretization of both ODE and PDE leads to
large systems of linear equations (LSE)

solving these LSE is one of the most
important/expensive tasks in scientific
computing
LSE resulting from ODE or PDE are typically:

sparse
(because of the local discretization stencils)
large
(because of the desired accuracy)



ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Outlines
Part I: Relaxation Methods

Part II: Conjugate Gradients

Part III: Multigrid Methods

Iterative Solution
of Systems of
Linear Equations

Direct Solvers for Sparse LSEs

Direct solvers are often not competitive:
computing time grows quickly with the
number of unknowns:

2D-Poisson:
O(N2) required for band elimination
O(N3/2) required for nested dissection

classical elimination destroys sparsity:
hence, additional memory is required
2D-Poisson:
O(N3/2) required for band elimination
O(N logN) required for nested dissection

exact solution is not necessarily required, as
the SLE itself is only an approximation
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Iterative Solvers for Sparse LSEs
Goals for iterative solvers:

take advantage of the sparsity pattern;
use little or no additional memory

compute a series of approximations

x(0) → x(1) → . . .→ x(i) → . . .→ lim
i→∞

x(i) = x

that converges quickly and uniformly
to the solution x

modest growth of computing time; objective:
rule-of-thumb like

“for 3 digits, you need 10 steps”

(regardless of number of unknowns)
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Families of Iterative Solvers

relaxation methods:
Jacobi-, Gauss-Seidel-Relaxation, . . .
Over-Relaxation-Methods

Krylov methods:
Steepest Descent, Conjugate Gradient, . . .
GMRES, . . .

Multilevel/Multigrid methods,
Domain Decomposition, . . .
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Part I

Relaxation Methods
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Does It Always
Work?

The Residual Equation

for Ax = b, we define the residual:

r(i) = b−Ax(i)

and the error: e(i) := x−x(i)

(thus x := x(i) +e(i));

short computation:

r(i) = b−Ax(i) = Ax−Ax(i) = A(x−x(i)) = Ae(i).

residual equation:

Ae(i) = r(i)
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Does It Always
Work?

Residual Based Correction

Solve Ax = b using the residual equation Ae(i) = r(i)

r (which can be computed) is an indicator for
the size of the error e (which is not known).

use residual equation to compute a correction
to x(i)

basic idea: solve a modified (easier) SLE:

Bê(i) = r(i) where B∼ A

use ê(i) as an approximation for e(i), and set

x(i+1) = x(i) + ê(i).
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Relaxation

How should we choose B?

B∼ A (B “similar” to A),
i.e. B−1 ≈ A−1,
or at least B−1y ≈ A−1y for most vectors y.

Be = r should be easy/fast to solve

Examples:

B = diag(A) = DA (diagonal part of A)
⇒ Jacobi iteration

B = LA (lower triangular part of A)
⇒ Gauss-Seidel iteration
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Jacobi Relaxation

Iteration formulas in matrix-vector notation:
1 residual notation:

x(i+1) = x(i) +D−1
A r(i) = x(i) +D−1

A

(
b−Ax(i)

)
2 for implementation:

x(i+1) = D−1
A

(
b− (A−DA)x(i)

)
3 for analysis:

x(i+1) =
(

I−D−1
A A

)
x(i) +D−1

A b =: Mx(i) +Nb
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Jacobi Relaxation – Algorithm
based on: x(i+1) = D−1

A

(
b− (A−DA)x(i)

)
for i from 1 to n do

xnew[i] := ( b[i]

- sum( A[i,j]*x[j], j=1..i-1)

- sum( A[i,j]*x[j], j=i+1..n)

) / A[i,i];

end do;

for i from 1 to n do

x[i] := xnew[i];

end do;

properties:
additional storage required (xnew)
x, xnew can be computed in any order
x, xnew can be computed in parallel
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Gauss-Seidel Relaxation

Iteration formulas in matrix-vector notation:
1 residual notation:

x(i+1) = x(i) +L−1
A r(i) = x(i) +L−1

A

(
b−Ax(i)

)
2 for implementation:

x(i+1) = L−1
A

(
b− (A−LA)x(i)

)
3 for analysis:

x(i+1) =
(

I−L−1
A A

)
x(i) +L−1

A b =: Mx(i) +Nb
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Gauss-Seidel Relaxation – Algorithm

based on: x(i+1) = L−1
A

(
b− (A−LA)x(i)

)
solve LAx(i+1) = b− (A−LA)x(i)

via backwards substitution:

for i from 1 to n do

x[i] := ( b[i]

- sum( A[i,j]*x[j], j=1..i-1)

- sum( A[i,j]*x[j], j=i+1..n)

) / A[i,i];

end do;

properties:
no additional storage required
inherently sequential computation of x
usually faster than Jacobi
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Successive-Over-Relaxation (SOR)

observation: Gauss-Seidel corrections are “too
small”

add an over-relaxation-factor α:

for i from 1 to n do

x[i] := x[i] + alpha * ( b[i]

- sum( A[i,j]*x[j], j=1..n)

) / A[i,i];

end do;

for 2D-Poisson: optimal α (≈ 1.7) improves
convergence: O(n2)→O(n3/2)



ATHENS 2007 –
Parallel Numerical

Simulation

Michael Bader

Residual-Based
Correction

Relaxation

Jacobi Relaxation

Gauss-Seidel
Relaxation

Successive-Over-
Relaxation
(SOR)

Does It Always
Work?

Does It Always Work?

simple answer: no (life is not that easy . . . )

Jacobi: matrix A needs to be diagonally
dominant

Gauß-Seidel: matrix A needs to be positive
definite

How about performance?
→ usually quite slow
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Quadratic Forms
A quadratic form is a scalar, quadratic function of a
vector of the form:

f(x) =
1
2

xTAx−bTx + c, where A = AT
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Quadratic Forms (2)

The gradient of a quadratic form is defined as

f ′(x) =


∂

∂x1
f(x)
...

∂

∂xn
f(x)


f ′(x) = Ax−b

f ′(x) = 0 ⇔ Ax−b = 0 ⇔ Ax = b

⇒ Ax = b equivalent to a minimisation problem
(if A positive definite)
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Steepest Descent

gradient f ′(x): direction of “steepest ascent”

f ′(x) = Ax−b =−r (with residual r = b−Ax)

residual r: direction of “steepest descent”
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Steepest Descent (2)

basic idea to find minimum:
move into direction of steepest descent

most simple scheme:

x(i+1) = x(i) +αr(i)

α constant ⇒ Richardson iteration
(often considered as a relaxation method)

better choice of α:
move to lowest point in that direction
⇒ Steepest Descent
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Steepest Descent – find α

task: line search along the line
x(1) = x(0) +αr(0)

choose α such that f(x(1)) is minimal:

∂

∂α
f(x(1)) = 0

use chain rule:

∂

∂α
f(x(1)) = f ′(x(1))T ∂

∂α
x(1) = f ′(x(1))Tr(0)

remember f ′(x(1)) =−r(1), thus:

−
(

r(1)
)T

r(0) !
= 0
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Steepest Descent – find α (2)

(
r(1)

)T
r(0) =

(
b−Ax(1)

)T
r(0) = 0(

b−A(x(0) +αr(0))
)T

r(0) = 0(
b−A(x(0)

)T
r(0)−α

(
Ar(0)

)T
r(0) = 0(

r(0)
)T

r(0)−α

(
r(0)

)T
Ar(0) = 0

Solve for α:

α =

(
r(0)

)T
Ar(0)(

r(0)
)T r(0)
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Steepest Descent – Algorithm

1 r(i) = b−Ax(i)

2 α =
(r(0))

T
Ar(0)

(r(0))
T
r(0)

3 x(i+1) = x(i) +αr(i)

Observations:

-2 4
x

y
2

-2

2
0

4

-4

6

-6

0

rather slow convergence∥∥∥e(i)
∥∥∥

A
≤

(
κ−1
κ+1

)i
∥∥∥e(0)

∥∥∥
A
, where κ = λmax/λmin

(largest/smallest eigenvalues of A)

many steps in the same direction
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Conjugate Directions

steepest descent takes repeated steps in the
same direction

obvious idea:
try to do only one step in each direction

possible approach:
choose orthogonal search directions
d(0)⊥d(1)⊥d(2)⊥ . . .

notice: errors orthogonal to previous
directions: e(1)⊥d(0),e(2)⊥d(1)⊥d(0), . . .
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Conjugate Directions (2)

compute α from(
d(0)

)T
e(1) =

(
d(0)

)T (
e(0) +αd(0)

)
= 0

formula for α:

α =−

(
d(0)

)T
e(0)(

d(0)
)T d(0)

but: we don’t know e(0)
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A-Orthogonality
make the search directions A-orthogonal:(

d(i)
)T

Ad(j) = 0

again: errors orthogonal to previous directions:(
e(i+1)

)T
Ad(i) !

= 0

equiv. to minimisation in search direction d(i):

∂

∂α
f
(

x(i+1)
)

= f ′
((

x(i+1)
)T ∂

∂α
x(i+1)

)
= 0

⇔ −
(

r(i+1)
)T

d(i) = 0

⇔
(

d(i)
)T

Ae(i+1) = 0
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A-Conjugate Directions

remember the formula for conjugate
directions:

α =−
(
d(0)

)Te(0)(
d(0)

)Td(0)

with A-orthogonality:

α =−
(
d(i))TAe(i)(
d(i)

)TAd(i)
=

(
d(i))Tr(i)(

d(i)
)TAd(i)

only one task left:
find A-orthogonal search directions
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A-Conjugate Directions (2)
classical approach to find orthogonal directions:
conjugate Gram-Schmidt process:

from linearly independent vectors
u(0),u(1), . . . ,u(i−1)

construct orthogonal directions
d(0),d(1), . . . ,d(i−1)

d(i) = u(i) +
i−1

∑
k=0

βikd(k)

βik = − (u(i))TAd(k)

(d(k))TAd(k)

keep all old search vectors in memory

O(n3) computational complexity
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Conjugate Gradients
use residuals to construct conjugate directions:

d(i) = r(i) +
i−1

∑
k=0

βikd(k)

directions d(i) should be A-orthogonal:

0 !
=

(
d(i))TAd(j) =

(
r(i))TAd(j) +

i−1

∑
k=0

βik
(
d(k)

)TAd(j)

d-vectors are A-orthogonal, hence:

0 =
(
r(i))TAd(j)+βij

(
d(j))TAd(j) ⇒ βij =−

(
r(i))TAd(j)(
d(j)

)TAd(j)
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Conjugate Gradients – Status

1 conjugate directions:

αi =

(
d(i))Tr(i)(

d(i)
)TAd(i)

x(i+1) = x(i) +αid
(i)

2 use residuals to compute search directions:

d(i) = r(i) +
i−1

∑
k=0

βikd(k)

βik = −
(
r(i))TAd(k)(
d(k)

)TAd(k)
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A Miracle Occurs – Part 1

Two small contributions:
1 propagation of the error

x(i+1) = x(i) +αid
(i)

x(i+1)−x = x(i)−x +αid
(i)

e(i+1) = e(i) +αid
(i)

2 propagation of residuals

r(i+1) = −Ae(i+1) =−A
(

e(i) +αid
(i)

)
⇒ r(i+1) = r(i)−αiAd(i)
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A Miracle Occurs – Part 2
Orthogonality of the residuals:

search directions are A-orthogonal

only one step in each directions

hence: error is A-orthogonal to previous search
directions:

(
d(i))TAe(j) = 0, for i < j

residuals are orthogonal to previous search
directions:

(
d(i))Tr(j) = 0, for i < j

search directions are built from residuals:
span

{
d(0), . . . ,d(i−1)

}
= span

{
r(0), . . . , r(i−1)

}
hence: residuals are orthogonal(

r(i))Tr(j) = 0, i < j
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A Miracle Occurs – Part 3

combine orthogonality and recurrence for
residuals:(

r(i))Tr(j+1) =
(
r(i))Tr(j)−αj

(
r(i))TAd(j)

⇒ αj
(
r(i))TAd(j) =

(
r(i))Tr(j)−

(
r(i))Tr(j+1)

(
r(i))Tr(j) = 0, if i 6= j:

(
r(i))TAd(j) =


1
αi

(
r(i))Tr(i), i = j

− 1
αi−1

(
r(i))Tr(i), i = j+1

0 otherwise.
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A Miracle Occurs – Part 4

computation of βij:

βik = −
(
r(i))TAd(k)(
d(k)

)TAd(k)

=

 −
(
r(i))Tr(i)

αi
(
d(i−1)

)TAd(i−1)
, i = j+1

0 i > j+1

remember: αi = (d(i))Tr(i)

(d(i))TAd(i)

⇒ βi =−
(
r(i))Tr(i)(

d(i−1)
)Tr(i−1)

=

(
r(i))Tr(i)(

r(i−1)
)Tr(i−1)
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Conjugate Gradients – Algorithm

Start: d(0) = r(0) = b−Ax(0)

1 αi = (r(i))Tr(i)

(d(i))TAd(i)

2 x(i+1) = x(i) +αid(i)

3 r(i+1) = r(i)−αiAd(i)

4 βi+1 =

(
r(i+1)

)T
r(i+1)(

r(i)
)T

r(i)

5 d(i+1) = r(i+1) +βi+1d(i)
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Conjugate Gradients – Convergence

Convergence Analysis:

uses Krylow subspace:

span
{

r(0),Ar(0),A2r(0), . . . ,Ai−1r(0)
}

“Krylow subspace method”

Convergence Results:

in principle: direct method (n steps)

in practice: iterative scheme

∥∥∥e(i)
∥∥∥

A
≤2

(√
κ−1√
κ +1

)i ∥∥∥e(0)
∥∥∥

A
, κ = λmax/λmin
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Preconditioning

convergence depends on matrix A

idea: modify linear system

Ax = b  M−1Ax = M−1b,

then: convegence depends on matrix M−1A

optimal preconditioner: M−1 = A−1:

A−1Ax = A−1b⇔ x = A−1b.

in practice:
avoid explicit computation of M−1A
find an M similar to A, compute effect of M−1

find an M−1 similar to A−1
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Preconditioning

CG and Preconditioning

just replace A by M−1A in the algorithm??

problem: M−1A not necessarily symmetric
(even if M and A both are)

workaround: find EET = M, then:

Ax = b  E−1AE−T x̂ = E−1b, x̂ = ETx

undesirable, because E has to be computed
(however, neither M nor M−1 might be known
explicitly

some re-computations → next slide
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Preconditioning

CG with Preconditioner

Start: r(0) = b−Ax(0); d(0) = M−1r(0)

1 αi = (r(i))TM−1r(i)

(d(i))TAd(i)

2 x(i+1) = x(i) +αid(i)

3 r(i+1) = r(i)−αiAd(i)

4 βi+1 =

(
r(i+1)

)T
M−1r(i+1)(

r(i)
)T

M−1r(i)

5 d(i+1) = M−1r(i+1) +βi+1d(i)
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Implementation

Preconditioning steps: M−1r(i),M−1r(i+1)

M−1 known then multiply M−1r(i)

M known, then solve My = r(i) to obtain
y = M−1r(i)

neither M, nor M−1 are known explicitly:
algorithm to solve My = r(i) is sufficient!
→ any approximate solver for Ae = r(i)

algorithm to compute M−1 is sufficient!
→ compute (sparse) approximate inverse

Examples: Mutigrid, Jacobi, ILU, SPAI, . . .
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Part III

Multigrid Methods
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Convergence of Relaxation Methods

Observation

slow convergence

high frequency error components are damped
more efficiently

smooth error components are reduced very
slowly
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Convergence Analysis

remember iteration scheme: x(i+1) = Mx(i) +Nb

derive iterative scheme for the error
e(i) := x−x(i):

e(i+1) = x−x(i+1) = x−Mx(i)−Nb

for consistent scheme, x is a fixpoint of the
iteration ( x = Mx−Nb)

hence:

e(i+1) = Mx +Nb−Mx(i)−Nb = Me(i)

e(i) = Mie(0).
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Convergence Analysis (2)

iteration equation for error: e(i) = Mie(0)

consider eigenvalues λj and eigenvectors vj of
iteration matrix M:

Mvj = λjvj ⇒ M
(
∑
j

αjvj︸ ︷︷ ︸
=:e(0)

)
= ∑

j
λjαjvj

⇒ Mie(0) = Mi(∑
j

αjvj
)

= ∑
j

λ
i
j αjvj

convergence, if all
∣∣λj

∣∣ < 1

speed of convergence dominated by largest λj
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The Smoothing Property

for 1D-Poisson: eigenvectors: sin(kπ j/n)

eigenvalues: 4sin2(kπ

2n

)
decompose the error e(i) into eigenvector
(sin(kπxj), Fourier mode analysis)

smallest eigenvalue of A (for k = 1): O(n−2)

largest eigenvalue of M = I−D−1
A A: O(1−n−2)

convergence determined by O(1−n−2)
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The Smoothing Property (2)

Result of convergence analysis:

The high frequency part (with respect to the
underlying grid) is reduced quite quickly.

The low frequency part (w.r.t. the grid)
decreases only very slowly; actually the slower,
the finer the grid is.

⇒ “smoothing property”
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Multigrid Idea No. 1

result from convergence analysis:
“high-frequency error” is relative to mesh size

on a sufficiently coarse grid, even very low
frequencies can be “high-frequency”
(if the mesh size is big)

“Multigrid”:

use multiple grids to solve the system of
equations

on each grid, a certain range of error
frequencies will be reduced efficiently
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Multigrid Idea No. 2

Solve the problem on a coarser grid:

will be comparably (very) fast
can give us a good initial guess:

nested iteration/“poor man’s multigrid”
unfortunately, will not improve a fine grid
solution any further

⇒ Idea No. 2: use the residual equation:

solve Ae = r on a coarser grid

leads to an approximation of the error e

add this approximation to the fine-grid
solution
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A Two-Grid Method

Algorithm:
1 relaxation/smoothing on the fine level system
⇒ solution xh

2 compute the residual rh = bh−Ahxh

3 restriction of rh to the coarse grid ΩH

4 compute a solution to AHeH = rH

5 interpolate the coarse grid solution eH to the
fine grid Ωh

6 add the resulting correction to xh

7 again, relaxation/smoothing on the fine grid
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Correction Scheme – Components

smoother: reduce the high-frequency error
components, and get a smooth error

restriction: transfer residual from fine grid to
coarse grid, for example by

injection
(full) weighting

coarse grid equation: (acts as) discretisation of the
PDE on the coarse grid

interpolation: transfer coarse grid
solution/correction from coarse grid to
fine grid
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The Multigrid V-Cycle

1 smoothing on the fine level system
⇒ solution xl

2 compute the residual rl = bl−Alxl

3 restriction of rl to the coarse grid Ωl−1

4 solve coarse grid system Al−1el−1 = rl−1 by a
recursive call to the V-cycle algorithm

5 interpolate the coarse grid solution el−1 to the
fine grid Ωl

6 add the resulting correction to xl

7 post-smoothing on the fine grid
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V-Cycle – Implementation

on the coarsest grid: direct solution

number of smoothing steps is typically very
small (1 or 2)

Cost (storage and computing time):

1D: c ·n+ c ·n/2+ c ·n/4+ . . .≤ 2c ·n
2D: c ·n+ c ·n/4+ c ·n/16+ . . .≤ 4/3c ·n
3D: c ·n+ c ·n/8+ c ·n/64+ . . .≤ 8/7c ·n
overall costs are dominated by the costs of the
finest grid
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The W-Cycle

perform two coarse grid correction steps
instead of one

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ωh Ωh

AU ��

AU ��

AU ��

Ω8h Ω8h

Ω4h Ω4h Ω4h

Ω8h Ω8h

Ω4h Ω4h Ω4h

Ω2h Ω2h Ω2h

Ωh Ωh

AU ��

AU ��

AU ��

AU �� AU �� AU ��

AU ��

(V-cycle and W-cycle)

more expensive

useful in situations where the coarse grid
correction is not very accurate
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The Full Multigrid V-Cycle (FMV)

Recursive algorithm:

perform an FMV-cycle on the next coarser grid
to get a good initial solution

interpolate this initial guess to the current grid

perform a V-cycle to improve the solution

Ω8h Ω8h

Ω4hΩ4h

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ωh Ωh

�� AU ��

�� AU ��

AU ��

�� AU ��

AU ��

AU ��
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Speed of Convergence

fastest method around
(if all components are chosen carefully)

“textbook multigrid efficiency”:∥∥∥e(m+1)
∥∥∥≤ γ

∥∥∥e(m)
∥∥∥ ,

where convergence rate γ < 1 (esp. γ << 1) is
independent of the number of unknowns
⇒ constant number of multigrid steps to obtain a

given number of digits
⇒ overall computational work increases only

linearly with the number of unknowns
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Convergence Rates (2)

For Poisson Problems (“Model Problem”):

O(n) to solve up to “level of truncation”

“level of truncation”: O(h2)

O(n) is achieved by FMV-Cycle
(1 or 2 cycles sufficient)

For Other Problems:

OK for strongly elliptic problems

multigrid variants for non-linear problems,
parabolic/hyperbolic, . . .

achieving “textbook efficiency” usually a
demanding task
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Literature

General:

Gander, Hrebicek: Solving Problems in
Scientific Computing Using Maple and
MATLAB.

Golub, Ortega: Scientific Computing and
Differential Equations.

Dongarra, et. al.: Numerical linear algebra for
high-performance computers.
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Literature (2)

Multigrid:

Briggs, Henson, McCormick: A Multigrid
Tutorial (2nd ed.).

Conjugate Gradients:

Shewchuk: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain.
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