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3.1. Standard lterative Solvers of SLE

* iterative solution of large linear systems is one of the most im-
portant numerical tasks in scientific computing (they occur in
the discretization of both ODE and PDE)

» direct solvers are often not competitive:

- too large number of unknowns (cf. PDE in 3D)
— sparse matrices (classical elimination destroys sparsity)

- anyway only approximations, thus no need for exact solu-
tion (this holds esp. in the nonlinear case, where a system
of linear equations occurs in each step of some outer itera-
tion for the nonlinearity)

* objective: “for 3 digits, you need 10 steps" — no matter how big
the number n of unknowns is

* however typically: speed of convergence deteriorates with in-
creasing n!

Standard lterative.. ..
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Principal Remarks on lterations

« consider an iterative scheme, starting from z(), and, hopefully
converging to the solution = of Ax = b:

i—00

20, 4

- speed of convergence: ||z — 20V || < v - ||z — 2|
forsome 0 <y <1
. . . . Standard lterative. ..
* typical behaviour of iterative schemes:
y=0(1-n",kec{0,1,2,...}
« strategy: look for iterative methods with

- only O(n) arithmetic operations per step of iteration (cost)
- a convergence behaviour like v < 1 — const <« 1

* two big families: relaxation and Krylov subspace methods

—
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Relaxation Techniques 1

» sometimes also called smoothing methods:

- Richardson iteration

- Jacobi iteration

— GauB-Seidel iteration

- successive over relaxation (SOR) or damped methods

- All start from the residual r after i steps of iteration: e ferane
r@ =b— Az® = Az — Az = A(z — 29) = —Ae®
(the error e is not known, so r is used as an indicator)
* How to obtain an improvement?

- Richardson: use the residual as it is as a correction
- Jacobi/GauB-Seidel: make one component of r vanish
- SOR/damped: same, but do a bit less/more than indicated

—
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Relaxation Techniques 2

* Richardson iteration:

repeat(i): fork=1,...,ndoz""" =2V 4,
* (damped) Jacobi iteration:

repeat(i) : fork =1,...,ndoy, = r\"” Jar

fork;zl,...,nde,(jH)zx,gi)—i-a-yk

(compute and store updates, apply them at the end)
» GauB3-Seidel or SOR, resp.:

repeat(:) : fork=1,...,ndo

7 k—1 i+1 n A
= b= s gl = 0 gl
Yp = L'Tx(:), 955:“) = xx(gi)JrOé'yk

Ak

(compute same updates, but apply them at once)

» For an analysis, decompose A in its strictly lower, diagonal, and
strictly upper part: A=Ls+ Ds+ Uy

Standard lIterative.. . .
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Relaxation Techniques 3

+ all can be written in the form Mz(+Y) 4 (A — M)z = b
or

20D — -1y — (M_lA o I)x(i) — 20 L 10

* how looks M ?
- Richardson: M = I,

Standard lIterative.. . .

- Jacobi: M = Dyu,
— GauB-Seidel: M := Dy + L4,
- SOR: M = 1Ds+Ly.

* some convergence results:

— If the iteration converges at all, then towards .

- The crucial quantity is the spectral radius of —M~'-(A— M)
which is smaller than 1 if and only if the iteration converges.

— necessary for SOR: 0 < a < 2

- sufficient for GauB-Seidel/SOR: A positive definite

— sufficient for Jacobi: both A and 2D, — A are positive defi-
nite
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3.2. Towards Krylov: Steepest Descent

« alternative point of view for positive definite A:

x solves Az = b < x minimizes f(r) = 0.5- 2" Ax — b'x + ¢
(unigueness of minimum due to positive definiteness)
* hence new strategy: look for minimum of f

* possible way: method of steepest descent (looks for the best

improvement in the direction of the negative gradient) Towards Krylov:. ..
(@) (0
r\Yor . ) ) ) . .
Ny = (D) () (D) () () AR (D).
repeat(i) : «; T x4t r r'—a; Ar'";

(1D minimization along search direction — f(2®) = r®)
* even simpler: search along coordinate axes (is GauB3-Seidel!)
* slow convergence (progress may get lost again!)

« crucial quantity: spectral condition number of A

Amax (A [—
K(A) - )\min((A))
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Improvement: Conjugate Directions

« further enhancement:
- orthogonal search directions, error after ¢ steps shall be or-
thogonal to all previous search directions
- nothing destroyed, hence: in principle a direct method

- however, since n iterations are too much in practice: used
as an iterative method (therefore called semi-iterative method)

- new search directions: 2+ = 2z 4 q,d®
— optimum orthogonality: 0 = d®" (1) but error is missing

— therefore conjugation: 0 = d®" Ae(+D)
(u and v are called A-orthogonal or conjugate, if u’ Av = 0)

— algorithm: start with d© = r(©) and iterate:
JOT0 .
N CL) s FON
repeat(i) : «; T ALY x(i) + od";
P+ ) o 4O,

— still to be done: construction of the conjugate directions d*

Towards Krylov:. ..
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Finally: Conjugate Gradients

» above method + efficient construction of the conjugate direc-
tions

* principle of construction: Gram-Schmidt conjugation of r's
* no detailed derivation here, just the algorithm:

A7 ()
dOT AdD’
2D = 20 4 0.
P — ) _ o, AdED

T,(i-l—l)TT(H-l)

i+l = W7

) = pD) 4 g ),

repeat(i) :a; =

« faster than steepest descent, but still depending on n!
* search spaces form a so-called Krylov sequence:
span{d®, ... d" Y} =span{d®, Ad?, ... 6 A1q"}
=span{r®, Ar© A=101
+ other famous Krylov methods: GMRES, Bi-CGSTAB

Towards Krylov:. ..
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3.3. Fast Iterative Solvers of Systems of Linear Equa-
tions

« crucial drawback of solvers discussed so far: they become slower
if we discretize more accurate!

* now: look for possible remedies

- relaxation: explicit application of the multigrid principle

- Krylov/cg: preconditioning (typically also following multi-
grid)

« let us start with preconditioning: fastieratie Soter

- crucial quantity for cg’s convergence: condition number

— PDE: condition of system matrix increases dramatically with
n

— therefore: look for a modified matrix with better condition
Ar=beo M 'Az =M< W AW Ty = Wb,
where

Mspd, WWH =M, y=W"z, M~ Aand W AW~ similar

e |
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Strategies for Preconditioners

* the simplest choice: M = I (cheap, but useless)
* the best choice: M = A (perfect, but expensive)
» some possibilities in-between:

- diagonal or Jacobi preconditioner: M = D4
— GS or SOR are not used due to lack of symmetry
— SSOR preconditioner:

MO2) = a_lDA + Ly; MY = a_lDA + Upy;
o -1
M=—|(MY2) pipy®
a—2( 4

- incomplete factorization, e.g. ILU: compute approximate
factors L and U instead of exact ones in direct methods

— sparse approximate inverse: look for some cheap B with
ml%n |l — AB|*, M~ =B

- multilevel preconditioners: following the multigrid principle

Fast lterative Solvers. ..
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The Multigrid Principle

« starting point: Fourier mode analysis of the errors
- decompose the error ) = 20 — z into its Fourier compo-
nents (Fourier transform)

- observe how they change/decrease under a standard re-
laxation like Jacobi or Gau3-Seidel (in a two-band sense):

= The high frequency part (with respect to the underlying
grid) is reduced quite quickly.
« The low frequency part (w.r.t. the grid) decreases only
very slowly; actually the slower, the finer the grid is.
— This behaviour is annoying

« the low frequencies are not expected to make troubles,
but we can hardly get rid of them on a fine grid;

but also encouraging

« the low frequencies can be represented and, hopefully
tackled, on a coarser grid — there is no need for the fine
resolution.

Fast lterative Solvers. ..
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A Simple Example

* 1D Laplace equation, «(0) = u(1) = 0 (exact solution 0)

* equidistant grid, 65 points, 3-point stencil, damped Jacobi method
with damping parameter 0.5

« start with random values in [0, 1] for « in the grid points

« After 100 (!) steps, there is still a maximum error bigger than
0.1 due to low-frequency components!

 therefore the name smoothers for relaxation schemes:

- They reduce the strongly oscillating parts of the error quite
efficiently.

— They, thus, produce a smooth error which is very resistent.

* the idea: work on grids of different resolution

Fast lterative Solvers. ..
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Coarse Grid Correction 1

» sequence of equidistant grids on our domain:

O, 1=1,2,...,L, with mesh width h; = 27!

* let A;, b, ... denote corresponding matrix, right-hand side,. . .

» combine work on two grids with a correction scheme:

smooth the current solution z; ;

form the residual r;, = b, — Ajxy;
restrict r; to the coarse grid ;1 ;
provide a solutionto A; 1 ¢,_1 =11 ;
prolongate ¢;_; to the fine grid €;;
add the resulting correction to z;;

if necessary, smooth again ;

Fast lterative Solvers. ..
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Coarse Grid Correction 2

+ the different steps of this 2-grid algorithm:

- the pre-smoothing: reduce high-frequency error compo-
nents, smooth error, and prepare residual for transfer to
coarse grid

- the restriction: transfer from fine grid to coarse grid

= Injection: inherit the coarse grid values and forget the
others

« (full) weighting: apply some averaging process

- the coarse grid correction: provide an (approximate) so-
lution on the coarse grid (direct, if coarse enough; some
smoothing steps otherwise)

- the prolongation: transfer from coarse grid to fine grid
= usually some interpolation method

- the post-smoothing: sometimes reasonable to avoid new
high-frequency error components

Fast lterative Solvers. ..

* recursive application leads to multigrid methods
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The V-Cycle

* now, the coarse grid equation is solved by coarse grid correc-
tion, too; the resulting algorithmic scheme is called V-cycle:

smooth the current solution z; ;
form the residual r, = b, — Ajxy;
restrict r; to the coarse grid €, ;
solve A;_1¢,_1 = r;_1 by coarse grid correction ; Fast lterative Solvers. .
prolongate ¢;_; to the fine grid €2;;
add the resulting correction to z;;
if necessary, smooth again ;

« on the finest grid: direct solution

» number of smoothing steps: typically small (1 or 2)

e |
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Multigrid Algorithms

* the V-cycle is not the only multigrid scheme:

- the W-cycle: after each prolongation, visit the coarse grid
once more, before moving on to the next finer grid

- the nested iteration: start on coarsest grid €2;, smooth,
prolongate to €25, smooth, prolongate to €23, and so on, until
finest grid is reached; now start V-cycle

— full multigrid: replace ‘smooth steps above by ‘apply a V-
cycle; combination of improved start solution and multigrid
solver

» multigrid idea is not limited to rectangular or structured grids:
we just need a hierarchy of nested grids (works for triangles or
tetrahedra, t00)

* also without underlying geometry: algebraic multigrid

Fast lterative Solvers. ..
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Basic Convergence Results

* Cost (storage and computing time):

-1D:c-n+e-n/24c-nfd+c-n/8+---<2c-n=0(n)
-2D:¢c-n+c-nfd+c-n/l6+c-n/64+--- <4/3c-n=0(n)
-38D:c-n+ec-n/8+c-nf64+c-n/512+--- <8/Tc-n=0(n)

- i.e.

: work on coarse grids is negligible compared to finest

grid

* Benefit (speed of convergence):

- always significant acceleration compared with pure use of
smoother (relaxation method)

- in most cases even ideal behaviour v = O(1 — const)
- effect:

*

constant number of multigrid steps to obtain a given
number of digits

overall computational work increases only linearly with
n

Fast lterative Solvers. ..
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3.4. Tools: Libraries and Software

* In addition to standard tools like editors, compilers, or debug-
gers, there is a lot of (commercial or public domain) support
available:

- Modelling: Computer algebra programs like Mathematica,
Maple, Axiom, or Reduce support derivations and proofs of
theorems via symbolic means.

— Numerics: Mathematica, Maple, or MATLAB support the
development, testing, and analysis of (numerical) algorithms
and allow an efficient prototyping.

- Implementation: A zoo of (numerical) libraries provide up- 100k Elbaries an.
to-date modules for standard tasks (numerical linear alge-
bra etc.), tailored to specific target architectures.

- Visualization: Packages like IDL, IRIS Explorer, or AVS/Express
offer (nearly) all you want.

—

Iterative Solution of Linear Systems



http://www5.in.tum.de/persons/bungartz.html

Libraries and Collections

« GAMS: Guide to Available Mathematical Software

- service offered by the National Institute of Standards & Tech-
nology

- see http://gams.nist.gov/

- catalogue and database of more than 100 packages and
libraries with together several tens of thousands of routines

- Topics range from number theory to statistics!

- majority: FORTRAN programs for numerical tasks (sys-
tems of linear equations, eigenvalues, roots, differential equa- Tools: Libraries and. ..
tions, ...)

- includes both public domain material (at NIST or at NETLIB,
see below) and commercial (licenced) products.

— good user guidance

e |
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Libraries and Collections

» Matrix market

- see http://math.nist.gov/MatrixMarket/

- repository of test data for use in comparative studies of al-
gorithms for numerical linear algebra

- features nearly 500 (sparse) matrices from various fields of
applications (chemical engineering, fluid flow, power sys-
tem networks, quantum physics, or structural engineering,

e.g.)
- provides also matrix generation tools T ————
- classification according to matrix properties:

« number field: real or complex
= nonzero structure: dense, banded sparse, tridiagonal,

= symmetry: none, symmetric, skewsymmetric, SPD, SSPD,. ..
= shape: square, more rows than columns,. ..

s |
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Libraries and Collections

* NETLIB: repository of free software for numerical purposes

- see http://www.netlib.org/

- offered by University of Tennessee and Oak Ridge Nat'l Lab
- several mirrored copies all over the world

— about 135 million requests since 1985, > 40 million in 2000
- > 90% http, rest ftp and email

— about 160 different libraries, among which

« BLAS (Basic Linear Algebra Subprograms)

« LAPACK (Linear Algebra PACKage)

«+ ODEPACK (ordinary differential equations)

« MPI (message passing interface, for parallelization)
« PLTMG (elliptic boundary value problems)

Tools: Libraries and. ..

—
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BLAS

« collection of robust, efficient, and portable modules for elemen-
tary vector and matrix operations

* basis for LAPACK routines, for example

« allows plug-and-play for numerical subroutines
« FORTRAN, to be used from FORTRAN/C/C++
+ Java BLAS available, too

* levels:
Tools: Libraries and. ..

- Level 1: vector and vector-vector operations (norm, scalar
product, vector addition, SAXPY, ...)

- Level 2 matrix-vector operations (rank-1-modifications, matrix-
vector product, tridiagonal systems); vector processors

- Level 3 matrix-matrix operations; parallel computers!

e |
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LAPACK

» popular collection of FORTRAN subroutines for standard prob-
lems from numerical linear algebra like linear systems, regres-
sion, eigenvalues, SVD, ...

» dense and band matrices (not general sparse ones)

» successor of EISPACK and LINPACK, tuning for modern mi-
croprocessors and supercomputer architectures (reduction of
memory accesses, block operations, ...)

» LAPACK routines use BLAS modules
 variants:

- LAPACK90, CLAPACK, LAPACK++
— ScaLAPACK (MIMD systems, scalability!)

Tools: Libraries and. ..
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Libraries and Collections

» Visual Numerics:

- see http://www.vni.com
— mathematical libraries
— predecessor: IMSL (The Int’| Math. & Statist. Library)

« Diffpack:

- offered by Numerical Objects, see http://www.nobjects.com

- environment for the development of code for numerical sim-
ulation problems plus libraries of efficient routines Tools: Libraries and...

— object-oriented concept, available for most UNIX platforms
* NAG (Numerical Algorithms Group):

— see http://www.nag.co.uk/

- non-profit software house, spin-off of Oxford University

- FORTRAN/FORTRAN9O0/C/Parallel libraries;

— AXIOM,; IRIS Explorer (visualization); Fastflo (CFD and more)

e |
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Libraries and Collections

* Numerical Recipes:

see http://www.nr.com

book series The Art of Scientific Computing (CU Press)
sophisticated algorithms and their implementations
available for FORTRAN 77, FORTRAN 90, C, Pascal, ...
corresponding software is licenced and commercial
about 350 routines for topics like

solution of linear systems

interpolation and extrapolation

numerical quadrature

differentiation and approximation

roots and extrema

eigenvalues, differential equations, and more

*

Tools: Libraries and. ..

*

*

*

*

*
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3.5. Tools for Algorithm Development

* Libraries offer tested and efficient (w.r.t. both storage and run-
time) standard modules for competitive simulation codes (do
something classical cheap!)

» Another problem is algorithm development (develop something
new and cheaper)):
— design of algorithms
- testing and rapid prototyping
— analysis (convergence behaviour etc.)

- not yet: production runs, memory or runtime optimization

. . Tools for Algorithm . ..
 widespread solutions:

- computer algebra programs like Maple or Mathematica
- MATLAB

e |
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Maple

* by Waterloo Maple Inc., a spin-off of the University of Waterloo
in Ontario (see http://www.maplesoft.com)

« originally a mere computer algebra program, today “interactive
environment for mathematical problem solving and program-
ming”

» focus:

- symbolic computations, formula manipulation
— numerical computations with arbitrary accuracy

— 2D and 3D graphical output
— straightforward programming for algorithm development

Tools for Algorithm. . .

* structure:

kernel + main library + mixed library + packages

e |
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MATLAB

* by The MathWorks (see hitp:// www.mathworks.com/)

« originally: primarily for use in (maths) education

* today: “high-performance numerical computation and visualiza-
tion software”, standard tool for scientific computing research
groups:

- development, prototyping, programming
— computations
— visualization

* singular success story: >500 employees, >100 countries, >2000 Tools for Algorithm....
universities and research institutes

* structure: basic program plus a collection of specialized tool
boxes

e |
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