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3.1. Standard Iterative Solvers of SLE

• iterative solution of large linear systems is one of the most im-
portant numerical tasks in scientific computing (they occur in
the discretization of both ODE and PDE)

• direct solvers are often not competitive:

– too large number of unknowns (cf. PDE in 3D)
– sparse matrices (classical elimination destroys sparsity)
– anyway only approximations, thus no need for exact solu-

tion (this holds esp. in the nonlinear case, where a system
of linear equations occurs in each step of some outer itera-
tion for the nonlinearity)

• objective: “for 3 digits, you need 10 steps" – no matter how big
the number n of unknowns is

• however typically: speed of convergence deteriorates with in-
creasing n!

http://www5.in.tum.de/persons/bungartz.html
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Principal Remarks on Iterations

• consider an iterative scheme, starting from x(0), and, hopefully
converging to the solution x of Ax = b:

x(0) → x(0) → · · · → x(i+1) → · · · → lim
i→∞

x(i) = x

• speed of convergence: ‖x− x(i+1)‖ < γ · ‖x− x(i)‖
for some 0 < γ < 1

• typical behaviour of iterative schemes:

γ = O(1− n−k), k ∈ {0, 1, 2, . . . }

• strategy: look for iterative methods with

– only O(n) arithmetic operations per step of iteration (cost)
– a convergence behaviour like γ < 1− const � 1

• two big families: relaxation and Krylov subspace methods

http://www5.in.tum.de/persons/bungartz.html
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Relaxation Techniques 1

• sometimes also called smoothing methods:

– Richardson iteration
– Jacobi iteration
– Gauß-Seidel iteration
– successive over relaxation (SOR) or damped methods

• All start from the residual r after i steps of iteration:

r(i) = b− Ax(i) = Ax− Ax(i) = A(x− x(i)) = −Ae(i)

(the error e is not known, so r is used as an indicator)

• How to obtain an improvement?

– Richardson: use the residual as it is as a correction
– Jacobi/Gauß-Seidel: make one component of r vanish
– SOR/damped: same, but do a bit less/more than indicated

http://www5.in.tum.de/persons/bungartz.html
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Relaxation Techniques 2

• Richardson iteration:

repeat(i) : for k = 1, . . . , n do x
(i+1)
k = x

(i)
k + r

(i)
k

• (damped) Jacobi iteration:

repeat(i) : for k = 1, . . . , n do yk = r
(i)
k /ak,k

for k = 1, . . . , n do x
(i+1)
k = x

(i)
k + α · yk

(compute and store updates, apply them at the end)

• Gauß-Seidel or SOR, resp.:

repeat(i) : for k = 1, . . . , n do
r
(i)
k := bk −

∑k−1
j=1 akjx

(i+1)
j −

∑n
j=k akjx

(i)
j

yk := 1
akk
· r(i)

k , x
(i+1)
k := x

(i)
k + α · yk

(compute same updates, but apply them at once)

• For an analysis, decompose A in its strictly lower, diagonal, and
strictly upper part: A = LA + DA + UA

http://www5.in.tum.de/persons/bungartz.html
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Relaxation Techniques 3

• all can be written in the form Mx(i+1) + (A−M)x(i) = b
or

x(i+1) = M−1b− (M−1A− I)x(i) = x(i) + M−1r(i)

• how looks M?

– Richardson: M := I ,

– Jacobi: M := DA ,

– Gauß-Seidel: M := DA + LA ,

– SOR: M := 1
α
DA + LA .

• some convergence results:

– If the iteration converges at all, then towards x.
– The crucial quantity is the spectral radius of −M−1 ·(A−M)

which is smaller than 1 if and only if the iteration converges.
– necessary for SOR: 0 < α < 2

– sufficient for Gauß-Seidel/SOR: A positive definite
– sufficient for Jacobi: both A and 2DA − A are positive defi-

nite

http://www5.in.tum.de/persons/bungartz.html
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3.2. Towards Krylov: Steepest Descent

• alternative point of view for positive definite A:

x solves Ax = b ⇔ x minimizes f(x) = 0.5 · xT Ax− bT x + c

(uniqueness of minimum due to positive definiteness)

• hence new strategy: look for minimum of f

• possible way: method of steepest descent (looks for the best
improvement in the direction of the negative gradient)

repeat(i) : αi =
r(i)T

r(i)

r(i)T Ar(i)
; x(i+1) = x(i)+αir

(i); r(i+1) = r(i)−αiAr(i);

(1D minimization along search direction −f ′(x(i)) = r(i))

• even simpler: search along coordinate axes (is Gauß-Seidel!)

• slow convergence (progress may get lost again!)

• crucial quantity: spectral condition number of A

κ(A) =
λmax(A)

λmin(A)

http://www5.in.tum.de/persons/bungartz.html
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Improvement: Conjugate Directions

• further enhancement:

– orthogonal search directions, error after i steps shall be or-
thogonal to all previous search directions

– nothing destroyed, hence: in principle a direct method
– however, since n iterations are too much in practice: used

as an iterative method (therefore called semi-iterative method)
– new search directions: x(i+1) = x(i) + αid

(i)

– optimum orthogonality: 0 = d(i)T
e(i+1), but error is missing

– therefore conjugation: 0 = d(i)T
Ae(i+1)

(u and v are called A-orthogonal or conjugate, if uT Av = 0)
– algorithm: start with d(0) = r(0) and iterate:

repeat(i) : αi =
d(i)T

r(i)

d(i)T Ad(i)
; x(i+1) = x(i) + αid

(i);

r(i+1) = r(i) − αiAd(i);

– still to be done: construction of the conjugate directions d(i)

http://www5.in.tum.de/persons/bungartz.html
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Finally: Conjugate Gradients

• above method + efficient construction of the conjugate direc-
tions

• principle of construction: Gram-Schmidt conjugation of r’s

• no detailed derivation here, just the algorithm:

repeat(i) :αi =
d(i)T

r(i)

d(i)T Ad(i)
;

x(i+1) = x(i) + αid
(i);

r(i+1) = r(i) − αiAd(i);

βi+1 =
r(i+1)T

r(i+1)

r(i)T r(i)
;

d(i+1) = r(i+1) + β(i+1)d
(i);

• faster than steepest descent, but still depending on n!

• search spaces form a so-called Krylov sequence:
span{d(0), . . . , d(i−1)} = span{d(0), Ad(0), . . . , Ai−1d(0)}

= span{r(0), Ar(0), . . . , Ai−1r(0)}

• other famous Krylov methods: GMRES, Bi-CGSTAB

http://www5.in.tum.de/persons/bungartz.html
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3.3. Fast Iterative Solvers of Systems of Linear Equa-
tions

• crucial drawback of solvers discussed so far: they become slower
if we discretize more accurate!

• now: look for possible remedies

– relaxation: explicit application of the multigrid principle
– Krylov/cg: preconditioning (typically also following multi-

grid)

• let us start with preconditioning:

– crucial quantity for cg’s convergence: condition number
– PDE: condition of system matrix increases dramatically with

n

– therefore: look for a modified matrix with better condition

Ax = b ⇔ M−1Ax = M−1b ⇔ W−1AW−T y = W−1b,

where

M s.p.d., WW T = M, y = W T x, M−1A and W−1AW−T similar

(no need to construct M or W explicitly, must be applied only)

http://www5.in.tum.de/persons/bungartz.html


Standard Iterative . . .

Towards Krylov: . . .

Fast Iterative Solvers . . .

Tools: Libraries and . . .

Tools for Algorithm . . .

Literature

Page 11 of 30

Iterative Solution of Linear Systems
Hans-Joachim Bungartz

Strategies for Preconditioners

• the simplest choice: M = I (cheap, but useless)

• the best choice: M = A (perfect, but expensive)

• some possibilities in-between:

– diagonal or Jacobi preconditioner: M = DA

– GS or SOR are not used due to lack of symmetry
– SSOR preconditioner:

M (1/2) = α−1DA + LA; M (1) = α−1DA + UA;

M =
α

α− 2

(
M (1/2)

)−1

D−1
A M (1)

– incomplete factorization, e.g. ILU: compute approximate
factors L and U instead of exact ones in direct methods

– sparse approximate inverse: look for some cheap B with

min
B
‖I − AB‖2, M−1 = B

– multilevel preconditioners: following the multigrid principle

http://www5.in.tum.de/persons/bungartz.html
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The Multigrid Principle

• starting point: Fourier mode analysis of the errors

– decompose the error e(i) = x(i) − x into its Fourier compo-
nents (Fourier transform)

– observe how they change/decrease under a standard re-
laxation like Jacobi or Gauß-Seidel (in a two-band sense):

* The high frequency part (with respect to the underlying
grid) is reduced quite quickly.

* The low frequency part (w.r.t. the grid) decreases only
very slowly; actually the slower, the finer the grid is.

– This behaviour is annoying

* the low frequencies are not expected to make troubles,
but we can hardly get rid of them on a fine grid;

but also encouraging

* the low frequencies can be represented and, hopefully
tackled, on a coarser grid – there is no need for the fine
resolution.

http://www5.in.tum.de/persons/bungartz.html
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A Simple Example

• 1D Laplace equation, u(0) = u(1) = 0 (exact solution 0)

• equidistant grid, 65 points, 3-point stencil, damped Jacobi method
with damping parameter 0.5

• start with random values in [0, 1] for u in the grid points

• After 100 (!) steps, there is still a maximum error bigger than
0.1 due to low-frequency components!

• therefore the name smoothers for relaxation schemes:

– They reduce the strongly oscillating parts of the error quite
efficiently.

– They, thus, produce a smooth error which is very resistent.

• the idea: work on grids of different resolution

http://www5.in.tum.de/persons/bungartz.html
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Coarse Grid Correction 1

• sequence of equidistant grids on our domain:

Ωl, l = 1, 2, . . . , L, with mesh width hl = 2−l

• let Al, bl, . . . denote corresponding matrix, right-hand side,. . .

• combine work on two grids with a correction scheme:

smooth the current solution xl ;
form the residual rl = bl − Alxl;
restrict rl to the coarse grid Ωl−1 ;
provide a solution to Al−1 el−1 = rl−1 ;
prolongate el−1 to the fine grid Ωl;
add the resulting correction to xl;
if necessary, smooth again ;

http://www5.in.tum.de/persons/bungartz.html
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Coarse Grid Correction 2

• the different steps of this 2-grid algorithm:

– the pre-smoothing: reduce high-frequency error compo-
nents, smooth error, and prepare residual for transfer to
coarse grid

– the restriction: transfer from fine grid to coarse grid

* injection: inherit the coarse grid values and forget the
others

* (full) weighting: apply some averaging process
– the coarse grid correction: provide an (approximate) so-

lution on the coarse grid (direct, if coarse enough; some
smoothing steps otherwise)

– the prolongation: transfer from coarse grid to fine grid

* usually some interpolation method
– the post-smoothing: sometimes reasonable to avoid new

high-frequency error components

• recursive application leads to multigrid methods

http://www5.in.tum.de/persons/bungartz.html
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The V-Cycle

• now, the coarse grid equation is solved by coarse grid correc-
tion, too; the resulting algorithmic scheme is called V-cycle:

smooth the current solution xl ;
form the residual rl = bl − Alxl;
restrict rl to the coarse grid Ωl−1 ;
solve Al−1 el−1 = rl−1 by coarse grid correction ;
prolongate el−1 to the fine grid Ωl;
add the resulting correction to xl;
if necessary, smooth again ;

• on the finest grid: direct solution

• number of smoothing steps: typically small (1 or 2)

http://www5.in.tum.de/persons/bungartz.html
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Multigrid Algorithms

• the V-cycle is not the only multigrid scheme:

– the W-cycle: after each prolongation, visit the coarse grid
once more, before moving on to the next finer grid

– the nested iteration: start on coarsest grid Ω1, smooth,
prolongate to Ω2, smooth, prolongate to Ω3, and so on, until
finest grid is reached; now start V-cycle

– full multigrid: replace ‘smooth steps above by ‘apply a V-
cycle; combination of improved start solution and multigrid
solver

• multigrid idea is not limited to rectangular or structured grids:
we just need a hierarchy of nested grids (works for triangles or
tetrahedra, too)

• also without underlying geometry: algebraic multigrid

http://www5.in.tum.de/persons/bungartz.html
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Basic Convergence Results

• Cost (storage and computing time):

– 1D: c · n + c · n/2 + c · n/4 + c · n/8 + · · · ≤ 2c · n = O(n)

– 2D: c · n + c · n/4 + c · n/16 + c · n/64 + · · · ≤ 4/3c · n = O(n)

– 3D: c ·n+ c ·n/8+ c ·n/64+ c ·n/512+ · · · ≤ 8/7c ·n = O(n)

– i.e.: work on coarse grids is negligible compared to finest
grid

• Benefit (speed of convergence):

– always significant acceleration compared with pure use of
smoother (relaxation method)

– in most cases even ideal behaviour γ = O(1− const)
– effect:

* constant number of multigrid steps to obtain a given
number of digits

* overall computational work increases only linearly with
n

http://www5.in.tum.de/persons/bungartz.html
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3.4. Tools: Libraries and Software

• In addition to standard tools like editors, compilers, or debug-
gers, there is a lot of (commercial or public domain) support
available:

– Modelling: Computer algebra programs like Mathematica,
Maple, Axiom, or Reduce support derivations and proofs of
theorems via symbolic means.

– Numerics: Mathematica, Maple, or MATLAB support the
development, testing, and analysis of (numerical) algorithms
and allow an efficient prototyping.

– Implementation: A zoo of (numerical) libraries provide up-
to-date modules for standard tasks (numerical linear alge-
bra etc.), tailored to specific target architectures.

– Visualization: Packages like IDL, IRIS Explorer, or AVS/Express
offer (nearly) all you want.

http://www5.in.tum.de/persons/bungartz.html
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Libraries and Collections

• GAMS: Guide to Available Mathematical Software

– service offered by the National Institute of Standards & Tech-
nology

– see http://gams.nist.gov/
– catalogue and database of more than 100 packages and

libraries with together several tens of thousands of routines
– Topics range from number theory to statistics!
– majority: FORTRAN programs for numerical tasks (sys-

tems of linear equations, eigenvalues, roots, differential equa-
tions, . . . )

– includes both public domain material (at NIST or at NETLIB,
see below) and commercial (licenced) products.

– good user guidance

http://www5.in.tum.de/persons/bungartz.html
http://gams.nist.gov/
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Libraries and Collections

• Matrix market

– see http://math.nist.gov/MatrixMarket/
– repository of test data for use in comparative studies of al-

gorithms for numerical linear algebra
– features nearly 500 (sparse) matrices from various fields of

applications (chemical engineering, fluid flow, power sys-
tem networks, quantum physics, or structural engineering,
e.g.)

– provides also matrix generation tools
– classification according to matrix properties:

* number field: real or complex

* nonzero structure: dense, banded sparse, tridiagonal,
. . .

* symmetry: none, symmetric, skewsymmetric, SPD, SSPD,. . .

* shape: square, more rows than columns,. . .

http://www5.in.tum.de/persons/bungartz.html
http://math.nist.gov/MatrixMarket/
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Libraries and Collections

• NETLIB: repository of free software for numerical purposes

– see http://www.netlib.org/
– offered by University of Tennessee and Oak Ridge Nat’l Lab
– several mirrored copies all over the world
– about 135 million requests since 1985, > 40 million in 2000
– > 90% http, rest ftp and email
– about 160 different libraries, among which

* BLAS (Basic Linear Algebra Subprograms)

* LAPACK (Linear Algebra PACKage)

* ODEPACK (ordinary differential equations)

* MPI (message passing interface, for parallelization)

* PLTMG (elliptic boundary value problems)

http://www5.in.tum.de/persons/bungartz.html
http://www.netlib.org/
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BLAS

• collection of robust, efficient, and portable modules for elemen-
tary vector and matrix operations

• basis for LAPACK routines, for example

• allows plug-and-play for numerical subroutines

• FORTRAN, to be used from FORTRAN/C/C++

• Java BLAS available, too

• levels:

– Level 1: vector and vector-vector operations (norm, scalar
product, vector addition, SAXPY, . . . )

– Level 2 matrix-vector operations (rank-1-modifications, matrix-
vector product, tridiagonal systems); vector processors

– Level 3 matrix-matrix operations; parallel computers!

http://www5.in.tum.de/persons/bungartz.html
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LAPACK

• popular collection of FORTRAN subroutines for standard prob-
lems from numerical linear algebra like linear systems, regres-
sion, eigenvalues, SVD, . . .

• dense and band matrices (not general sparse ones)

• successor of EISPACK and LINPACK, tuning for modern mi-
croprocessors and supercomputer architectures (reduction of
memory accesses, block operations, . . . )

• LAPACK routines use BLAS modules

• variants:

– LAPACK90, CLAPACK, LAPACK++
– ScaLAPACK (MIMD systems, scalability!)

http://www5.in.tum.de/persons/bungartz.html
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Libraries and Collections

• Visual Numerics:

– see http://www.vni.com
– mathematical libraries
– predecessor: IMSL (The Int’l Math. & Statist. Library)

• Diffpack:

– offered by Numerical Objects, see http://www.nobjects.com
– environment for the development of code for numerical sim-

ulation problems plus libraries of efficient routines
– object-oriented concept, available for most UNIX platforms

• NAG (Numerical Algorithms Group):

– see http://www.nag.co.uk/
– non-profit software house, spin-off of Oxford University
– FORTRAN/FORTRAN90/C/Parallel libraries;
– AXIOM; IRIS Explorer (visualization); Fastflo (CFD and more)

http://www5.in.tum.de/persons/bungartz.html
http://www.vni.com
http://www.nobjects.com
http://www.nag.co.uk/
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Libraries and Collections

• Numerical Recipes:

– see http://www.nr.com
– book series The Art of Scientific Computing (CU Press)
– sophisticated algorithms and their implementations
– available for FORTRAN 77, FORTRAN 90, C, Pascal, . . .
– corresponding software is licenced and commercial
– about 350 routines for topics like

* solution of linear systems

* interpolation and extrapolation

* numerical quadrature

* differentiation and approximation

* roots and extrema

* eigenvalues, differential equations, and more

http://www5.in.tum.de/persons/bungartz.html
http://www.nr.com
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3.5. Tools for Algorithm Development

• Libraries offer tested and efficient (w.r.t. both storage and run-
time) standard modules for competitive simulation codes (do
something classical cheap!)

• Another problem is algorithm development (develop something
new and cheaper!):

– design of algorithms
– testing and rapid prototyping
– analysis (convergence behaviour etc.)
– not yet: production runs, memory or runtime optimization

• widespread solutions:

– computer algebra programs like Maple or Mathematica
– MATLAB

http://www5.in.tum.de/persons/bungartz.html
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Maple

• by Waterloo Maple Inc., a spin-off of the University of Waterloo
in Ontario (see http://www.maplesoft.com)

• originally a mere computer algebra program, today “interactive
environment for mathematical problem solving and program-
ming”

• focus:

– symbolic computations, formula manipulation
– numerical computations with arbitrary accuracy
– 2D and 3D graphical output
– straightforward programming for algorithm development

• structure:

kernel + main library + mixed library + packages

http://www5.in.tum.de/persons/bungartz.html
http://www.maplesoft.com
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MATLAB

• by The MathWorks (see http://www.mathworks.com/)

• originally: primarily for use in (maths) education

• today: “high-performance numerical computation and visualiza-
tion software”, standard tool for scientific computing research
groups:

– development, prototyping, programming
– computations
– visualization

• singular success story: >500 employees, >100 countries, >2000
universities and research institutes

• structure: basic program plus a collection of specialized tool
boxes

http://www5.in.tum.de/persons/bungartz.html
http://www.mathworks.com/
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