
Fifth SimLab Short Course on

Parallel Numerical Simulation
Belgrade, October 1—7, 2006

Message-Coupled Systems
October 3, 2006

Dr. Ralf-Peter Mundani
Department of Computer Science – Chair V
Technische Universität München, Germany



What’s LeftWhat’s Left……

problem: simulation of physical phenomenon/technical process

mathematical model 
discretisation 
algorithm development 
implementation 
running (sequential) code

what’s left: parallelisation



What’s LeftWhat’s Left……

problem: simulation of physical phenomenon/technical process

mathematical model 
discretisation 
algorithm development 
implementation 
running (sequential) code

what’s left: parallelisation
“…now you only have to do some parallelisation…”
Question: how much time does one need for this



ExamplesExamples of Parallel Prog. of Parallel Prog. LanguagesLanguages

Occam
imperative procedural language
builds on Communicating Sequential Processes formalism

Linda
basically four operations: in, rd, out, eval
tupels can be added, retrieved, or destructively retrieved
from logical associative memory (tuplespace)
extension of other languages such as Prolog, C, or Java

OpenMP
set of compiler directives for shared memory architectures
work load distribution (work sharing) using threads
simple to program (no dramatic change to code needed)



TheThe MessageMessage PassingPassing ParadigmParadigm

very general principle, applicable to nearly all types of parallel 
architectures (message-coupled and memory-coupled)
standard programming paradigm for message-coupled systems

message-coupled multiprocessors
cluster of workstations (homogeneous, dedicated use,
high-speed network)
networks of workstations (heterogeneous, non-dedicated
use, standard network (e.g. ethernet))

several concrete programming environments
machine-dependent: MPL (IBM), PSE (nCUBE), …
machine-independent: EXPRESS, P4, PARMACS, PVM, …

machine-independent standards: PVM, MPI



The Underlying PrincipleThe Underlying Principle

parallel program with p processes with different address space
communication takes place via exchanging messages

header: target ID, message information (type of data, …)
body: data to be provided

exchanging messages via library functions that should be
designed without dependencies of

hardware
programming language

available for multiprocessors and standard monoprocessors
available for standard languages such as C/C++ or Fortran
linked to source code during compilation



The User’s ViewThe User’s View

library functions are the only interface to communication system

process

processprocess

process

process

process

communication system



The User’s ViewThe User’s View

library functions are the only interface to communication system
message exchange via send() and receive()

process

processprocess

process

process

process

communication system
A

A



The User’s ViewThe User’s View

library functions are the only interface to communication system
message exchange via send() and receive()

process

processprocess

process

process

process

communication system
A

A



Elementary CommunicationElementary Communication

point-to-point (1:1-communication)
collective (1:m-communication, m ≤ n, n number of processes)
communication operations

send
required: receiver, send buffer, type of message,
communication context
blocking: continuation possible after passing message
to communication system has been completed (thus,
buffer can be re-used)
non-blocking: immediate continuation possible; further
test whether message has been sent and buffer can be
re-used necessary



Elementary CommunicationElementary Communication

communication operations (cont’d)
receive

required: sender (wildcards possible), receive buffer,
type of message, communication context
blocking: continuation only after (suitable) message has
been received
non-blocking: immediate continuation possible,
independent from result (success/failure); further test
whether message has been arrived and buffer can be
re-used necessary



Message BuffersMessage Buffers

typically (but not necessarily) connected parts of memory
homogeneous architectures: sequence of bytes
heteregeneous architectures: type information necessary
for format conversion by message passing library (e.g.
size of datatypes, byte order)

definition and allocation of message buffers
send buffer: generally done by application program
receive buffer: either automatically by message passing
library or manually by application program



Message BuffersMessage Buffers

why buffers?

P1: compute something P2: compute something
store result in SBUF store results in SBUF
SendBlocking(P2, SBUF) SendBlocking(P1, SBUF)
RecvBlocking(P2, RBUF) RecvBlocking(P1, RBUF)
read data in RBUF read data in RBUF
process RBUF process RBUF

does this work?
yes, if communication system buffers internally
no, otherwise (deadlock) – avoid via non-blocking
communication or via atomic sendreceive operation



Communication ContextCommunication Context

three processes, all of them call subroutine B from a library
inter-process communication within these subroutines
communication context shall ensure this restriction to subroutines

receive (P2)
send (P3)

send (P1)

receive (P3)

receive (P1)
send (P2)

receive (any)

call sub B call sub B

send (P1)

call sub B

time



Communication ContextCommunication Context

three processes, all of them call subroutine B from a library
inter-process communication within these subroutines
communication context shall ensure this restriction to subroutines

??
receive (P2)
send (P3)

send (P1)

receive (P3) receive (P1)
send (P2)

receive (any)

call sub B call sub B

send (P1)
call sub B

time

delay



Keeping the OrderKeeping the Order

problem: there is no global time in a distributed system
consequence: maybe wrong send-receive assignments (for
more than two processes and the usage of wildcards)

send
to P3

send
to P3

recv buf1
from any

recv buf2
from any

send
to P3

send
to P3

recv buf1
from any

recv buf2
from any

or



Message TypesMessage Types

two main classes
data messages

data are exchanged for other processes’ computations
example: border values of partial matrix in numerical
solver

control messages
data are exchanged for other processes’ control
example: competitive search for social security numbers
in large data sets (e.g. 1.3 billion Chinese)

in general, additional information about format necessary for 
both cases (provided along with message type)



EfficiencyEfficiency

avoid short messages: latency reduces the effective bandwith

ttotal = tsetup + n/B with length n, bandwith B

Beff = n/ttotal

computation should dominate communication
typical conflict for numerical simulations

overall runtime suggests large number of processes
CCR and message size suggest small number of processes

finding (machine- and problem-dependent) optimum number
of processes
try avoiding communication points at all, redundant
computations prefered (if inevitable)



Collective CommunicationCollective Communication



broadcast
sends message to all participating processes
example: first process in competition informs others to stop
Question: efficient implementation of a broadcast

Collective CommunicationCollective Communication

A

A

A

A

A



broadcast (cont’d)
using a binary tree
Question: how many steps for n processes

step 1

step 2

Collective CommunicationCollective Communication



Collective CommunicationCollective Communication

multicast
sends message to a subset of participating processes
(1:m communication with m ≤ n; n number of processes)
example: update of (local) iterated solution to neighbours

A

A

A

A



Collective CommunicationCollective Communication

scatter
data from one process are distributed among all processes
example: rows of a matrix for a parallel solution

A B C D

A

B

C

D



Collective CommunicationCollective Communication

gather
data from all processes are collected by one process
example: assembly of solution vector from parted solutions

A B C D

A

B

C

D



Collective CommunicationCollective Communication

gather-to-all
all processes collect distributed data from all others
example: as bf., processes need solution for continuation

A

B

C

D

A B C D

A B C D

A B C D

A B C D



Collective CommunicationCollective Communication

all-to-all
data from all processes are distributed among all others
example: any ideas?

A B C D

E F G H

I J K L

M N O P

B F J N

A E I M

C G K O

D H L P



Collective CommunicationCollective Communication

all-to-all (cont’d)
all-to-all also known as total exchange
example: transposition of matrix

matrix A stored row-wise in memory
processes transpose blocks in parallel
total exchange of blocks

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

qpon
mlki
hgfe
dcba

A

⎟⎟
⎟
⎟
⎟

⎠

⎞

⎜⎜
⎜
⎜
⎜

⎝

⎛

=

qmhd
plgc
pkfb
niea

AT



Collective CommunicationCollective Communication

reduce
data from all processes are reduced to single data item(s)
example: global minimum/maximum/sum/product/…

R

A

B

C

D

A
•
B
•
C
•
D



Collective CommunicationCollective Communication

all-reduce
all processes are provided reduced data item(s)
example: processes need global minimum for continuation

A

B

C

D

R

R

R

R

A
•
B
•
C
•
D



Collective CommunicationCollective Communication

reduce-scatter
data from all processes are reduced and distributed
example: any ideas?

B
•
F
•
J
•
N

A B C D

E F G H

I J K L

M N O P

S

R = A • E • I •M

T = C •G •K •O

U = D •H • L • P



Collective CommunicationCollective Communication

parallel prefix
processes receive partial result of reduce operation
example: carry look-ahead for adding two numbers

A

B

C

D

A •B

A

A •B •C

A •B •C •D

A
•
B
•
C
•
D



Collective CommunicationCollective Communication

parallel prefix (cont’d)
carrying problem (overflow) when adding two digits
consider

c3 c2 c1 c0 Carry
a4 a3 a2 a1 a0 First Integer
b4 b3 b2 b1 b0 Second Integer
s4 s3 s2 s1 s0 Sum

ci can be computed from ci-1 by (ai + bi)⋅ci-1 + ai⋅bi

carry look-ahead: each ci computed by parallel prefix
afterward, si are calculated in parallel



Collective CommunicationCollective Communication

parallel prefix (cont’d)
implementation with binary trees
example: finding all (partial) sums in Ο(log n) time

up the tree down the tree (prefix)
even entries: bi = ci

odd entries: bi = ci-1 + bi

1 2 3 4 5 6 7 8

3 7 11 15

10 26

36

1 3 6 10 15 21 28 36

3 10 21 36

10 36

36



Parallel SessionsParallel Sessions

lectures
Advanced MPI Programming (R.-P. Mundani)
MPI Tools (I. L. Muntean)
Advances in Cluster Computing (I. L. Muntean)
Tuning Parallel Algorithms (I. L. Muntean)
Computational Steering (R.-P. Mundani)
Studying in Germany (R.-P. Mundani)

exercises
MPI Exercises Part I & II (2x) (Mundani/Muntean)
Advanced MPI Exercises (R.-P. Mundani)
Numerics Exercises (I. L. Muntean)
Introduction to Linux Part I & II (2x) (A. Mors)
Linux Server Administration (A. Mors)
SimLab Administration (Closed Session) (A. Mors)



mundani@in.tum.de
http://www5.in.tum.de/~mundani/


	What’s Left
	What’s Left
	Examples of Parallel Prog. Languages
	The Message Passing Paradigm
	The Underlying Principle
	The User’s View
	The User’s View
	The User’s View
	Elementary Communication
	Elementary Communication
	Message Buffers
	Message Buffers
	Communication Context
	Communication Context
	Keeping the Order
	Message Types
	Efficiency
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Collective Communication
	Parallel Sessions

