
Technische Universität München

Parallel Programming 2: MTP

9th SimLab Course on Parallel Numerical Simulation

October 3—9, 2010, Belgrade, Serbia

Ralf-Peter Mundani

Technische Universität München

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 2

Wishes…

what computer scientists want

what engineers really need

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 3

Overview

process interaction

synchronisation techniques

program verification

programming with OpenMP

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 4

Process Interaction

difference between processes and threads

program (*.exe, e. g.)

messages

messages

p
ro

c
e

s
s
 m

o
d

e
l

program (*.exe, e. g.)

th
re

a
d

 m
o

d
e

l

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 5

Process Interaction

problem: ATM race condition with two withdraw threads

thread 1 thread 2 balance

(withdraw $50) (withdraw $50)

read balance: $125 $ 125

read balance: $125 $ 125

set balance: $(125−50) $ 75

set balance: $(125−50) $ 75

give out cash: $50 $ 75

give out cash: $50 $ 75

ti
m

e

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 6

Process Interaction

principles

processes depend from each other if they have to be executed in a
certain order; this can have two reasons

cooperation: processes execute parts of a common task

producer/consumer: one process generates data to be
processed by another one

client/server: same as above, but second process also returns
some data (result of a computation, e. g.)

…

competition: activities of one process hinder other processes

synchronisation: management of cooperation / competition of processes
ordering of processes’ activities

communication: data exchange among processes

realised via shared variables with read / write access

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 7

Process Interaction

synchronisation

two types of synchronisation can be distinguished

unilateral: if activity A2 depends on the results of activity A1 then A1
has to be executed before A2 (i. e. A2 has to wait until A1 finishes);
synchronisation does not affect A1

multilateral: order of execution of A1 and A2 does not matter, but A1
and A2 are not allowed to be executed in parallel (due to write / write
or read / write conflicts, e. g.)

activities affected by multilateral synchronisation are mutual exclusive,
i. e. they cannot be executed in parallel and act to each other atomically
(no activity can interrupt another one)

instructions requiring mutual exclusion are called critical sections

synchronisation might lead to deadlocks (mutual blocking) or lockout
(“starvation”) of processes, i. e. indefinable long delay

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 8

Process Interaction

synchronisation (cont’d)

necessary and sufficient constraints for deadlocks

resources are only exclusively useable

resources cannot be withdrawn from a process

processes do not release assigned resources while waiting for the
allocation of other resources

there exists a cyclic chain of processes that use at least one
resource needed by the next processes within the chain

P1 P2

A

B

resource requested
by process

resource allocated
by process

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 9

Overview

process interaction

synchronisation techniques

program verification

programming with OpenMP

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 10

Synchronisation Techniques

semaphore

abstract data type consisting of

nonnegative variable of type integer (semaphore counter)

two atomic operations P (“passeeren”) and V (“vrijgeven”)

after initialisation of semaphore S the counter can only be manipulated
with the operations P(S) and V(S)

P(S): if S > 0 then S = S − 1

else the processes executing P(S) will be suspended

V(S): S = S + 1

after a V-operation any suspended process is reactivated (busy waiting);
alternatives: always next process in queue

binary semaphore: has only values “0” and “1” (similar to lock variable,
but P and V can be executed by different processes)

general semaphore: has any nonnegative number

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 11

Synchronisation Techniques

semaphore (cont’d)

initial value of semaphore counter defines the maximum amount of
processes that can enter a critical section simultaneously

critical section enclosed by operations P and V

mutual exclusion
(binary) semaphore s; s = 1
execute p1 and p2 in parallel

begin procedure p1 begin procedure p2
while (true) do while (true) do

P(s) P(s)
critical section 1 critical section 2
V(s) V(s)

od od
end end

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 12

Synchronisation Techniques

semaphore (cont’d)

consumer/producer-problem: semaphore indicates difference between
produced and consumed elements

assumption: unlimited buffer, atomic operations store and remove

consumer/producer
(general) semaphore s; s = 0
execute producer and consumer in parallel

begin procedure producer begin procedure consumer
while (true) do while (true) do

produce X P(s)
store X remove X
V(s) consume X

od od
end end

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 13

Synchronisation Techniques

barrier

synchronisation point for several processes, i. e. each process has to
wait until the last one also arrived

initialisation of counter C before usage with the amount of processes
that should wait (init-barrier operation)

each process executes a wait-barrier operation

counter C is decremented by one

process is suspended if C > 0, otherwise all processes are
reactivated and the counter C is set back to the initial value

useful for setting all processes (after independent processing steps) into
the same state and for debugging purposes

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 14

Overview

process interaction

synchronisation techniques

program verification

programming with OpenMP

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 15

Program Verification

“Program testing can be used to show the presence
of bugs, but never to show their absence.”

E.W. Dijkstra

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 16

Program Verification

test case

simple reader-writer-problem

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 17

Program Verification

questions

deadlock

program will always continue

mutex

resource is never used by both
processes at any time

liveness

resource will be used by any
process

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 18

Program Verification

questions

deadlock

program will always continue

mutex

resource is never used by both
processes at any time

liveness

resource will be used by any
process

status variables

(x, pc0, pc1)

hence, 32 states (10 not reachable)

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 19

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

000

010 101

012 121

002

100

013 131 120

032 030 103 123

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 20

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

000

010 101

012 121

002

100

120

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 21

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 22

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 23

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 24

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 25

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 26

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 27

Program Verification

boolean x ← 0

proc rw0 {
while (true) {

0: x ← 0

1: sync ()

2: if (x = 0)

3: use_resource

}
}

proc rw1 {
while (true) {

0: x ← 1

1: sync ()

2: if (x = 1)

3: use_resource

}
}

010 101

012 121

020 102

022 122

011 111

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 28

Overview

process interaction

synchronisation techniques

program verification

programming with OpenMP

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 29

Programming with OpenMP

brief overview

OpenMP is an application programming interface (API) for writing
multithreaded programs, consisting of

a set of compiler directives

(runtime) library routines

environment variables

available for C, C++, and Fortran

suited for programming

UMA and SMP systems

DSM / VSM systems (i. e. NUMA, ccNUMA, and COMA)

hybrid systems (i. e. MesMS with shared-memory nodes) in
combination with message passing (MPI, e. g.)

further information: http://www.openmp.org

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 30

Programming with OpenMP

compiler directives

prototypical form of compiler directives (C and C++)

#pragma omp directive-name [clause, …] newline

directive-name: a valid OpenMP directive such as

parallel

for, sections, single

master, critical, barrier

…

clause: optional statements such as

if

private, firstprivate, lastprivate, shared

reduction

…

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 31

Programming with OpenMP

parallel region construct

#pragma omp parallel [clause, …] newline

precedes a parallel region (i. e. structured block of code) that will be
executed by multiple threads

when a thread reaches a “parallel” directive, it creates a team of
threads and becomes the master of that team

code is duplicated and all threads will execute that code

implicit barrier at the end of parallel region

it is illegal to branch into or out of a parallel region

amount of threads set via omp_set_num_threads() library function
or OMP_NUM_THREADS environment variable

threads numbered from 0 (master thread) to N−1

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 32

Programming with OpenMP

parallel region construct (cont’d)

some clauses

if (condition): must evaluate to TRUE in order for a team of threads to
be created; only a single “if” clause is permitted

private (list): listed variables are private to each thread; variables are
uninitialised and not persistent (i. e. they do not longer exist when
the parallel region is left)

shared (list): listed variables are shared among all threads

default (shared | none): default value for all variables in a parallel
region

firstprivate (list): like private, but listed variables are initialised
according to the value of their original objects

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 33

Programming with OpenMP

parallel region construct (cont’d)

example

#include <omp.h>

main () {
int nthreads, tid;
#pragma omp parallel private (tid)

{
tid = omp_get_thread_num ();
if (tid == 0) {

nthreads = omp_get_num_threads ();
printf (“%d threads running\n”, nthreads);

} else {
printf (“thread %d: Hello World!\n”, tid);

}
}

}

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 34

Programming with OpenMP

work-sharing constructs

divides the execution of the enclosed code region among the members
of the team that encounter it

work-sharing constructs do not launch new threads

there is no implied barrier upon entry of a work-sharing constructs, only
at the end

different types of work-sharing constructs

for: shares iterations of a loop (data parallelism)

sections: work is broken down into separate sections, each to be
executed by a thread (function parallelism)

must be encountered by all members of a team or none at all

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 35

Programming with OpenMP

work-sharing constructs (cont’d)

#pragma omp for [clause, …] newline

iterations of the loop immediately following the “for” directive to be
executed in parallel (only in case a parallel region has already been
initiated)

to branch out of a loop (break, return, exit, e. g.) associated with a “for”
directive is illegal

program correctness must not depend upon which thread executes a
particular iteration

some clauses

lastprivate (list): like private, but values of listed variables are copied
back at the end into their original variables

nowait: threads do not synchronise at the end of loop

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 36

Programming with OpenMP

work-sharing constructs (cont’d)

example

main () {
int i;
float a[N], b[N], c[N];

…

#pragma omp parallel shared (a, b, c) private (i)
{
#pragma omp for nowait

for (i = 0; i < N; ++i)
c[i] = a[i] + b[i];

}
…

}

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 37

Programming with OpenMP

synchronisation constructs

#pragma omp master newline

specifies a region that is only to be executed by the master

there is no implied barrier associated with this directive

to branch into or out of a master block is illegal

#pragma omp critical [name] newline

specifies a region of code that must be executed by only one thread at a
time; threads trying to enter critical region are blocked until they get
permission

optional name enables multiple critical regions to exist

to branch into or out of a critical region is illegal

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 38

Programming with OpenMP

synchronisation constructs (cont’d)

#pragma omp barrier newline

synchronises all threads, i. e. before resuming execution a thread has to
wait at that point until all other threads have reached that barrier, too

#pragma omp atomic newline

specifies the atomic update of a specific memory location

applies only to a single, immediately following statement

example

#pragma omp atomic
x = x + 1;

C1 C2 C4C3

bus

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 39

Programming with OpenMP

runtime library

void omp_set_num_threads (int num_threads)

sets the number of threads that will be used in the next parallel region; it
has precedence over the OMP_NUM_THREADS environment variable

can only be called from serial portions of the code

int omp_get_num_threads (void)
int omp_get_max_threads (void)

returns

the number of threads that are currently executing in the parallel
region from which it is called

the maximum number of threads that can be active

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 40

Programming with OpenMP

runtime library (cont’d)

int omp_get_thread_num (void)

returns the number (0 ≤ TID ≤ N−1) of the thread making this call, the
master thread has number “0”

int omp_in_parallel (void)

may be called to determine if the section of code which is executing is
parallel or not returns a non-zero integer if parallel, and zero
otherwise

further runtime library routines available, see OpenMP specification
(http://www.openmp.org) for details

Technische Universität München

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 41

Coffee Break

