Technische Universitdt Minchen TI-ITI

Parallel Programming 2: MTP

9th SimLab Course on Parallel Numerical Simulation
October 3—9, 2010, Belgrade, Serbia

Ralf-Peter Mundani
Technische Universitat Munchen ‘
0

ab W

JF|Stabilitatspakt fiir Siidosteuropa y
" |Gefdrdert durch Deutschland
Stability Pact for South Eastern Europe - I G S

B T
Sponsored by Germany / He

International Graduate School
of Science and Engineering

Technische Universitdt Minchen 11-'."
Wishes...

= what computer scientists want

= what engineers really need

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 2

Technische Universitdt Minchen

Overview

= process interaction

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

Technische Universitdt Minchen]1"]

Process Interaction

= difference between processes and threads

program (*.exe, e. g.) program (*.exe, e. g.)

process model
thread model

messages
messages

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

Technische Universitdt Minchen

Process Interaction

= problem: ATM race condition with two withdraw threads

time

A 4

thread 1 thread 2 balance

(withdraw $50) (withdraw $50)

read balance: $125 $125
read balance: $125 $125
set balance: $(125-50) $75

set balance: $(125-50) $75

give out cash: $50 $75
give out cash: $50 $75

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

Technische Universitdt Minchen 11-'.'1

Process Interaction

= principles
= processes depend from each other if they have to be executed in a
certain order; this can have two reasons

= cooperation: processes execute parts of a common task

= producer/consumer: one process generates data to be
processed by another one

= client/server: same as above, but second process also returns
some data (result of a computation, e. g.)

= competition: activities of one process hinder other processes

= synchronisation: management of cooperation / competition of processes
=>» ordering of processes’ activities

= communication: data exchange among processes
= realised via shared variables with read / write access

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 6

Technische Universitdt Minchen 11-'."

Process Interaction

= synchronisation
= two types of synchronisation can be distinguished

= unilateral: if activity A2 depends on the results of activity A1 then A1
has to be executed before A2 (i. e. A2 has to wait until A1 finishes);
synchronisation does not affect A1

= multilateral: order of execution of A1 and A2 does not matter, but A1
and A2 are not allowed to be executed in parallel (due to write / write
or read / write conflicts, e. g.)

= activities affected by multilateral synchronisation are mutual exclusive,
i. e. they cannot be executed in parallel and act to each other atomically
(no activity can interrupt another one)

= instructions requiring mutual exclusion are called critical sections

= synchronisation might lead to deadlocks (mutual blocking) or lockout
(“starvation”) of processes, i. e. indefinable long delay

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 7

Technische Universitdt Minchen TI.ITI

Process Interaction

= synchronisation (cont’d)
= necessary and sufficient constraints for deadlocks
= resources are only exclusively useable
» resources cannot be withdrawn from a process

= processes do not release assigned resources while waiting for the
allocation of other resources

= there exists a cyclic chain of processes that use at least one
resource needed by the next processes within the chain

A
\ resource requested
@ by process
/ resource allocated
B by process

/
O__

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

Technische Universitdt Minchen

Overview

= synchronisation techniques

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

Technische Universitdt Minchen 11-'.'1

Synchronisation Techniques

= semaphore
= abstract data type consisting of
* nonnegative variable of type integer (semaphore counter)
» two atomic operations P (“passeeren”) and V (“vrijgeven”)

= after initialisation of semaphore S the counter can only be manipulated
with the operations P(S) and V(S)

= P(S):ifS>0thenS=S -1
else the processes executing P(S) will be suspended
= V(S):S=S+1

= after a V-operation any suspended process is reactivated (busy waiting);
alternatives: always next process in queue

= binary semaphore: has only values “0” and “1” (similar to lock variable,
but P and V can be executed by different processes)

= general semaphore: has any nonnegative number

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 10

Technische Universitdt Minchen 11-'.'1

Synchronisation Techniques

= semaphore (cont’d)

= jnitial value of semaphore counter defines the maximum amount of
processes that can enter a critical section simultaneously

= critical section enclosed by operations P and V

mutual exclusion
(binary) semaphore s; s =1
execute pl and p2 in parallel

begin procedure pl begin procedure p2
while (true) do while (true) do
P(s) P(s)
critical section 1 critical section 2
V(s) V(s)
od od
end end

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 11

Technische Universitdt Minchen 11-'.'1

Synchronisation Techniques

= semaphore (cont’d)

= consumer/producer-problem: semaphore indicates difference between
produced and consumed elements

= assumption: unlimited buffer, atomic operations store and remove

consumer/producer
(general) semaphore s; s =0
execute producer and consumer i1n parallel

begin procedure producer begin procedure consumer
while (true) do while (true) do
produce X P(s)
store X remove X
V(s) consume X
od od
end end

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 12

Technische Universitdt Minchen 11-'.'1

Synchronisation Techniques

= barrier

= synchronisation point for several processes, i. e. each process has to
wait until the last one also arrived

= jnitialisation of counter C before usage with the amount of processes
that should wait (init-barrier operation)

= each process executes a wait-barrier operation
= counter C is decremented by one

= process is suspended if C > 0, otherwise all processes are
reactivated and the counter C is set back to the initial value

= useful for setting all processes (after independent processing steps) into
the same state and for debugging purposes

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 13

Technische Universitdt Minchen TI.ITI

Overview

program verification

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 14

Technische Universitdt Minchen TI.ITI

Program Verification

“Program testing can be used to show the presence
of bugs, but never to show their absence.”

E.W. Dijkstra

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 15

Technische Universitdt Minchen TI-ITI

Program Verification

= test case boolean x < 0

= simple reader-writer-problem proc rw0 {
while (true) {
x<«0
sync ()
if (x=0)
use_resource

QN >Qo

j
j

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

QN9

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 16

Technische Universitdt Minchen

TLTI

Program Verification

= questions
= deadlock
= program will always continue

= mutex

= resource is never used by both
processes at any time

= |iveness

= resource will be used by any
process

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if (x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 17

Technische Universitdt Minchen

TLTI

Program Verification

= questions
= deadlock
= program will always continue

= mutex

= resource is never used by both
processes at any time

= |iveness

= resource will be used by any
process

= status variables
(x, pcO, pc1)

= hence, 32 states (10 not reachable)

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if (x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 18

Technische Universitdt Minchen

TLTI

Program Verification

011

111

022

|

122

020

l

032

l

102

030

l

002

103

013

123

000

131

012

120

121

010

100

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if (x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 19

Technische Universitdt Minchen

TLTI

Program Verification

011

111

022

|

122

020

l

002

000

102

012

120

121

010

100

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 20

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

111

122

l

102

012

010

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 21

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

111

122

102

012

010

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 22

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

111

122

102

012

cim

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 23

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

102

012

010

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 24

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

012

010

111

l?

102

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 25

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

111

122

012

010

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 26

Technische Universitdt Minchen

TLTI

Program Verification

011

022

|

020

111

122

102

010

121

101

QN >Qo

QN9

boolean x < 0

proc r'wO {
while (true) {
x<«0
sync ()
if (x=0)
use_resource
b
}

proc rwi {
while (true) {
X <« 1
sync ()
if(x=1)
use_resource

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 27

Technische Universitdt Minchen 11"1

Overview

= programming with OpenMP

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 28

Technische Universitdt Minchen

Programming with OpenMP

= brief overview

= OpenMP is an application programming interface (API) for writing
multithreaded programs, consisting of

= a set of compiler directives
= (runtime) library routines
= environment variables

= available for C, C++, and Fortran
= suited for programming
= UMA and SMP systems
= DSM /VSM systems (i. e. NUMA, ccNUMA, and COMA)

= hybrid systems (i. e. MesMS with shared-memory nodes) in
combination with message passing (MPI, e. g.)

= further information: http://www.openmp.org

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

29

Technische Universitdt Minchen

Programming with OpenMP

= compiler directives
= prototypical form of compiler directives (C and C++)

#pragma omp directive-name [clause, ...] newline

= directive-name: a valid OpenMP directive such as
= parallel
= for, sections, single
= master, critical, barrier

= clause: optional statements such as

= f
private, firstprivate, lastprivate, shared
reduction

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia

30

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

= parallel region construct

#pragma omp parallel [clause, ...] newline

= precedes a parallel region (i. e. structured block of code) that will be
executed by multiple threads

= when a thread reaches a “parallel” directive, it creates a team of
threads and becomes the master of that team

= code is duplicated and all threads will execute that code
= implicit barrier at the end of parallel region
= it is illegal to branch into or out of a parallel region

= amount of threads set via omp_set_num_threads() library function
or OMP_NUM_THREADS environment variable

= threads numbered from 0 (master thread) to N-1

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 31

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

= parallel region construct (cont’d)
= some clauses

R.-P. Mundani

if (condition): must evaluate to TRUE in order for a team of threads to
be created; only a single “if” clause is permitted

private (list): listed variables are private to each thread; variables are
uninitialised and not persistent (i. e. they do not longer exist when
the parallel region is left)

Shared (list): listed variables are shared among all threads
default (shared | none): default value for all variables in a parallel
region

firstprivate (list): like private, but listed variables are initialised
according to the value of their original objects

- 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 32

Technische Universitat Minchen TI.ITI
Programming with OpenMP

= parallel region construct (cont’d)
= example

#include <omp.h>

main O {
int nthreads, tid;

#pragma omp parallel private (tid)

{
tid = omp_get thread num ();
1T (tid == 0) {
nthreads = omp_get num threads ();
printf (“%d threads running\n”, nthreads);
} else {
printf (“thread %d: Hello WorldI!\n”, tid);
+
+

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 33

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

= work-sharing constructs

= divides the execution of the enclosed code region among the members
of the team that encounter it

= work-sharing constructs do not launch new threads

= there is no implied barrier upon entry of a work-sharing constructs, only
at the end

= different types of work-sharing constructs
= for: shares iterations of a loop (= data parallelism)

= sections: work is broken down into separate sections, each to be
executed by a thread (= function parallelism)

= must be encountered by all members of a team or none at all

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 34

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

= work-sharing constructs (cont’d)

#pragma omp for [clause, ...] newline

= jterations of the loop immediately following the “for” directive to be
executed in parallel (only in case a parallel region has already been
initiated)

= to branch out of a loop (break, return, exit, e. g.) associated with a “for”
directive is illegal

= program correctness must not depend upon which thread executes a
particular iteration

= some clauses

= lastprivate (list): like private, but values of listed variables are copied
back at the end into their original variables

= nowait: threads do not synchronise at the end of loop

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 35

Technische Universitat Minchen TI.ITI
Programming with OpenMP

= work-sharing constructs (cont’d)
= example

main O {
int 1;
float a[N], b[N], c[N];

#pragma omp parallel shared (a, b, c) private (i)

{

#pragma omp for nowait
for (1 = 0; 1 < Nj; ++1)
cfi] = a[1] + b[i];

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 36

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

= synchronisation constructs

#pragma omp master newline

= specifies a region that is only to be executed by the master
= there is no implied barrier associated with this directive
= to branch into or out of a master block is illegal

#pragma omp critical [name] newline

= specifies a region of code that must be executed by only one thread at a
time; threads trying to enter critical region are blocked until they get
permission

= optional name enables multiple critical regions to exist
= to branch into or out of a critical region is illegal

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 37

Technische Universitat Minchen TI-ITI
Programming with OpenMP

= synchronisation constructs (cont’d)

#pragma omp barrier newline

= synchronises all threads, i. e. before resuming execution a thread has to
walit at that point until all other threads have reached that barrier, too

#pragma omp atomic newline

» specifies the atomic update of a specific memory location
= applies only to a single, immediately following statement
= example

#pragma omp atomic cillcollcsll ca
X =X + 1;

bus

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 38

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

* runtime library

void omp_set _num_threads (int num_threads)

= sets the number of threads that will be used in the next parallel region; it
has precedence over the OMP_NUM_THREADS environment variable

= can only be called from serial portions of the code

int omp_get _num_threads (void)
int omp_get _max_threads (void)

= returns

= the number of threads that are currently executing in the parallel
region from which it is called

= the maximum number of threads that can be active

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 39

Technische Universitat Minchen 11-'.'1
Programming with OpenMP

= runtime library (cont’d)

int omp_get _thread num (void)

= returns the number (0 < TID < N-1) of the thread making this call, the
master thread has number “0”

int omp_in_parallel (void)

= may be called to determine if the section of code which is executing is
parallel or not = returns a non-zero integer if parallel, and zero
otherwise

= further runtime library routines available, see OpenMP specification
(http://www.openmp.org) for details

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 40

Technische Universitdt Minchen .I.I-r"

A

S Coffee Break

"l-.'. 8

R.-P. Mundani - 9th SimLab Course on Parallel Numerical Simulation - October 3-9, 2010, Belgrade, Serbia 41

