Numerical Modelling
- Introductory Approach

9th SimLab Course on Parallel Numerical Simulation
October 4—8, 2010, Belgrade, Serbia

Jérôme Frisch
Technische Universität München
Contents

- Overview
- Types of Models
- Derivation of Models
- Mathematical Description
- Types of Analyses
- Model Properties
- Solution Approach
Why do we need numerical simulation

- why numerical simulation?
 - because experiments are sometimes *impossible*
 - life cycle of galaxies, weather forecast, terror attacks, e. g.
 - because experiments are sometimes *not welcome*
 - avalanches, nuclear tests, medicine, e. g.
Why do we need numerical simulation

- why numerical simulation? (cont’d)
 - because experiments are sometimes *very costly and-time consuming*
 - protein folding, material sciences, e. g.

- because experiments are sometimes *more expensive*
 - aerodynamics, crash test, e. g.
Overview - The Main Elements of Simulation

Physical System → Mathematical Model → Simulation → Prediction

Validation: Do we solve the right mathematical model?

Verification: Do we solve the mathematical model correctly?
Types of Models

- Physical Models / Models of natural science

 "Scale representation of physical phenomena"

 - image of nature, highlighting essential properties
 - mainly based on hypotheses (= model), illustration of phenomena
 - "Exact Science", low level of abstraction

- Mathematical Models

 "Description of physical behavior with predefined formalism"

 - image of systems / natural phenomena
 - based on models from natural science (physics, chemistry, biology, ...) or similar

- Engineering Models

 "Physical and mathematical model on a higher abstraction level"

 - often simplified approach → restriction to essential system behavior
 - well suited for analyses and simulation
Principles of Mathematical Modelling

- Description of a given problem with **mathematical formalism** in order to
 - get a formal and precise description (e.g. PDE)
 - uncover essential properties and behavior due to abstraction
 - allow systematic analyses i.e. problem solution

- **Modeling** of real system behavior with
 - suitable mathematical formalism (logic, algebraic structures, topology, …)
 - simplification and abstraction in order to reduce complexity

- **Evidence** of model behavior in order to proof real system behavior, e.g. in
 - exact natural science and engineering (e.g. basic conservation laws of continuum mechanics (energy, mass, momentum, …) → long tradition
 - economics (e.g. law of supply & demand), climate modelling (e.g. interaction of atmosphere, oceans, …)

- Still to do: **derivation** and **analysis** of models
Derivation of Models

- **Purpose of the modelling**
 - What has to be analysed? → stability or serviceability of a structure
 → motion of a single person or of a crowd

- **Input parameter**
 - What are the important quantities?
 → Optimum trajectory of the space shuttle: gravitation of Earth or Pluto?
 → Climate change: what are the lasting effects of wildfire?
 → Oscillation of a bridge: excitation frequency or load participation or both?
Derivation of Models

- **Purpose of the modelling**
 - What has to be analysed?

- **Input parameter**
 - What are the important quantities?

- How do these parameters influence the model behavior?

- How do these parameters behave?
Derivation of Models

- **Purpose of the modeling**
 - What has to be analysed? → stability or serviceability of a structure
 → motion of a single person or of a crowd

- **Input parameter**
 - What are the important quantities?
 → Optimum trajectory of the space shuttle: gravitation of Earth or Pluto?
 → Oscillation of a bridge: excitation frequency or load participation or both?
 → Climate change: what are the lasting effects of wildfire?

 - How do these parameters influence the model behavior?
 - May we neglect some of them? (Neglect damping in oscill. problems?)
 - How well are they determined? (good laboratory values, empirical values?)

 - How do these parameters behave?
 - Qualitative/quantitative behavior: Individual character stronger than group dynamics?
Derivation of Models

- **Mathematical description**
 - Differential equations (equilibrium conditions of differential subsystems)
 typical engineering approach for e.g.
 - heat flow
 - elasticity, ...
 - Variational formulation (extreme values of a functional)
 typical approach in natural science for e.g.
 - elasticity, ...
 - Relational algebra / Graph Theory / Automata
 - shortest path problem
 - critical path problem
 - capacity problems
 - spread of wildfire
 - crowd behavior
 ...

Types of Analyses

- **Elasticity analysis**

 Find the critical behavior:
 Deflection under snow loading?

- **Flow field analysis**

 Find a solution:
 Well-being in offices?
Types of Analyses

- Air flow simulation

 temperature distribution?
 comfort behavior?
Types of Analyses

- **Path algebra** →

 - Shortest path (time, distance)?
 - Most reliable path?
 - Is there a Eulerian path?

- **State Transition** →

 - How do crowds behave?
Properties of Models

- What can be said about the solution?
 - **Existance** of a solution

\[A \mathbf{x} = \mathbf{b} : \quad \text{rank}[A, \mathbf{b}] > \text{rank}[A] \quad \Rightarrow \quad \text{no solution!} \]
Properties of Models

- What can be said about the solution?
 - Existence of a solution
 - Eulerian Path (Königsberg Bridge Problem, Euler 1736)
 - number of vertices with odd vertex degree > 2 \(\Rightarrow \) no solution!
Properties of Models

- What can be said about the solution?
 - **Existence** of a solution
 - **Uniqueness** of a solution

\[A \mathbf{x} = \mathbf{b} : \quad \text{rank} [\mathbf{A}, \mathbf{b}] = \text{rank} [\mathbf{A}] < N \implies \text{arbitrary solutions!} \]
Properties of Models

What can be said about the solution?

- **Existence** of a solution
- **Uniqueness** of a solution

Fastest connection? Most reliable path? Shortest path?
Properties of Models

- What can be said about the solution?
 - Existence of a solution
 - Uniqueness of a solution
 - Dependency on the input data

 - Load distribution, e.g. on structures
 - Number of load cases
 - Effects of ad-hoc decisions (choice of a start iteration vector, subspace size, …)
 - Influence of experimental input data (material law, …)
 - Influence of empirical input data (sociological aspects, …)
Properties of Models

- What can be said about the solution?
 - **Existence** of a solution
 - **Uniqueness** of a solution
 - **Dependency** on the input data

- What can be said about the solution method?
 - Is the derived model suited for a numerical solution strategy (granularity) ?
 - Well-transformable to a suitable system of equations (simplifications) ?
 - How much is the solution method dependent on human intelligence (experience/professional background) ?

- What about correctness of the derived model?
 - Degree of abstraction? Still a realistic model?
 - Do validation methods exist? Is experimental validation feasible?
Solution approach

- **Analytical** solutions
 - Highly desired, not always possible
 - Formal proof of existence and uniqueness of a solution

- **Heuristic** solutions
 - Trial and error, following some solution strategy („search methods“)
 - Well-suited e.g. for travelling salesman problem (logistics, machine control,…)
 - Also used for root finding for polynomials and optimization

- **Numerical** solutions
 - Direct solution (Simplex(Optimization), LU-decomposition, …)
 - partially exact solution possible
 - Iterative solution (Jacobi, CG, QR, Gauß-Seidel, GMRES, …)
 - approximation of exact solution!
Questions?