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Message Passing Paradigm

Message passing

‟ very general principle, applicable to nearly all types of parallel 
architectures (message-coupled and memory-coupled)

‟ standard programming paradigm for MesMS, i. e.

„ message-coupled multiprocessors

„ clusters of workstations (homogeneous architecture, dedicated use, 
high-speed network (InfiniBand, e. g.))

„ networks of workstations (heterogeneous architecture,
non-dedicated use, standard network (Ethernet, e. g.))

‟ several concrete programming environments

„ machine-dependent: MPL (IBM), PSE (nCUBE), 

„ machine-independent: EXPRESS, P4, PARMACS, PVM, 

‟ machine-independent standards: PVM, MPI
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Message Passing Paradigm

Underlying principle

‟ parallel program with P processes with different address space

‟ communication takes place via exchanging messages

„ header: target ID, message information (type of data, )

„ body: data to be provided

‟ exchanging messages via library functions that should be

„ designed without dependencies of

‟ hardware

‟ programming language

„ available for multiprocessors and standard monoprocessors

„ available for standard languages such as CC++ or Fortran

„ linked to source code during compilation
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Message Passing Paradigm

User’s view

‟ library functions are the only interface to communication system

process

processprocess

process

process

process

communication system
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Message Passing Paradigm

User’s view (cont’d)

‟ library functions are the only interface to communication system

‟ message exchange via send() and receive()

communication system
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Message Passing Paradigm

Types of communication

‟ point-to-point a. k. a. P2P (1:1-communication)

„ two processes involved: sender and receiver

„ way of sending interacts with execution of sub-program

‟ synchronous: send is provided information about completion of 
message transfer, i. e. communication not complete until 
message has been received (fax, e. g.)

‟ asynchronous: send only knows when message has left; 
communication completes as soon as message is on its way 
(postbox, e. g.)

‟ blocking: operations only finish when communication has 
completed (fax, e. g.)

‟ non-blocking: operations return straight away and allow 
program to continue; at some later point in time program can 
test for completion (fax with memory, e. g.)
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Message Passing Paradigm

Types of communication (cont’d)

‟ collective (1:M-communication, M  P, P number of processes)

„ all (some) processes involved

„ types of collective communication

‟ barrier: synchronises processes (no data exchange), i. e. each 
process is blocked until all have called barrier routine

‟ broadcast: one process sends same message to all (several) 
destinations with a single operation

‟ scatter  gather: one process gives  takes data items
to  from all (several) processes

‟ reduce: one process takes data items from all (several) 
processes and reduces them to a single data item; typical 
reduce operations: sum, product, minimum  maximum, 
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Overview

‟ message passing paradigm

‟ collective communication

‟ programming with MPI
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Collective Communication

Broadcast

‟ sends same message to all participating processes

‟ example: first process in competition informs others to stop
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Collective Communication

Scatter

‟ data from one process are distributed among all processes

‟ example: rows of a matrix for a parallel solution of SLE
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Collective Communication

Gather

‟ data from all processes are collected by a single process

‟ example: assembly of solution vector from parted solutions
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Collective Communication

Gather-to-all

‟ all processes collect distributed data from all others

‟ example: as before, but now all processes need global solution for 
continuation
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Collective Communication

All-to-all

‟ data from all processes are distributed among all others

‟ example: any ideas?
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Collective Communication

All-to-all (cont’d)

‟ also referred to as total exchange

‟ example: transposition of matrix A (stored row-wise in memory)

„ total exchange of blocks Bij

„ afterwards, each process computes transposition of its blocks
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Collective Communication

Reduce

‟ data from all processes are reduced to single data item(s)

‟ example: global minimum  maximum  sum  product  
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Collective Communication

All-reduce

‟ all processes are provided reduced data item(s)

‟ example: finding prime numbers with “Sieve of ERATOSTHENES” 
processes need global minimum for deleting multiples of it
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Collective Communication

All-reduce

‟ all processes are provided reduced data item(s)

‟ example: finding prime numbers with “Sieve of ERATOSTHENES” 
processes need global minimum for deleting multiples of it
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Collective Communication

Parallel prefix

‟ processes receive partial result of reduce operation

‟ example: matrix multiplication in quantum chemistry
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Overview

‟ message passing paradigm

‟ collective communication

‟ programming with MPI
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Programming with MPI

Brief overview

‟ de facto standard for writing parallel programs

‟ both free available and vendor-supplied implementations

‟ supports most interconnects

‟ available for C  C, Fortran 77, and Fortran 90
(C functionality deprecated in MPI 3.0)

‟ target platforms: SMPs, clusters, massively parallel processors
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P

M

Programming with MPI

Programming model

‟ sequential programming paradigm

„ one processor (P)

„ one memory (M)
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Programming with MPI

Programming model (cont’d)

‟ message-passing programming paradigm

„ several processors  memories

„ each processor runs one or more processes

„ all data are private

„ communication between processes via messages
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Programming with MPI

Writing and running MPI programs

‟ header file to be included: mpi.h

‟ all names of routines and constants are prefixed with MPI_

‟ first routine called in any MPI program must be for initialisation

MPI_Init (int *argc, char ***argv)

‟ clean-up at the end of program when all communications have been 
completed

MPI_Finalize (void)

‟ MPI_Finalize() does not cancel outstanding communications

‟ MPI_Init() and  MPI_Finalize() are mandatory
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Programming with MPI

Writing and running MPI programs (cont’d)

‟ processes can only communicate if they share a communicator

„ predefined  standard communicator MPI_COMM_WORLD

„ contains list of processes

‟ consecutively numbered from 0 (referred to as rank)

‟ “rank” identifies each process within communicator

‟ “size” identifies amount of all processes within communicator

„ why creating a new communicator

‟ restrict collective communication to subset of processes

‟ creating a virtual topology (torus, e. g.)

‟ 

269th SimLab Course on Parallel Numerical Simulation  - October 4-8, 2010, Belgrade, Serbia



Technische Universität München

Programming with MPI

Writing and running MPI programs (cont’d)

‟ determination of rank

MPI_Comm_rank (communicator comm, int &rank)

‟ determination of size

MPI_Comm_size (communicator comm, int &size)

‟ remarks

„ rank  [0, size1]

„ size has to be specified at program start

‟ MPI-1: size cannot be changed during runtime

‟ MPI-2: spawning of processes during runtime possible
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Programming with MPI

Writing and running MPI programs (cont’d)

‟ compilation of MPI programs: mpicc, mpicxx, mpif77, or mpif90

$ mpicc [ –o my_prog ] my_prog.c

‟ available nodes for running an MPI program have to be stated explicitly 
via so called machinefile (list of hostnames or FQDNs)

‟ running an MPI program under MPI-1

$ mpirun -machinefile <file> -np <#procs> my_prog

‟ running an MPI program under MPI-2 (mpd is only started once)

$ mpdboot –n <#mpds> -f <file>
$ mpiexec –n <#procs> my_prog

‟ clean-up after usage (MPI-2 only): mpdcleanup f file
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Programming with MPI

Writing and running MPI programs (cont’d)

‟ example

int main (int argc, char **argv) {

int rank, size;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Comm_size (MPI_COMM_WORLD, &size);

if (rank == 0) printf (“%d processes alive\n”, size);
else printf (“Slave %d: Hello world!\n”, rank);

MPI_Finalize ();

return 0;

}
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Programming with MPI

Messages

‟ information that has to be provided for the message transfer

„ rank of process sending the message

„ memory location (send buffer) of data to be transmitted

„ type of data to be transmitted

„ amount of data to be transmitted

„ rank of process receiving the message

„ memory location (receive buffer) for data to be stored

„ amount of data the receiving process is prepared to accept

‟ in general, message is a (consecutive) array of elements of a particular 
MPI data type

‟ data type must be specified both for sender and receiver 
no type conversion on heterogeneous parallel architectures
(big-endian vs. little-endian, e. g.)

309th SimLab Course on Parallel Numerical Simulation  - October 4-8, 2010, Belgrade, Serbia



Technische Universität München

Programming with MPI

Messages (cont’d)

‟ MPI data types (1)

„ basic types (see tabular)

„ derived types built up from basic types (vector, e. g.)

MPI data type C  C data type

MPI_CHAR signed char

MPI_SHORT signed short int

MPI_INT signed int

MPI_LONG signed long int

MPI_UNSIGNED_CHAR unsigned char

MPI_UNSIGNED_SHORT unsigned short int
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Programming with MPI

Messages (cont’d)

‟ MPI data types (2)

MPI data type C  C data type

MPI_UNSIGNED unsigned int

MPI_UNSIGNED_LONG unsigned long int

MPI_FLOAT float

MPI_DOUBLE double

MPI_LONG_DOUBLE long double

MPI_BYTE represents eight binary digits

MPI_PACKED for matching any other type
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Programming with MPI

Point-to-point communication (P2P)

‟ different communication modes

„ synchronous send: completes when receive has been started

„ buffered send: always completes (even if receive has not been 
started); conforms to an asynchronous send

„ standard send: either buffered or unbuffered

„ ready send: always completes (even if receive has not been started)

„ receive: completes when a message has arrived

‟ all modes exist in both blocking and non-blocking form

„ blocking: return from routine implies completion of message passing 
stage

„ non-blocking: modes have to be tested (manually) for completion of 
message passing stage
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Programming with MPI

Blocking P2P communication

‟ neither sender nor receiver are able to continue the program execution 
during the message passing stage

‟ sending a message (generic)

MPI_Send (buf, count, data type, dest, tag, comm)

‟ receiving a message

MPI_Recv (buf, count, data type, src, tag, comm, status)

‟ tag: marker to distinguish between different sorts of messages (i. e. 
communication context)

‟ status: sender and tag can be queried for received messages (in case of 
wildcard usage)
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Programming with MPI

Blocking P2P communication (cont’d)

‟ synchronous send: MPI_Ssend( arguments )

„ start of data reception finishes send routine, hence, sending process 
is idle until receiving process catches up

„ non-local operation: successful completion depends on the 
occurrence of a matching receive

‟ buffered send: MPI_Bsend( arguments )

„ message is copied to send buffer for later transmission

„ user must attach buffer space first ( MPI_Buffer_Attach()); size 
should be at least the sum of all outstanding sends

„ only one buffer can be attached per process at a time

„ buffered send guarantees to complete immediately
 local operation: independent from occurrence of matching receive

„ non-blocking version has no advantage over blocking version
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Programming with MPI

Blocking P2P communication (cont’d)

‟ standard send: MPI_Send( arguments )

„ MPI decides (depending on message size, e. g.) to send

‟ buffered: completes immediately

‟ unbuffered: completes when matching receive has been posted

„ completion might depend on occurrence of matching receive

‟ ready send: MPI_Rsend( arguments )

„ completes immediately

„ matching receive must have already been posted, otherwise 
outcome is undefined

„ performance may be improved by avoiding handshaking and 
buffering between sender and receiver

„ non-blocking version has no advantage over blocking version
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Programming with MPI

Blocking P2P communication (cont’d)

‟ receive: MPI_Recv( arguments )

„ completes when message has arrived

„ usage of wildcards possible

‟ MPI_ANY_SOURCE: receive from arbitrary source

‟ MPI_ANY_TAG: receive with arbitrary tag

‟ MPI_STATUS_IGNORE: don’t care about state

‟ general rule: messages from one sender (to one receiver) do not 
overtake each other, message from different senders (to one receiver) 
might arrive in different order than being sent

2 1
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Programming with MPI

Blocking P2P communication (cont’d)

‟ example: a simple ping-pong

int rank, buf;

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

if (rank == 0) {

MPI_Send (&rank, 1, MPI_INT, 1, 0, MPI_COMM_WORLD);

MPI_Recv (&buf, 1, MPI_INT, 1, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

} else {

MPI_Recv (&buf, 1, MPI_INT, 0, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

MPI_Send (&rank, 1, MPI_INT, 0, 0, MPI_COMM_WORLD);

}
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Programming with MPI

Blocking P2P communication (cont’d)

‟ example: communication in a ring ‟ does this work?

int rank, buf;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Recv (&buf, 1, MPI_INT, rank-1, 0, MPI_COMM_WORLD,
MPI_STATUS_IGNORE);

MPI_Send (&rank, 1, MPI_INT, rank+1, 0, MPI_COMM_WORLD);

MPI_Finalize();
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Programming with MPI

Non-blocking P2P communication

‟ problem: blocking communication does not return until communication 
has been completed  risk of idly waiting and  or deadlocks

‟ hence, usage of non-blocking communication

‟ communication is separated into three phases

1) initiate non-blocking communication

2) do some work (involving other communications, e. g.)

3) wait for non-blocking communication to complete

‟ non-blocking routines have identical arguments to blocking 
counterparts, except for an extra argument request

‟ request handle is important for testing if communication has been 
completed
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Programming with MPI

Non-blocking P2P communication (cont’d)

‟ sending a message (generic)

MPI_Isend (buf, count, data type, dest, tag, comm, request)

‟ receiving a message

MPI_Irecv (buf, count, data type, src, tag, comm, request)

‟ communication modes

„ synchronous send: MPI_Issend( arguments )

„ buffered send: MPI_Ibsend( arguments )

„ standard send: MPI_Isend( arguments )

„ ready send: MPI_Irsend( arguments )
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Programming with MPI

Non-blocking P2P communication (cont’d)

‟ testing communication for completion is essential before

„ making use of the transferred data

„ re-using the communication buffer

‟ tests for completion are available in two different types

„ wait: blocks until communication has been completed

MPI_Wait (request, status)

„ test: returns TRUE or FALSE depending whether or not 
communication has been completed; it does not block

MPI_Test (request, flag, status)

‟ what’s an  MPI_Isend() with an immediate  MPI_Wait()
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Programming with MPI

Non-blocking P2P communication (cont’d)

‟ example: communication in a ring

int rank, buf;

MPI_Request request;

MPI_Init (&argc, &argv);

MPI_Comm_rank (MPI_COMM_WORLD, &rank);

MPI_Irecv (&buf, 1, MPI_INT, rank-1, 0, MPI_COMM_WORLD,
&request);

MPI_Send (&rank, 1, MPI_INT, rank+1, 0, MPI_COMM_WORLD);

MPI_Wait (&request, MPI_STATUS_IGNORE);

MPI_Finalize ();
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Programming with MPI

Collective communication

‟ characteristics

„ all processes (within communicator) communicate

„ synchronisation may or may not occur

„ all collective operations are blocking operations (non-blocking as 
well as some new operations since MPI 2.2)

„ no tags allowed

„ all receive buffers must be exactly of the same size
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Programming with MPI

Collective communication (cont’d)

‟ barrier synchronisation

„ blocks calling process until all other processes have called barrier 
routine

„ hence, MPI_Barrier() always synchronises

MPI_Barrier (comm)

‟ broadcast

„ has a specified root process

„ every process receives one copy of the message from root

„ all processes must specify the same root

MPI_Bcast (buf, count, data type, root, comm)
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Programming with MPI

Collective communication (cont’d)

‟ gather and scatter

„ has a specified root process

„ all processes must specify the same root

„ send and receive details must be specified as arguments

MPI_Gather (sbuf, scount, data type send, rbuf, rcount,

data type recv, root, comm)

MPI_Scatter (sbuf, scount, data type send, rbuf, rcount,

data type recv, root, comm)

‟ variants

„ MPI_Allgather(): all processes collect data from all others

„ MPI_Alltoall(): total exchange
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Programming with MPI

Collective communication (cont’d)

‟ global reduction

„ has a specified root process

„ all processes must specify the same root

„ all processes must specify the same operation

„ reduction operations can be predefined or user-defined

„ root process ends up with an array of results

MPI_Reduce (sbuf, rbuf, count, data type, op, root, comm)

‟ variants (no specified root)

„ MPI_Allreduce(): all processes receive result

„ MPI_Reduce_Scatter(): resulting vector is distributed among all

„ MPI_Scan(): processes receive partial result ( parallel prefix)
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Programming with MPI

Collective communication (cont’d)

‟ possible reduction operations (1)

operator result

MPI_MAX find global maximum

MPI_MIN find global minimum

MPI_SUM calculate global sum

MPI_PROD calculate global product

MPI_LAND make logical AND

MPI_BAND make bitwise AND

MPI_LOR make logical OR
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Programming with MPI

Collective communication (cont’d)

‟ possible reduction operations (2)

operator result

MPI_BOR make bitwise OR

MPI_LXOR make logical XOR

MPI_BXOR make bitwise XOR

MPI_MINLOC find global minimum and its 
position

MPI_MAXLOC find global maximum and its 
position
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Programming with MPI

Example

‟ finding prime numbers with the “Sieve of ERATOSTHENES1”

„ given: set of (integer) numbers A ranging from 2 to N

„ algorithm

1) find minimum value aMIN of A  next prime number

2) delete all multiples of aMIN within A

3) continue with step 1) until aMIN 

4) hence, A contains only prime numbers

„ parallel approach

‟ distribute A among all processes ( data parallelism)

‟ find local minimum and compute global minimum

‟ delete all multiples of global minimum in parallel

 N

1 Greek mathematician, born 276 BC in Cyrene (in modern-day Lybia), died 194 BC in Alexandria
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Programming with MPI

Example (cont’d)

min  0

A[]  2  MAX

MPI_Init (&argc, &argv)

MPI_Comm_size (MPI_COMM_WORLD, &size);

divide A into size-1 parts Ai
while ( min <= sqrt(MAX) ) do

find local minimum mini from Ai
MPI_Allreduce (mini, min, MPI_MIN)

delete all multiples of min from Ai

od

MPI_Finalize();
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