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Overview

— message passing paradigm
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Message Passing Paradigm

Message passing

— very general principle, applicable to nearly all types of parallel
architectures (message-coupled and memory-coupled)

— standard programming paradigm for MesMS, i. e.
® message-coupled multiprocessors

e clusters of workstations (homogeneous architecture, dedicated use,
high-speed network (InfiniBand, e. g.))

e networks of workstations (heterogeneous architecture,
non-dedicated use, standard network (Ethernet, e. g.))

— several concrete programming environments

¢ machine-dependent: MPL (IBM), PSE (nCUBE), ...

e machine-independent: EXPRESS, P4, PARMACS, PVM, ...
— machine-independent standards: PVM, MPI
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Message Passing Paradigm
Underlying principle

— parallel program with P processes with different address space
— communication takes place via exchanging messages
e header: target ID, message information (type of data, ...)
e body: data to be provided
— exchanging messages via library functions that should be
e designed without dependencies of
— hardware
— programming language
e available for multiprocessors and standard monoprocessors
e available for standard languages such as C/C++ or Fortran
¢ linked to source code during compilation
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Message Passing Paradigm

User’s view

— library functions are the only interface to communication system

process
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Message Passing Paradigm

User’s view (cont’d)

— library functions are the only interface to communication system
— message exchange via send () and receive ()

process

oces
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Message Passing Paradigm

Types of communication

— point-to-point a. k. a. P2P (1:1-communication)
e two processes involved: sender and receiver
¢ way of sending interacts with execution of sub-program

— synchronous: send is provided information about completion of
message transfer, i. e. communication not complete until
message has been received (fax, e. g.)

— asynchronous: send only knows when message has left;
communication completes as soon as message is on its way
(postbox, e. g.)

— blocking: operations only finish when communication has
completed (fax, e. g.)

— non-blocking: operations return straight away and allow
program to continue; at some later point in time program can
test for completion (fax with memory, e. g.)
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Message Passing Paradigm

Types of communication (cont’d)

— collective (1:M-communication, M < P, P number of processes)
e all (some) processes involved
¢ types of collective communication

— barrier: synchronises processes (no data exchange), i. e. each
process is blocked until all have called barrier routine

— broadcast: one process sends same message to all (several)
destinations with a single operation

— scatter /gather. one process gives / takes data items
to / from all (several) processes

— reduce: one process takes data items from all (several)
processes and reduces them to a single data item; typical
reduce operations: sum, product, minimum / maximum, ...

9th SimLab Course on Parallel Numerical Simulation - October 4-8, 2010, Belgrade, Serbia



Technische Universitat Miinchen

Overview

— collective communication
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Collective Communication

Broadcast

— sends same message to all participating processes
— example: first process in competition informs others to stop
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Collective Communication

Scatter

— data from one process are distributed among all processes
— example: rows of a matrix for a parallel solution of SLE
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Collective Communication

Gather

— data from all processes are collected by a single process
— example: assembly of solution vector from parted solutions
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Collective Communication

Gather-to-all

— all processes collect distributed data from all others

— example: as before, but now all processes need global solution for
continuation
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Collective Communication

All-to-all

— data from all processes are distributed among all others
— example: any ideas?
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Collective Communication

All-to-all (cont’d)

— also referred to as total exchange

— example: transposition of matrix A (stored row-wise in memory)

e total exchange of blocks B;

e afterwards, each process computes transposition of its blocks
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Collective Communication

Reduce

— data from all processes are reduced to single data item(s)
— example: global minimum / maximum / sum / product / ...
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Collective Communication

All-reduce

— all processes are provided reduced data item(s)

— example: finding prime numbers with “Sieve of ERATOSTHENES” =»
processes need global minimum for deleting multiples of it
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Collective Communication

All-reduce

— all processes are provided reduced data item(s)

— example: finding prime numbers with “Sieve of ERATOSTHENES” =»
processes need global minimum for deleting multiples of it
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Collective Communication

Parallel prefix

— processes receive partial result of reduce operation
— example: matrix multiplication in quantum chemistry
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Overview

— programming with MPI
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Programming with MPI

Brief overview

— de facto standard for writing parallel programs
— both free available and vendor-supplied implementations
— supports most interconnects

— available for C / C++, Fortran 77, and Fortran 90
(C++ functionality deprecated in MPI 3.0)

— target platforms: SMPs, clusters, massively parallel processors
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Programming with MPI

Programming model

— sequential programming paradigm
e one processor (P)
e one memory (M)
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Programming with MPI

Programming model (cont’d)

— message-passing programming paradigm
e several processors / memories
® each processor runs one or more pProcesses
¢ all data are private
e communication between processes via messages

network
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Programming with MPI

Writing and running MPI programs

— header file to be included: mpi.h
— all names of routines and constants are prefixed with MPI_
— first routine called in any MPI program must be for initialisation

MPI Init (int *argc, char ***argv)

— clean-up at the end of program when all communications have been
completed

MPI Finalize (void)

— MPI Finalize () does not cancel outstanding communications
— MPI Init() and MPI_Finalize () are mandatory
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Programming with MPI

Writing and running MPI programs (cont’d)

— processes can only communicate if they share a communicator
e predefined / standard communicator MPI_COMM_WORLD
e contains list of processes
— consecutively numbered from 0 (referred to as rank)
— “rank” identifies each process within communicator
— “size” identifies amount of all processes within communicator
e why creating a new communicator
— restrict collective communication to subset of processes
— creating a virtual topology (torus, e. g.)

9th SimLab Course on Parallel Numerical Simulation - October 4-8, 2010, Belgrade, Serbia 26



Technische Universitat Miinchen

Programming with MPI
Writing and running MPI programs (cont’d)
— determination of rank

MPI Comm rank (communicator comm, int &rank)

— determination of size

MPI Comm size (communicator comm, int &size)

— remarks
e rank e [0, size—1]
¢ size has to be specified at program start
— MPI-1: size cannot be changed during runtime
— MPI-2: spawning of processes during runtime possible
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Programming with MPI

Writing and running MPI programs (cont’d)
— compilation of MPI programs: mpicc, mpicxx, mpif77, or mpif90
$ mpicc [ -o my prog ] my prog.c

— available nodes for running an MPI program have to be stated explicitly
via so called machinefile (list of hosthames or FQDNSs)

— running an MPI program under MPI-1

$ mpirun -machinefile <file> -np <i#iprocs> my prog

— running an MPI program under MPI-2 (mpd is only started once)

$ mpdboot -n <#mpds> -f <file>
$ mpiexec -n <#procs> my prog

— clean-up after usage (MPI-2 only): mpdcleanup —f <file>
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Programming with MPI

Writing and running MPI programs (cont’d)

— example

int main (int argc, char **argv) {
int rank, size;

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);
MPI Comm size (MPI_COMM WORLD, &size);

if (rank == 0) printf (“%d processes alive\n”, size);
else printf (“Slave %d: Hello world'\n”, rank);

MPI Finalize ();
return 0;
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Programming with MPI

Messages

— information that has to be provided for the message transfer

rank of process sending the message

memory location (send buffer) of data to be transmitted
type of data to be transmitted

amount of data to be transmitted

rank of process receiving the message

memory location (receive buffer) for data to be stored
amount of data the receiving process is prepared to accept

— in general, message is a (consecutive) array of elements of a particular
MPI data type

— data type must be specified both for sender and receiver =
no type conversion on heterogeneous parallel architectures
(big-endian vs. little-endian, e. g.)
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Programming with MPI

Messages (cont’d)

— MPI data types (1)
¢ basic types (see tabular)

e derived types built up from basic types (vector, €. g.)

MPI data type C / C++ data type
MPI_CHAR signed char
MPI_SHORT signed short int
MPL_INT signed int
MPI_LONG signed long int

MPI_UNSIGNED_CHAR

unsigned char

MPI_UNSIGNED_SHORT

unsigned short int
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Programming with MPI

Messages (cont’d)

— MPI data types (2)

MPI data type C / C++ data type
MPI_UNSIGNED unsigned int
MPI_UNSIGNED LONG unsigned long int
MPI_FLOAT float
MPI_DOUBLE double
MPI_LONG_DOUBLE long double
MPI_BYTE represents eight binary digits
MPI_PACKED for matching any other type
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Programming with MPI

Point-to-point communication (P2P)

— different communication modes

synchronous send: completes when receive has been started

buffered send: always completes (even if receive has not been
started); conforms to an asynchronous send

standard send: either buffered or unbuffered
ready send: always completes (even if receive has not been started)
receive: completes when a message has arrived

— all modes exist in both blocking and non-blocking form

blocking: return from routine implies completion of message passing
stage

non-blocking: modes have to be tested (manually) for completion of
message passing stage
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Programming with MPI

Blocking P2P communication

— neither sender nor receiver are able to continue the program execution
during the message passing stage

— sending a message (generic)

MPI Send (buf, count, data type, dest, tag, comm)

— receiving a message

MPI Recv (buf, count, data type, src, tag, comm, status)

— tag: marker to distinguish between different sorts of messages (. e.
communication context)

— Status: sender and tag can be queried for received messages (in case of
wildcard usage)
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Programming with MPI

Blocking P2P communication (cont’d)

— synchronous send: MPI_Ssend( arguments )

start of data reception finishes send routine, hence, sending process
is idle until receiving process catches up

e non-local operation: successful completion depends on the

occurrence of a matching receive

— buffered send: MPI_Bsend( arguments )

message is copied to send buffer for later transmission

user must attach buffer space first (MPI_Buffer Attach()); Size
should be at least the sum of all outstanding sends

only one buffer can be attached per process at a time

buffered send guarantees to complete immediately
=>» local operation: independent from occurrence of matching receive

non-blocking version has no advantage over blocking version
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Programming with MPI

Blocking P2P communication (cont’d)

— standard send: MPI_Send( arguments )
e MPI decides (depending on message size, e. g.) to send
— buffered. completes immediately
— unbuffered: completes when matching receive has been posted
e completion might depend on occurrence of matching receive
— ready send: MPI_Rsend( arguments )
e completes immediately

e matching receive must have already been posted, otherwise
outcome is undefined

e performance may be improved by avoiding handshaking and
buffering between sender and receiver

e non-blocking version has no advantage over blocking version
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Programming with MPI

Blocking P2P communication (cont’d)

— receive: MPI_Recv( arguments )
e completes when message has arrived
¢ usage of wildcards possible
— MPI_ANY_SOURCE: receive from arbitrary source
— MPI_ANY_TAG: receive with arbitrary tag
— MPI_STATUS_IGNORE: don’t care about state

— general rule: messages from one sender (to one receiver) do not
overtake each other, message from different senders (to one receiver)
might arrive in different order than being sent
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Programming with MPI

Blocking P2P communication (cont’d)
— example: a simple ping-pong
int rank, buf;

MPI Comm rank (MPI_ COMM WORLD, &rank);

if (rank == 0) {
MPI Send (&rank, 1, MPI INT, 1, O, MPI_COMM WORLD) ;

MPI Recv (&buf, 1, MPI_INT, 1, 0, MPI COMM WORLD,
MPI STATUS IGNORE)

} else {

MPI Recv (&buf, 1, MPI INT, O, O, MPI_ COMM WORLD,
MPI STATUS IGNORE)

MPI Send (&rank, 1, MPI INT, O, O, MPI_COMM WORLD) ;
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Programming with MPI

Blocking P2P communication (cont’d)

— example: communication in a ring — does this work?

int rank, buf;

MPI Init (&argc, &argv);
MPI Comm rank (MPI_COMM WORLD, &rank);

MPI Recv (sbuf, 1, MPI INT, rank-1, 0, MPI_ COMM WORLD,
MPI_STATUS IGNORE) ;

MPI Send (&rank, 1, MPI_INT, rank+l, O, MPI_COMM WORLD) ;

MPI Finalize();
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Programming with MPI

Non-blocking P2P communication

problem: blocking communication does not return until communication
has been completed =» risk of idly waiting and / or deadlocks

hence, usage of non-blocking communication

communication is separated into three phases
1) initiate non-blocking communication
2) do some work (involving other communications, e. g.)
3) wait for non-blocking communication to complete

non-blocking routines have identical arguments to blocking
counterparts, except for an extra argument request

request handle is important for testing if communication has been
completed
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Programming with MPI

Non-blocking P2P communication (cont’d)

— sending a message (generic)

MPI Isend (buf, count, data type, dest, tag, comm, request)

— receiving a message

MPI Irecv (buf, count, data type, src, tag, comm, request)

— communication modes
® synchronous send: MPI_Issend( arguments )
* buffered send: MPI_Ibsend( arguments )
¢ standard send: MPI_Isend( arguments )
* ready send: MPI_Irsend( arguments )
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Programming with MPI

Non-blocking P2P communication (cont’d)

— testing communication for completion is essential before
¢ making use of the transferred data
¢ re-using the communication buffer

— tests for completion are available in two different types
e wait: blocks until communication has been completed

MPI Wait (request, status)

e test: returns TRUE or FALSE depending whether or not
communication has been completed; it does not block

MPI Test (request, flag, status)

— what’s an MPI_Isend() with an immediate MPI_Wait ()
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Programming with MPI

Non-blocking P2P communication (cont’d)

— example: communication in a ring

int rank, buf;
MPI Request request;

MPI Init (&argc, é&argv);
MPI Comm rank (MPI_COMM WORLD, &rank);

MPI Irecv (&buf, 1, MPI_INT, rank-1, 0, MPI COMM WORLD,
&request) ;

MPI Send (&rank, 1, MPI INT, rank+l, 0, MPI COMM WORLD) ;
MPI Wait (&request, MPI_ STATUS IGNORE) ;

MPI Finalize ();
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Programming with MPI

Collective communication

— characteristics
e all processes (within communicator) communicate
¢ synchronisation may or may not occur

¢ all collective operations are blocking operations (non-blocking as
well as some new operations since MPI 2.2)

¢ no tags allowed
¢ all receive buffers must be exactly of the same size
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Programming with MPI

Collective communication (cont’d)

— barrier synchronisation

¢ blocks calling process until all other processes have called barrier
routine

®* hence, MPI_Barrier () always synchronises

MPI Barrier (comm)

— broadcast
¢ has a specified root process
® every process receives one copy of the message from root
¢ all processes must specify the same root

MPI Bcast (buf, count, data type, root, comm)
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Programming with MPI

Collective communication (cont’d)

— gather and scatter
¢ has a specified root process
¢ all processes must specify the same root
¢ send and receive details must be specified as arguments

MPI Gather (sbuf, scount, data type send, rbuf, rcount,
data type recv, root, comm)

MPI Scatter (sbuf, scount, data type send, rbuf, rcount,
data type recv, root, comm)

— variants
* MPI Allgather (): all processes collect data from all others
* MPI Alltoall(): total exchange
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Programming with MPI

Collective communication (cont’d)

— global reduction
¢ has a specified root process
¢ all processes must specify the same root
¢ all processes must specify the same operation
¢ reduction operations can be predefined or user-defined
e root process ends up with an array of results

MPI Reduce (sbuf, rbuf, count, data type, op, root, comm)

— variants (no specified root)
® MPI Allreduce (): all processes receive result
* MPI_ Reduce Scatter (): resulting vector is distributed among all
® MPI Scan(): processes receive partial result (=» parallel prefix)

9th SimLab Course on Parallel Numerical Simulation - October 4-8, 2010, Belgrade, Serbia 47



Technische Universitat Miinchen

Programming with MPI

Collective communication (cont’d)

— possible reduction operations (1)

operator result
MPI_MAX find global maximum
MPI_MIN find global minimum
MPI_SUM calculate global sum
MPI_PROD calculate global product
MPI_LAND make logical AND
MPI_BAND make bitwise AND
MPI_LOR make logical OR
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Programming with MPI

Collective communication (cont’d)

— possible reduction operations (2)

operator result

MPI_BOR make bitwise OR

MPI_LXOR make logical XOR

MPI_BXOR make bitwise XOR

MPI_MINLOC find global minimum and its
position

MPI_MAXLOC find global maximum and its
position
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Programming with MPI
Example

— finding prime numbers with the “Sieve of ERATOSTHENES'”

e given: set of (integer) numbers A ranging from 2 to N

e algorithm
1) find minimum value a,, of A =» next prime number
2) delete all multiples of a, within A
3) continue with step 1) until ayy > [N |
4) hence, A contains only prime numbers

e parallel approach
— distribute A among all processes (= data parallelism)
— find local minimum and compute global minimum
— delete all multiples of global minimum in parallel

1 Greek mathematician, born 276 BC in Cyrene (in modern-day Lybia), died 194 BC in Alexandria
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Programming with MPI

Example (cont’d)

min < O
A[] « 2 ... MAX

MPI Init (&argc, &argv)
MPI_ Comm size (MPI_COMM WORLD, &size);

divide A into size-1 parts A;
while ( min <= sqrt(MAX) ) do

find local minimum min; from A;
MPI Allreduce (min;, min, MPI MIN)
delete all multiples of min from A;

od

MPI Finalize();
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