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1  M t i M t i  d M t i V t  O ti1. Matrix-Matrix and Matrix-Vector Operations

underlying basis for many scientific problems is a matrix

stored as 2 dimensional array of numbers (integer  float  double)stored as 2-dimensional array of numbers (integer, float, double)

row-wise in memory (typical case)

column-wise in memory

typical matrix operations (K: set of numbers)yp p ( )

1) A + B = C with A, B, and C KN×M

2) A b = c with A KN×M, b KM, and c KN

3) A B = C with A KN×M, B KM×L, and C KN×L

matrix-vector multiplication (2) and matrix multiplication (3) are main 

building blocks of numerical algorithms

both pretty easy to implement as sequential code

h t h  i  ll l?what happens in parallel?
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1 1 M t i V t  M lti li ti1.1 Matrix-Vector Multiplication

Appearances

systems of linear equations (SLE) A x = bsystems of linear equations (SLE) A x = b

iterative methods for solving SLEs (conjugate gradient, e. g.)

implementation of neural networks (determination of output values, training 
neural networks)

standard sequential algorithm for A KN×N and b, c KN

for i ← 1 to N do

c[i] ← 0;

for j ← 1 to N do

c[i] ← c[i] + A[i][j]*b[j];

odod

od

for full matrix A this algorithm has a complexity of Ο(N2)for full matrix A this algorithm has a complexity of Ο(N )
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1 1 M t i V t  M lti li ti1.1 Matrix-Vector Multiplication

in parallel, there are three main options to distribute data among P procs

row wise block striped decomposition: each process is responsible for a row-wise block-striped decomposition: each process is responsible for a 
contiguous part of about N/P rows of A

column-wise block-striped decomposition: each process is responsible for a 
contiguous part of about N/P columns of A

checkerboard block decomposition: each process is responsible for a 
contiguous block of matrix elements

vector b may be either replicated or block-decomposed itself
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1 1 M t i V t  M lti li ti1.1 Matrix-Vector Multiplication

row-wise block-striped decomposition

probably the most straightforward approachprobably the most straightforward approach

each process gets some rows of A and entire vector b

each process computes some components of vector c

build and replicate entire vector c (gather-to-all, e. g.)p (g , g )

complexity of Ο(N2/P) multiplications / additions for P processes
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1 1 M t i V t  M lti li ti1.1 Matrix-Vector Multiplication

column-wise block-striped decomposition

less straightforward approachless straightforward approach

each process gets some columns of A and respective elements of vector b

each process computes partial results of vector c

build and replicate entire vector c (all-reduce or maybe a reduce-scatter if p ( y
processes do not need entire vector c)

complexity is comparable to row-wise approach
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1 1 M t i V t  M lti li ti1.1 Matrix-Vector Multiplication

checkerboard block decomposition

each process gets some block of elements of A and respective elements of each process gets some block of elements of A and respective elements of 
vector b

each process computes some partial results of vector c

build and replicate entire vector c (all-reduce, but “unused” elements of vector 
c have to be initialised with zero)

complexity of the same order as before; it can be shown that checkerboard 
approach has slightly better scalability properties (increasing P does not 
require to increase N, too)q )
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1 2 M t i M t i  M lti li ti1.2 Matrix-Matrix Multiplication

appearances

computational chemistry (computing changes of state  e  g )computational chemistry (computing changes of state, e. g.)

signal processing (DFT, e. g.)

standard sequential algorithm for A, B, C KN×N

for i ← 1 to N do

for j ← 1 to N do

C[i][j] ← 0

for k ← 1 to N do

C[i][j] ← C[i][j] + A[i][k]*B[k][j];

od

od

od

for full matrices A and B this algorithm has a complexity of Ο(N3)
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1 2 M t i M t i  M lti li ti1.2 Matrix-Matrix Multiplication

naïve parallelisation

each process gets some rows of A and entire matrix Beach process gets some rows of A and entire matrix B

each process computes some rows of C

problem: once N reaches a certain size  matrix B won’t fit completely into cache problem: once N reaches a certain size, matrix B won t fit completely into cache 
and / or memory performance will dramatically decrease

remedy: subdivision of matrix B instead of whole matrix B
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1 2 M t i M t i  M lti li ti1.2 Matrix-Matrix Multiplication

recursive algorithm

algorithm follows the divide and conquer principlealgorithm follows the divide-and-conquer principle

subdivide both matrices A and B into four smaller submatrices

hence, the matrix multiplication can be computed as follows

if blocks are still too large for the cache, repeat this step (i. e. recursively 
subdivide) until it fitssubdivide) until it fits

furthermore, this method has significant potential for parallelisation (especially 
for MemMS)
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1 2 M t i M t i  M lti li ti1.2 Matrix-Matrix Multiplication

CANNON’s algorithm

each process gets some rows of A and some columns of Beach process gets some rows of A and some columns of B

each process computes some components of matrix C

different possibilities for assembling the result

gather all data, build and (maybe) replicate matrix Cg , ( y ) p

“pump” data onward to next process (-> systolic array)

complexity of Ο(N3/P) multiplications / additions for P processes
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2  Th  P i  ti  ith Di i hl t b d  2. The Poisson equation with Dirichlet boundary 
conditions

occurrences: a fitted membrane  the stationary heat equation  occurrences: a fitted membrane, the stationary heat equation, ...

an elliptic partial differential equation (PDE) with Dirichlet boundary 
conditions on a given domain Ωco d o s o a g e do a

The Poisson equation Δu = f on the unit square Ω =]0, 1[² with u given on 
Ω’s boundary y

),(
²

),(²
²

),(²),( yxf
y

yxu
x

yxuyxu =+=Δ
δ

δ
δ

δ
Ω∈),( yx

Ω∂∈)( yx)()( yxgyxu

find the function u(x, y) (or an approximation to it)
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2 1  Di ti ti i  fi it  diff2.1. Discretization using finite differences

discretisation of the PDE to retrieve its solution discretisation of the PDE to retrieve its solution 

again a simple example: the finite difference discretisation for mesh width h 

)´()()( 0 xf
h

xfhxf h⎯⎯ →⎯
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2 2  Di ti ti  f th  P i  ti2.2. Discretization of the Poisson equation

In our simple example the finite difference discretisation for mesh width h:In our simple example the finite difference discretisation for mesh width h:
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introduction of an equidistant grid of (N + 1)² grid points 
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resulting discrete equation in the interior: five-point difference star 
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resulting equation on the boundary
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2 3  R lti  t  f li  ti2.3. Resulting system of linear equations

for each inner point one linear equation in the unknowns jiufor each inner point one linear equation in the unknowns 

equations in points next to the boundary

access the boundary values 

ji ,

}1,1{},1,1{ −∈−∈ NjNi
access the boundary values 

shift these to the right-hand side of the equation

hence, all unknowns are located to the left of the ‘=’ sign, all known quantities 
to its right 

assemble the overall vector of unknowns by lexicographic row-wise 
ordering
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2 4  R lti  t i  t t2.4. Resulting matrix structure

this results in a system Ax = b of (N − 1)² linear equations in (N − 1)² this results in a system Ax = b of (N  1)  linear equations in (N  1)  
unknowns

matrix A is block-tridiagonal with identity or tridiagonal blocks I or T, resp.
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2.5. Direct solving large sparse systems of linear 
equations

the standard textbook method is Gaussian elimination the standard textbook method is Gaussian elimination 

this is a so-called direct solver which provides the exact solution of the 
system (apart from round-off errors) sys e (apa o ou d o e o s)

drawbacks of Gaussian elimination: 

for M unknowns O(M³) arithmetic operations are needed(not acceptable for M unknowns O(M ) arithmetic operations are needed(not acceptable 
for really large M as they are standard in modern simulation problems) 

no exploitation of the sparsity of the matrix by the algorithm: 

existing zeroes are “destroyed” (turned into non-zeroes), g y ( )

=>more computational work and more storage requirements 
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2.6. Iterative solving large sparse systems of linear 
equations

use iterative methods instead use iterative methods instead 

Approaching exact solution and approximate it, but typically don’t reach it

costs of O(M) operations for one step of iteration

typically much less than O(M²) steps needed (the gain) typically much less than O(M ) steps needed (the gain) 

ideal case(multigrid or multilevel methods): only O(1) steps needed 

basic (and not that sophisticated) methods (number of steps still 
depending on M): p g )

relaxation methods: Jacobi, Gauß-Seidel, SOR (Successive Over-
Relaxation)

minimization methods: steepest descent, conjugate gradients 
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3 1  Th  J bi it ti3.1. The Jacobi iteration

decompose in its diagonal part      , its upper triangular 
part      and its lower triangular part 

AD
LU

AAA UDLA ++=
part      and its lower triangular part 

starting point: 

ALAU

xULxDAxb AAA )( ++==

writing                                         with      denoting the approximation to x
after it steps of the iteration leads to the following iterative scheme: 

it
AA

it
A xULxDb )(1 ++= + itx

residual is defined as

a more explicit algorithmic form: 

it
A

it
A

it
AAA

it rDxbDxULDx 1111 )(: −−−+ +=++−=

itit Axbr −=
a more explicit algorithmic form: 

( )∑+ = itit xabx 1 1
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3 2  Th  J bi it ti  f  th  P i  ti3.2. The Jacobi iteration for the Poisson equation

for our special A resulting from the finite difference discretization of the 
Poisson equation follows (pay attention to the indices!): Poisson equation follows (pay attention to the indices!): 
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remember: boundary values are fixed 
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4 1  Th  G ß S id l it ti4.1. The Gauß-Seidel iteration

take the same decomposition AAA UDLA ++=

new starting point:                                            Writing 

leads to the following iterative scheme: 

xUxLDAxb AAA ++== )( it
A

it
AA xUxLDb ++= +1)(

in a more explicit algorithmic form: 

it
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it
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4 2  Th  G ß S id l it ti  f  th  P i  4.2. The Gauß-Seidel iteration for the Poisson 
equation

for our special A resulting from the finite difference discretization of the 
Poisson equation follows (pay attention to the indices!): Poisson equation follows (pay attention to the indices!): 
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remember: again boundary values are fixed 

4

no general superiority of Gauß-Seidel to Jacobi; in our case discussed 
here, however, Gauß-Seidel is twice as fast as Jacobi 
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5  P ll li i  J bi5. Parallelizing Jacobi
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5 1  P ll li i  J bi5.1. Parallelizing Jacobi

neither Jacobi nor Gauß-Seidel are used today any more – they are too slow; 
h l  h  l i h i    ill f i  nevertheless, the algorithmic aspects are still of interest 

a parallel Jacobi algorithm is quite straightforward: 

in the current iteration step, only values from the previous step are used 

hence, all updates of one iteration step can be made in parallel (if that many 
processors are available) 

more realistic scenario: subdivide the domain into strips or squares for example more realistic scenario: subdivide the domain into strips or squares for example 
(what is better with respect to a good communication-computation ratio?) 
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5 2  P ll li i  J bi ( t´d)5.2. Parallelizing Jacobi (cont d)

each processor needs for its calculations:

if adjacent to the boundary: a subset of the boundary values 

one row or one column of values from the processors dealing 

with the neighboring subdomains

some hint when to stopsome hint when to stop

the above considerations lead to the following algorithm each processor 
has to execute:has to execute:

1. update all local approximate values        to

2. send all updates in points next to interior boundaries to the respective 
processors 

it
jiu ,

1
,
+it
jiu

3. receive all necessary updates from the “neighboring” processors 

4. compute the local residual values and provide them via a reduce operation 

5. receive the overall residual as the reduce operation’s result and go back to 1. if 
this value is larger than some given threshold this value is larger than some given threshold 
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6  P ll li i  G ß S id l6. Parallelizing Gauß-Seidel
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6 1  P ll li i  G ß S id l b  f t d i6.1. Parallelizing Gauß-Seidel by wavefront ordering

at first glance, there seems to be an enforced sequential order, since the 
updated values are immediately used where availableupdated values are immediately used where available

remedy: change the order of visiting and updating the grid points

first possibility: wavefront ordering

diagonal order of updating

all values along a diagonal line can be updated in parallel all values along a diagonal line can be updated in parallel 

the single diagonal lines have to be processed sequentially, however

27



Technische Universität München

6.2. Parallelizing Gauß-Seidel by wavefront ordering 
(cont´d)

problem: suppose we have P = N - 1 processors; then there are P² overall problem: suppose we have P = N 1 processors; then there are P  overall 
updates that can be organized in 2P - 1 sequential steps (diagonals), which 
restricts the speed-up to roughly P/2

better: use P = (N − 1)/k processors only; then we get k sequential strips of 
kP² updates and kP + P − 1 sequential internal steps; now, the speed-up is 
given by k · kP²/(k(kP + P − 1)), which is roughly kP/(k + 1)
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6 3  P ll li i  G ß S id l b  h k b d 6.3. Parallelizing Gauß-Seidel by checkerboard 
ordering

second possibility: red-black or checkerboard orderingsecond possibility: red black or checkerboard ordering

give the grid points a checkerboard coloring of red and black

order of visiting and updating: first lexicographically the red ones, then 
lexicographically the black ones 

no dependences within the red set nor within the black set 

subdivide the grid such that each processor has some red and some black 
points (roughly the same number) 

the result: two necessarily sequential steps (red and black) but perfect the result: two necessarily sequential steps (red and black),but perfect 
parallelism within each of them 
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Thank you for your attention!


