
Technische Universität München

9th SimLab Short Course on 9th SimLab Short Course on

Parallel Numerical Simulation
Belgrade, October 3 to 9, 2010

Examples of Parallel Algorithms

October 5, 2010

Vasco Varduhn

Chair for Computation in Engineering
Technische Universität München, Germany

International Graduate School of Science and Engineering (IGSSE)g g ()

Technische Universität München

1 M t i M t i d M t i V t O ti1. Matrix-Matrix and Matrix-Vector Operations

underlying basis for many scientific problems is a matrix

stored as 2 dimensional array of numbers (integer float double)stored as 2-dimensional array of numbers (integer, float, double)

row-wise in memory (typical case)

column-wise in memory

typical matrix operations (K: set of numbers)yp p ()

1) A + B = C with A, B, and C KN×M

2) A b = c with A KN×M, b KM, and c KN

3) A B = C with A KN×M, B KM×L, and C KN×L

matrix-vector multiplication (2) and matrix multiplication (3) are main

building blocks of numerical algorithms

both pretty easy to implement as sequential code

h t h i ll l?what happens in parallel?

2

Technische Universität München

1 1 M t i V t M lti li ti1.1 Matrix-Vector Multiplication

Appearances

systems of linear equations (SLE) A x = bsystems of linear equations (SLE) A x = b

iterative methods for solving SLEs (conjugate gradient, e. g.)

implementation of neural networks (determination of output values, training
neural networks)

standard sequential algorithm for A KN×N and b, c KN

for i ← 1 to N do

c[i] ← 0;

for j ← 1 to N do

c[i] ← c[i] + A[i][j]*b[j];

odod

od

for full matrix A this algorithm has a complexity of Ο(N2)for full matrix A this algorithm has a complexity of Ο(N)

3

Technische Universität München

1 1 M t i V t M lti li ti1.1 Matrix-Vector Multiplication

in parallel, there are three main options to distribute data among P procs

row wise block striped decomposition: each process is responsible for a row-wise block-striped decomposition: each process is responsible for a
contiguous part of about N/P rows of A

column-wise block-striped decomposition: each process is responsible for a
contiguous part of about N/P columns of A

checkerboard block decomposition: each process is responsible for a
contiguous block of matrix elements

vector b may be either replicated or block-decomposed itself

4

Technische Universität München

1 1 M t i V t M lti li ti1.1 Matrix-Vector Multiplication

row-wise block-striped decomposition

probably the most straightforward approachprobably the most straightforward approach

each process gets some rows of A and entire vector b

each process computes some components of vector c

build and replicate entire vector c (gather-to-all, e. g.)p (g , g)

complexity of Ο(N2/P) multiplications / additions for P processes

5

Technische Universität München

1 1 M t i V t M lti li ti1.1 Matrix-Vector Multiplication

column-wise block-striped decomposition

less straightforward approachless straightforward approach

each process gets some columns of A and respective elements of vector b

each process computes partial results of vector c

build and replicate entire vector c (all-reduce or maybe a reduce-scatter if p (y
processes do not need entire vector c)

complexity is comparable to row-wise approach

6

Technische Universität München

1 1 M t i V t M lti li ti1.1 Matrix-Vector Multiplication

checkerboard block decomposition

each process gets some block of elements of A and respective elements of each process gets some block of elements of A and respective elements of
vector b

each process computes some partial results of vector c

build and replicate entire vector c (all-reduce, but “unused” elements of vector
c have to be initialised with zero)

complexity of the same order as before; it can be shown that checkerboard
approach has slightly better scalability properties (increasing P does not
require to increase N, too)q)

7

Technische Universität München

1 2 M t i M t i M lti li ti1.2 Matrix-Matrix Multiplication

appearances

computational chemistry (computing changes of state e g)computational chemistry (computing changes of state, e. g.)

signal processing (DFT, e. g.)

standard sequential algorithm for A, B, C KN×N

for i ← 1 to N do

for j ← 1 to N do

C[i][j] ← 0

for k ← 1 to N do

C[i][j] ← C[i][j] + A[i][k]*B[k][j];

od

od

od

for full matrices A and B this algorithm has a complexity of Ο(N3)

8

Technische Universität München

1 2 M t i M t i M lti li ti1.2 Matrix-Matrix Multiplication

naïve parallelisation

each process gets some rows of A and entire matrix Beach process gets some rows of A and entire matrix B

each process computes some rows of C

problem: once N reaches a certain size matrix B won’t fit completely into cache problem: once N reaches a certain size, matrix B won t fit completely into cache
and / or memory performance will dramatically decrease

remedy: subdivision of matrix B instead of whole matrix B

9

Technische Universität München

1 2 M t i M t i M lti li ti1.2 Matrix-Matrix Multiplication

recursive algorithm

algorithm follows the divide and conquer principlealgorithm follows the divide-and-conquer principle

subdivide both matrices A and B into four smaller submatrices

hence, the matrix multiplication can be computed as follows

if blocks are still too large for the cache, repeat this step (i. e. recursively
subdivide) until it fitssubdivide) until it fits

furthermore, this method has significant potential for parallelisation (especially
for MemMS)

10

Technische Universität München

1 2 M t i M t i M lti li ti1.2 Matrix-Matrix Multiplication

CANNON’s algorithm

each process gets some rows of A and some columns of Beach process gets some rows of A and some columns of B

each process computes some components of matrix C

different possibilities for assembling the result

gather all data, build and (maybe) replicate matrix Cg , (y) p

“pump” data onward to next process (-> systolic array)

complexity of Ο(N3/P) multiplications / additions for P processes

11

Technische Universität München

2 Th P i ti ith Di i hl t b d 2. The Poisson equation with Dirichlet boundary
conditions

occurrences: a fitted membrane the stationary heat equation occurrences: a fitted membrane, the stationary heat equation, ...

an elliptic partial differential equation (PDE) with Dirichlet boundary
conditions on a given domain Ωco d o s o a g e do a

The Poisson equation Δu = f on the unit square Ω =]0, 1[² with u given on
Ω’s boundary y

),(
²

),(²
²

),(²),(yxf
y

yxu
x

yxuyxu =+=Δ
δ

δ
δ

δ
Ω∈),(yx

Ω∂∈)(yx)()(yxgyxu

find the function u(x, y) (or an approximation to it)

Ω∂∈),(yx),(),(yxgyxu =

12

Technische Universität München

2 1 Di ti ti i fi it diff2.1. Discretization using finite differences

discretisation of the PDE to retrieve its solution discretisation of the PDE to retrieve its solution

again a simple example: the finite difference discretisation for mesh width h

)´()()(0 xf
h

xfhxf h⎯⎯ →⎯
−+ →)´()()(0 xf

h
hxfxf h⎯⎯ →⎯

−− →

h h

13

x x+h

Technische Universität München

2 2 Di ti ti f th P i ti2.2. Discretization of the Poisson equation

In our simple example the finite difference discretisation for mesh width h:In our simple example the finite difference discretisation for mesh width h:

²
),(),(2),(

²
),(²

h
yhxuyxuyhxu

x
yxu ++−−

≈
δ

δ

)()(2)()(² hyxuyxuhyxuyxu ++−−δ

introduction of an equidistant grid of (N + 1)² grid points

²
),(),(2),(

²
),(

h
hyxuyxuhyxu

y
yxu ++

≈
δ

δ

)(jhih Ni 0 1

resulting discrete equation in the interior: five-point difference star

fh²4 N0

),(, jhihuu ji ≈ Ni ,..,0= Nj ,..,0=
h

N 1
=

resulting equation on the boundary

jijijijijiji fhuuuuu ,1,,1,,11, ²4 =++−+ ++−− Nji << ,0

)(jhih NjjNii 00

14

),(, jhihgu ji = NjjNii =∨=∨=∨= 00

Technische Universität München

2 3 R lti t f li ti2.3. Resulting system of linear equations

for each inner point one linear equation in the unknowns jiufor each inner point one linear equation in the unknowns

equations in points next to the boundary

access the boundary values

ji ,

}1,1{},1,1{ −∈−∈ NjNi
access the boundary values

shift these to the right-hand side of the equation

hence, all unknowns are located to the left of the ‘=’ sign, all known quantities
to its right

assemble the overall vector of unknowns by lexicographic row-wise
ordering

15

Technische Universität München

2 4 R lti t i t t2.4. Resulting matrix structure

this results in a system Ax = b of (N − 1)² linear equations in (N − 1)² this results in a system Ax = b of (N 1) linear equations in (N 1)
unknowns

matrix A is block-tridiagonal with identity or tridiagonal blocks I or T, resp.

16

Technische Universität München

2.5. Direct solving large sparse systems of linear
equations

the standard textbook method is Gaussian elimination the standard textbook method is Gaussian elimination

this is a so-called direct solver which provides the exact solution of the
system (apart from round-off errors) sys e (apa o ou d o e o s)

drawbacks of Gaussian elimination:

for M unknowns O(M³) arithmetic operations are needed(not acceptable for M unknowns O(M) arithmetic operations are needed(not acceptable
for really large M as they are standard in modern simulation problems)

no exploitation of the sparsity of the matrix by the algorithm:

existing zeroes are “destroyed” (turned into non-zeroes), g y ()

=>more computational work and more storage requirements

17

Technische Universität München

2.6. Iterative solving large sparse systems of linear
equations

use iterative methods instead use iterative methods instead

Approaching exact solution and approximate it, but typically don’t reach it

costs of O(M) operations for one step of iteration

typically much less than O(M²) steps needed (the gain) typically much less than O(M) steps needed (the gain)

ideal case(multigrid or multilevel methods): only O(1) steps needed

basic (and not that sophisticated) methods (number of steps still
depending on M): p g)

relaxation methods: Jacobi, Gauß-Seidel, SOR (Successive Over-
Relaxation)

minimization methods: steepest descent, conjugate gradients

18

Technische Universität München

3 1 Th J bi it ti3.1. The Jacobi iteration

decompose in its diagonal part , its upper triangular
part and its lower triangular part

AD
LU

AAA UDLA ++=
part and its lower triangular part

starting point:

ALAU

xULxDAxb AAA)(++==

writing with denoting the approximation to x
after it steps of the iteration leads to the following iterative scheme:

it
AA

it
A xULxDb)(1 ++= + itx

residual is defined as

a more explicit algorithmic form:

it
A

it
A

it
AAA

it rDxbDxULDx 1111)(: −−−+ +=++−=

itit Axbr −=
a more explicit algorithmic form:

()∑+ = itit xabx 1 1

19

()∑ ≠
−=

kj jjkk
kk

k xab
a

x ,
,

Technische Universität München

3 2 Th J bi it ti f th P i ti3.2. The Jacobi iteration for the Poisson equation

for our special A resulting from the finite difference discretization of the
Poisson equation follows (pay attention to the indices!): Poisson equation follows (pay attention to the indices!):

()ji
it

ji
it

ji
it

ji
it

ji
it

ji fhuuuuu ,,11,,11,
1

, ²
4
1

−+++= ++−−
+

remember: boundary values are fixed

20

Technische Universität München

4 1 Th G ß S id l it ti4.1. The Gauß-Seidel iteration

take the same decomposition AAA UDLA ++=

new starting point: Writing

leads to the following iterative scheme:

xUxLDAxb AAA ++==)(it
A

it
AA xUxLDb ++= +1)(

in a more explicit algorithmic form:

it
AA

it
AA

it
AAA

it rLDxbLDxULDx 1111)()()(: −−−+ ++=+++−=

⎞⎛ Mk 1

⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
−−= ∑∑

+=

−

=

++
M

kj

it
jjk

k

j

it
jjkk

kk

it
k xaxab

a
x

1
,

1

1

1
,

,

1 1

21

Technische Universität München

4 2 Th G ß S id l it ti f th P i 4.2. The Gauß-Seidel iteration for the Poisson
equation

for our special A resulting from the finite difference discretization of the
Poisson equation follows (pay attention to the indices!): Poisson equation follows (pay attention to the indices!):

()ji
it

ji
it

ji
it

ji
it

ji
it

ji fhuuuuu ,,11,
1
,1

1
1,

1
, ²

4
1

−+++= ++
+

−
+
−

+

remember: again boundary values are fixed

4

no general superiority of Gauß-Seidel to Jacobi; in our case discussed
here, however, Gauß-Seidel is twice as fast as Jacobi

22

Technische Universität München

5 P ll li i J bi5. Parallelizing Jacobi

23

Technische Universität München

5 1 P ll li i J bi5.1. Parallelizing Jacobi

neither Jacobi nor Gauß-Seidel are used today any more – they are too slow;
h l h l i h i ill f i nevertheless, the algorithmic aspects are still of interest

a parallel Jacobi algorithm is quite straightforward:

in the current iteration step, only values from the previous step are used

hence, all updates of one iteration step can be made in parallel (if that many
processors are available)

more realistic scenario: subdivide the domain into strips or squares for example more realistic scenario: subdivide the domain into strips or squares for example
(what is better with respect to a good communication-computation ratio?)

24

Technische Universität München

5 2 P ll li i J bi (t´d)5.2. Parallelizing Jacobi (cont d)

each processor needs for its calculations:

if adjacent to the boundary: a subset of the boundary values

one row or one column of values from the processors dealing

with the neighboring subdomains

some hint when to stopsome hint when to stop

the above considerations lead to the following algorithm each processor
has to execute:has to execute:

1. update all local approximate values to

2. send all updates in points next to interior boundaries to the respective
processors

it
jiu ,

1
,
+it
jiu

3. receive all necessary updates from the “neighboring” processors

4. compute the local residual values and provide them via a reduce operation

5. receive the overall residual as the reduce operation’s result and go back to 1. if
this value is larger than some given threshold this value is larger than some given threshold

25

Technische Universität München

6 P ll li i G ß S id l6. Parallelizing Gauß-Seidel

26

Technische Universität München

6 1 P ll li i G ß S id l b f t d i6.1. Parallelizing Gauß-Seidel by wavefront ordering

at first glance, there seems to be an enforced sequential order, since the
updated values are immediately used where availableupdated values are immediately used where available

remedy: change the order of visiting and updating the grid points

first possibility: wavefront ordering

diagonal order of updating

all values along a diagonal line can be updated in parallel all values along a diagonal line can be updated in parallel

the single diagonal lines have to be processed sequentially, however

27

Technische Universität München

6.2. Parallelizing Gauß-Seidel by wavefront ordering
(cont´d)

problem: suppose we have P = N - 1 processors; then there are P² overall problem: suppose we have P = N 1 processors; then there are P overall
updates that can be organized in 2P - 1 sequential steps (diagonals), which
restricts the speed-up to roughly P/2

better: use P = (N − 1)/k processors only; then we get k sequential strips of
kP² updates and kP + P − 1 sequential internal steps; now, the speed-up is
given by k · kP²/(k(kP + P − 1)), which is roughly kP/(k + 1)

28

Technische Universität München

6 3 P ll li i G ß S id l b h k b d 6.3. Parallelizing Gauß-Seidel by checkerboard
ordering

second possibility: red-black or checkerboard orderingsecond possibility: red black or checkerboard ordering

give the grid points a checkerboard coloring of red and black

order of visiting and updating: first lexicographically the red ones, then
lexicographically the black ones

no dependences within the red set nor within the black set

subdivide the grid such that each processor has some red and some black
points (roughly the same number)

the result: two necessarily sequential steps (red and black) but perfect the result: two necessarily sequential steps (red and black),but perfect
parallelism within each of them

29

Technische Universität München

Thank you for your attention!

