Technische Universitat Munchen .I.I-m

9th SimLab Short Course on

Parallel Numerical Simulation

Belgrade, October 3 to 9, 2010

Examples of Parallel Algorithms

October 5, 2010
Vasco Varduhn

Chair for Computation in Engineering
Technische Universitat Minchen, Germany
International Graduate School of Science and Engineering (IGSSE)

4

222,

=i ; ilititspakt fiir Siid apa °
- ' G S "Gcﬁi rrrrrrrrr Deutschland S 1 m I ab
L« A v Stability Pact for South Eastern Europe
i |Sponsored by Germany

Technische Universitat Munchen

1. Matrix-Matrix and Matrix-Vector Operations

= underlying basis for many scientific problems is a matrix
= stored as 2-dimensional array of numbers (integer, float, double)
= row-wise in memory (typical case)
= column-wise in memory
= typical matrix operations (K: set of numbers)
1) A+ B=C with A, B, and C € KN*M
2) A-b=cwithAeKVM peKM andc e KN
3) A-B=C with Ae KN*M B e KMxL and C € KNxL
= matrix-vector multiplication (2) and matrix multiplication (3) are main
building blocks of numerical algorithms
= both pretty easy to implement as sequential code
= what happens in parallel?

|Sponsored by Germany

ilititspakt fiir Siid p °
- I G S Gefiirdert durch Deutschland
e # \ Stability Pact for South Eastern Europe

Technische Universitat Munchen TI-m

1.1 Matrix-Vector Multiplication

= Appearances
= systems of linear equations (SLE) A-x =b
= jterative methods for solving SLEs (conjugate gradient, e. g.)

= implementation of neural networks (determination of output values, training
neural networks)

= standard sequential algorithm for A € KN*N and b, ¢ € KN
fori<— 1toNdo
cli] < 0;
forj<— 1toNdo
cli] « cfi] + Ali]{i]"bl[il;
od
od

= for full matrix A this algorithm has a complexity of O(N?)

|Sponsored by Germany

ilititspakt fiir Siid p °
- I G S Gefiirdert durch Deutschland
e # \ Stability Pact for South Eastern Europe

Technische Universitat Munchen TI-m

1.1 Matrix-Vector Multiplication

= in parallel, there are three main options to distribute data among P procs

= row-wise block-striped decomposition: each process is responsible for a
contiguous part of about N/P rows of A

= column-wise block-striped decomposition: each process is responsible for a
contiguous part of about N/P columns of A

= checkerboard block decomposition: each process is responsible for a
contiguous block of matrix elements

= vector b may be either replicated or block-decomposed itself

column-wise

row-wise

checkerboard

. ilititspakt fiir Siid opa °
- I G S Gefiirdert durch Deutschland
T '- & Stability Pact for South Eastern Europe

y Pact fo
|Sponsored by Germany

Technische Universitat Munchen

1.1 Matrix-Vector Multiplication

= row-wise block-striped decomposition
= probably the most straightforward approach
= each process gets some rows of A and entire vector b
= each process computes some components of vector c
= build and replicate entire vector ¢ (gather-to-all, e. g.)
= complexity of O(N2/P) multiplications / additions for P processes

(. ‘o 3

) °
o o 0o 0 @ | e
o o o 0o @ ._c

°

°
\" R‘)

4

filir Si

p r opa ®
- I G S Gefiirdert durch Deutschland
e # \ Stability Pact for South Eastern Europe

|Sponsored by Germany

Technische Universitat Munchen

1.1 Matrix-Vector Multiplication

= column-wise block-striped decomposition
= |ess straightforward approach

= each process gets some columns of A and respective elements of vector b

= each process computes partial results of vector c

= build and replicate entire vector c (all-reduce or maybe a reduce-scatter if

processes do not need entire vector c)
= complexity is comparable to row-wise approach

(oo (o)
® @ ’ O
L
& & O
L p—
& & O
& » O
- ® @ \°)
KA

- sreee en
pakt fiir Siid opa
- i G S ’Gcﬂirﬂ:lt durch Deutschland
% i & Stability Pact for South Eastern Europe
f ¢ i |Sponsored by Germany

SimLab

Technische Universitat Munchen

1.1 Matrix-Vector Multiplication

checkerboard block decomposition

each process gets some block of elements of A and respective elements of
vector b

each process computes some partial results of vector c

build and replicate entire vector c (all-reduce, but “unused” elements of vector
c have to be initialised with zero)

complexity of the same order as before; it can be shown that checkerboard
approach has slightly better scalability properties (increasing P does not
require to increase N, t00)

®* & @ r,/.
® & @
®
® & @
® —
- \

filr Si

ilititspakt fiir Siid opa -
Gefardert durch Deutschland
A Stability Pact for South Eastern Europe

y Pact fo
|Sponsored by Germany

Technische Universitat Munchen

1.2 Matrix-Matrix Multiplication

= appearances
= computational chemistry (computing changes of state, e. g.)
= signal processing (DFT, e. g.)
= standard sequential algorithm for A, B, C € KNxN
fori— 1toNdo
forj<— 1toNdo
C[i][i] <0
fork <— 1to N do
Clilli] « C[illil + Afillk]*BIKI[i];
od
od
od
= for full matrices A and B this algorithm has a complexity of O(N?3)

|Sponsored by Germany

ilititspakt fiir Siid p °
- I G S Gefiirdert durch Deutschland
e # \ Stability Pact for South Eastern Europe

Technische Universitat Munchen TI-m

1.2 Matrix-Matrix Multiplication

= naive parallelisation
= each process gets some rows of A and entire matrix B
= each process computes some rows of C

Y e
L]
* @ @ & 0 @ L]
.\l....'.
L]

:J \®

* & @& @ 0o 0
* & & 9 9 @
* & & & 9 @
* & & & 9 @
* & & & 9 @
Y . .

®

e

e

&

&

= problem: once N reaches a certain size, matrix B won’t fit completely into cache
and / or memory performance will dramatically decrease

= remedy: subdivision of matrix B instead of whole matrix B

4

P

¥ o84

=i ilititspakt fiir Siid opa °
- I G S Gefirdert durch Deutschland
% A A Stability Pact for South Eastern Europe

|Sponsored by Germany

Technische Universitat Munchen

1.2 Matrix-Matrix Multiplication

recursive algorithm

algorithm follows the divide-and-conquer principle
subdivide both matrices A and B into four smaller submatrices

A = [Aoa AOTJ B - (Baa Bm)
Ao Ay By, B

hence, the matrix multiplication can be computed as follows
C = (AOD'BGG+A01'BM Aoa'Bm+Am'BﬂJ
Am 'Bocr +A11 'Bm Am 'Bm +A11 ’ Bﬁ

if blocks are still too large for the cache, repeat this step (i. e. recursively
subdivide) until it fits

furthermore, this method has significant potential for parallelisation (especially
for MemMS)

filir Si

ilititsp it Siid opa a
Gefardert durch Deutschland
A Stability Pact for South Eastern Europe

|Sponsored by Germany

10

Technische Universitat Munchen

1.2 Matrix-Matrix Multiplication

= CANNON’s algorithm

each process gets some rows of A and some columns of B
each process computes some components of matrix C
different possibilities for assembling the result

= gather all data, build and (maybe) replicate matrix C

= “pump” data onward to next process (-> systolic array)
complexity of O(N3/P) multiplications / additions for P processes

filir Si

ilititsp it Siid opa a
Gefardert durch Deutschland
A Stability Pact for South Eastern Europe

|Sponsored by Germany

11

Technische Universitat Munchen

2. The Poisson equation with Dirichlet boundary
conditions

222,

1GSSE w

occurrences: a fitted membrane, the stationary heat equation, ...

an elliptic partial differential equation (PDE) with Dirichlet boundary
conditions on a given domain Q

The Poisson equation Au = f on the unit square £2=/0, 1[2 with u given on
£2's boundary

Au(x,y) = 52[;(2);), 52“;;;) _ ¢ (X,y) (xy)eQ

u(x,y)=g(xy) (X, y) € 0Q

find the function u(x, y) (or an approximation to it)

ilititspakt fiir Siid opa ®
WG(’E‘ MMMMMMMMM Deutschland S 1 m ab
! Stability Pact for South Eastern Europe I 4
i |Sponsored by Germany

Tum

12

Technische Universitat Munchen

2.1. Discretization using finite differences

= discretisation of the PDE to retrieve its solution
= again a simple example: the finite difference discretisation for mesh width h

f(x+h)—1(x) 0 £ () f(x)—f(x=h)
h ’ h

20 5 £7(x)

/
[/

uuuuu

R - = o e o e e e] e e e e e e e

|n_l._uF- T
-5.00 -4.00 -3.00 -2,00 -1,00 0,00 1.0 2.0 3,00 : 4,00 5,00
‘ 1
R X Xx+h
 IGESEL SimLab

13

Technische Universitat Munchen .I.I-m

2.2. Discretization of the Poisson equation

In our simple example the finite difference discretisation for mesh width h:
o2u(x,y) _u(x=h,y)—2u(x,y)+u(x+h,y)

02X h2
o2u(X,y) N u(x,y—h)—=2u(x,y)+u(x,y+h)
52y h2
* introduction of an equidistant grid of (N + 7)2 grid points
u; ; = u(ih, jh) 1=0,,N j=0,.,N N :%

resulting discrete equation in the interior: five-point difference star
UI,J_1+U|_1’J —4U|,J +U|+1,J +u|,j+l :h2 fl,j 0<i, j < N [.l.._:-ﬁ'j‘

[x.x]
(x-hy) @—@———® (c+hv)

resulting equation on the boundary
¢ uij:g(ih,jh) I=0vi=Nv j=0vj=N °
& #*, | (x3-h

. pakt fiir opa °
- o | . Gefordert durch Deutschland 14
L G S A M Stability Pact for South Eastern Europe 1 m a
i |Sponsored by Germany

Technische Universitat Munchen TI-m

2.3. Resulting system of linear equations

= for each inner point one linear equation in the unknowns U; ;

= equations in points next to the boundaryi €{L, N =1}, je{l, N -1}
access the boundary values

= shift these to the right-hand side of the equation

»= hence, all unknowns are located to the left of the ‘=’ sign, all known quantities
to its right

= assemble the overall vector of unknowns by lexicographic row-wise
ordering -

Y
L
L
&

filir Si

- ilititsp it Siid opa =
- I G S Gefiirdert durch Deutschland 1 5
e # \ Stability Pact for South Eastern Europe

|Sponsored by Germany

Technische Universitat Munchen TI-m

2.4. Resulting matrix structure

= this results in a system Ax = b of (N — 7)2 linear equations in (N — 7)?
unknowns

= matrix A is block-tridiagonal with identity or tridiagonal blocks / or T, resp.

—4 1
(1 -4 1
T — 1 " .. c RV-1N-1

L S
1 —4
o0

=i ilititspakt fiir Siid p ~
- IG S Gefiirdert durch Deutschland 1 6
e # \ Stability Pact for South Eastern Europe
) " i |Sponsored by Germany

Technische Universitat Munchen TI-m

2.5. Direct solving large sparse systems of linear
equations
= the standard textbook method is Gaussian elimination

» this is a so-called direct solver which provides the exact solution of the
system (apart from round-off errors)

= drawbacks of Gaussian elimination:

= for M unknowns O(M?) arithmetic operations are needed(not acceptable
for really large M as they are standard in modern simulation problems)

= no exploitation of the sparsity of the matrix by the algorithm:
existing zeroes are “destroyed” (turned into non-zeroes),
=>more computational work and more storage requirements

=i ilititspakt fiir Siid apa °
- i G S Gefardert durch Deutschland 17
e # \ Stability Pact for South Eastern Europe
e - |Sponsored by Germany

Technische Universitat Munchen TI-m

2.6. lterative solving large sparse systems of linear
equations
= use iterative methods instead

Approaching exact solution and approximate it, but typically don’t reach it
costs of O(M) operations for one step of iteration
typically much less than O(M?) steps needed (the gain)
ideal case(multigrid or multilevel methods): only O(1) steps needed
basic (and not that sophisticated) methods (hnumber of steps still
depending on M):

= relaxation methods: Jacobi, GauB-Seidel, SOR (Successive Over-

Relaxation)

* minimization methods: steepest descent, conjugate gradients

ilititspakt fiir Siid opa ®
’Gcﬂirﬂ:lt durch Deutschland S 1 m I ab 18
! Stability Pact for South Eastern Europe
i |Sponsored by Germany

Technische Universitat Munchen .I.I-m

3.1. The Jacobi iteration

o%% .

7 0GS

decompose A=L,+D,+U, inits diagonal part D, , its upper triangular
part U ,and its lower triangular part L,

starting point: b= Ax=D,x+ (L, +U ,)x

writing b= D,x"* + (L, +U,)x" with X" denoting the approximation to x
after it steps of the iteration leads to the following iterative scheme:

x"!=-D, (L, +U, X"+ D, b=x"+D, "

residual is defined as r" =b— Ax"
a more explicit algorithmic form:

@ @ & F

it+1 1 it)
X _a—(bk_Zj;tkakvaj
k.

] ilititspakt fiir Siid opa ®

’Gdﬁrﬂ:rt durch Deutschland S I 1 9
v Stability Pact for South Eastern Europe 1 m a

i |Sponsored by Germany

Technische Universitat Munchen TI-m

3.2. The Jacobi iteration for the Poisson equation

= for our special A resulting from the finite difference discretization of the
Poisson equation follows (pay attention to the indices!):

N . | |
it+1 it it it it
Ui;" = Z(ui,j—l Uit U UL — h2 fi,j)

= remember: boundary values are fixed

ilititspakt fiir Siid P ®
- I G S ’Gdﬁfﬂ:lt durch Deutschland S 1 m I ab
% i & Stability Pact for South Eastern Europe
f ¢ i |Sponsored by Germany

20

Technische Universitat Mlinchen .I.I-m
4.1. The GauBB-Seidel iteration

= take the same decomposition A=L,+D, +U,

= new starting point: b= Ax=(D, +L,)x+U,x Writing b= (D, +L,)x""+U x"
leads to the following iterative scheme:

X"ti=—(D,+L)'U, x"+(D,+L,) b=x"+(D,+L,)"r"

= in a more explicit algorithmic form:

lt+1 [b Zak J |t+1 Zak J]
k,

j=k+1

] ilititspakt fiir Siid opa ®
I G S ’ Gefordert durch Deutschland S 1 m I ab 21
A v Stability Pact for South Eastern Europe
f i |Sponsored by Germany

Technische Universitat Munchen

4.2. The GauB-Seidel iteration for the Poisson

€q

uation
for our special A resulting from the finite difference discretization of the

Poisson equation follows (pay attention to the indices!):

1, . | |
it+1 it+1 it+1 it it
Ui ;" = Z(ui,j—l Ui U U — h2 fi,j)

remember: again boundary values are fixed

no general superiority of GauB-Seidel to Jacobi; in our case discussed
here, however, GauB-Seidel is twice as fast as Jacobi

ilititspakt fiir Siid opa ®
’G(ﬂjfﬂ:lt durch Deutschland S 1 m ab
! Stability Pact for South Eastern Europe I 4
i |Sponsored by Germany

Tum

22

Technische Universitat Munchen

5. Parallelizing Jacobi

Yi

|Sponsored by Germany

=i ilititspakt fiir Siid p ~
- I G S Gefiirdert durch Deutschland
e # @, Stability Pact for South Eastern Europe

Technische Universitat Munchen TI-m

5.1. Parallelizing Jacobi

= neither Jacobi nor GauB-Seidel are used today any more — they are too slow;
nevertheless, the algorithmic aspects are still of interest

= a parallel Jacobi algorithm is quite straightforward:
= in the current iteration step, only values from the previous step are used

= hence, all updates of one iteration step can be made in parallel (if that many
processors are available)

= more realistic scenario: subdivide the domain into strips or squares for example
(what is better with respject to a good communication-computation ratio?)

pl-" l-JH])IF pln
S =
P |B| P P
p || p P
"gth | I 2 3 4

=i ilititspakt fiir Siid p ~
- I G S Gefardert durch Deutschland 24
" 4 L Stability Pact for South Eastern Europe

|Sponsored by Germany

Technische Universitat Munchen TI-m

5.2. Parallelizing Jacobi (cont” d)

= each processor needs for its calculations:
= if adjacent to the boundary: a subset of the boundary values __,
= one row or one column of values from the processors dealing N
with the neighboring subdomains]
. E—
= some hint when to stop

¥l
" L Y
R T L . .Y .
‘\ A]\

= the above considerations lead to the following algorithm each processor
has to execute:

it it+1

1. update all local approximate values Ui, to Ui ;

2. send all updates in points next to interior boundaries to the respective
processors

3. receive all necessary updates from the “neighboring” processors
compute the local residual values and provide them via a reduce operation

5. receive the overall residual as the reduce operation’s result and go back to 1. if
this value is larger than some given threshold

B

. ilitdtspaket fiir Siid opa °
- I G S Gefiirdert durch Deutschland 25
T s & Stability Pact for South Eastern Europe

|Sponsored by Germany

Technische Universitat Munchen

6. Parallelizing GauB-Seidel

Yi

“.;‘é?&f's-

|Sponsored by Germany

=i ilititspakt fiir Siid p ~
- I G S Gefiirdert durch Deutschland
e # @, Stability Pact for South Eastern Europe

Technische Universitat Munchen TI-m

6.1. Parallelizing GauB-Seidel by wavefront ordering

= at first glance, there seems to be an enforced sequential order, since the
updated values are immediately used where available

= remedy: change the order of visiting and updating the grid points

= first possibility: wavefront ordering
= diagonal order of updating
= all values along a diagonal line can be updated in parallel
= the single diagonal lines have to be processed sequentially, however

Boundar

fiir Siid

|
! i
! i
ilititsp p ®
- I G S Gefiirdert durch Deutschland
e # \ Stability Pact for South Eastern Europe

|Sponsored by Germany

27

Technische Universitat Munchen TI-m

6.2. Parallelizing GauBB-Seidel by wavefront ordering
(cont”d)

= problem: suppose we have P = N - 1 processors; then there are P? overall
updates that can be organized in 2P - 1 sequential steps (diagonals), which
restricts the speed-up to roughly P/2

oW W Y %N
» T T Yoo %59 3¢ Usg P 1 11 16 22 27 31 34 36

2 a4 7
Ve CRTATR st st P, 3 5 8 1217 23 28 32 35
‘\ 1Q\ 'n{\“w\uaex ZQ‘ sy P, 6 9 13 18 24 29 33
W% e ™ U txg P 10 14 (19 25 30
\nl‘hs‘*g\\u\\g“ﬂs%‘ Ps: 15 20 26
L TR O Ps: 21

= better: use P = (N — 1)/k processors only; then we get k sequential strips of
kP? updates and kP + P — 1 sequential internal steps; now, the speed-up is
given by k - kP?/(k(kP + P — 1)), which is roughly kP/(k + 1)

P 1 214 ¥ 10 13 16 18

P, 3 5 8 11 14 17
w0 W ‘-. Py 6 9 12 15
qu \qs * 1~5 -h:rt\lﬂ
‘_ttk b\k 'ﬂz ‘D.:\ 'ﬂky h“mh\la here, K=2 9 speed-up S(p) = 2P/3

- .

30 ®
|GS Gdrdrtd Dwmhl nd Sl L 'I o8
> outh Eastern Europe l ' | a
: : g many

Technische Universitat Munchen

6.3. Parallelizing GauB-Seidel by checkerboard
ordering

= second possibility: red-black or checkerboard ordering

give the grid points a checkerboard coloring of red and black

order of visiting and updating: first lexicographically the red ones, then
lexicographically the black ones

no dependences within the red set nor within the black set

subdivide the grid such that each processor has some red and some black
points (roughly the same number)

the result: two necessarily sequential steps (red and black),but perfect
parallelism within each of them P |

3 i 4
15 17 g
s % T %
s 13 6 14
.5 .]? .6 .14 —————————— E_ _________
11 13! T12 4
LTI R . .
1 ol T2 Wy
¢ P P,

filir Si

ilititsp it Siid opa a
Gefardert durch Deutschland
A Stability Pact for South Eastern Europe

|Sponsored by Germany

Tum

29

Technische Universitat Munchen

Thank you for your attention!

4

o%% .

=i : ilititspakt fiir Siid opa *
- I G S Gefiirdert durch Deutschland
L+ A A Stability Pact for South Eastern Europe

|Sponsored by Germany

