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Algorithms for Uncertainty
Quantification

Tutorial 2: Probability and statistics overview

In this worksheet, we focus on aspects related to probability theory and statistics.

Biased vs. unbiased estimators

The formal definition of an estimator states that “an estimator is a procedure to
construct estimates for a quantity q based on random samples X1, . . . , Xn.” If x1, . . . ,
xn are realizations of X1, . . . , Xn, an estimate is a realization of the estimator based
on x1, . . . , xn. Example estimators include mean, variance, interval estimators.

Assignment 1

Assume that G = {1.3, 1.7, 1.0, 2.0, 1.3, 1.7, 2.0, 2.3, 2.0, 1.7, 1.3, 1.0, 2.0, 1.7, 1.7, 1.3, 2.0}
represents a set of grades. Compute the mean and the variance of G using numpy’s
functions mean and var. Hint: if a is a list with n elements Xi, i = 1, . . . , n, nu-

mpy.mean(a) = X̄ =
∑n

i=1 Xi

n
and numpy.var(a) = S2 =

∑n
i=1(Xi−X̄)2

n
.

An estimator is called biased if its mean value is not equal to the value of the parameter
to be estimated. Otherwise, it is called biased.

Assignment 2

Check whether X̄ =
∑n

i=1 Xi

n
and S2 =

∑n
i=1(Xi−X̄)2

n
are biased or unbiased estimators.

In case they are biased, how would you transform them into unbiased estimators? How
would you modify the previous code to account for your modification?
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Univariate concepts

In the lecture, you saw some examples of discrete and continuous random variables. In
this tutorial, we focus on continuous random variables.

Reminder: Let X be a random variable. Every random variable x has an associated
cumulative distribution function (CDF)

FX(x) = P{X ≤ x}.

Furthermore, a continuous random variable X has an associated probability density
function (PDF)

fX : R→ [0,∞[, fX(x) =
dFX(x)

dx
.

Two of the most prominent examples of continuous random variables are the uniform
and the normal or Gaussian. A random variable U is uniformly distributed in the
interval [a, b], denoted as U ∼ U(a, b), if the associated PDF is fU : [a, b]→ {0, 1

b−a
},

fU(x) =
1

b− a
I[a,b](x),

where I[a,b](x) =

{
1, x ∈ [a, b]

0, otherwise.

A random variable N is normally distributed with mean µ and variance σ, denoted as
N ∼ N (µ, σ2), if its PDF is

fN(x) =
1

σ
√

2π
exp (−(x− µ)2/2σ2).

Sometimes, certain UQ formulations require standard, reduced random variables, i.e.
random variables defined on standard domains, such as [0, 1], [0,∞), or (−∞,∞). Two
prominent examples of reduced random variables are U ∼ U(0, 1) or N ∼ N (0, 1).
However, the underlying uncertainty might be modeled in terms of random variables
that are not reduced or not from a classical family.

Assignment 3

Consider U ∼ U(0, 1) and Ug ∼ U(m,n), m < n ∈ N. Write Ug in terms of U .
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Assignment 4

Consider N1 ∼ N (µ1, σ
2
1) and N2 ∼ N (µ2, σ

2
2). Show that

• N1 + c ∼ N (µ1 + c, σ2
1), c ∈ R

• cN1 ∼ N (cµ1, c
2σ2

1), c ∈ R

• N1 +N2 ∼ N (µ1 + µ2, σ
2
1 + σ2

2)

Finally, show that if N ∼ N (0, 1) and Ng ∼ N (µ, σ2), Ng = µ+ σN .

In cases when the random variable X is not from a classical family, e.g. X ∼ lognormal,
we might want to write it in terms of classical random variables. One such approach
stems from a basic technique for generating random numbers.
Let FX(x) denote the cdf of the target random variable X. We assume that we have
a (pseudo)random number generator capable of generating realizations U ∼ U(0, 1). If
we define the random variable Y = F−1

X (U), then Y and X have the same distribution,
i.e. sampling X translates into sampling U ∼ U(0, 1) and then evaluating Y = F−1

X (U).

Assignment 5 - optional

Based on the above setup, show that Y = F−1
X (U) has the same distribution as X. Hint:

start from FY (y).

Multivariate concepts

In the lecture, you saw the definition of the multivariate normal distribution.
The n-dimensional random vector X is normally distributed with mean vector µ =
[µ1, µ2, . . . , µn]T and covariance matrix V, Vij = cov(Xi, Xj), written X ∼ N (µ, V ), if

fX(x) =
1√

(2π)n|V |
exp

[
− 1

2
(x− µ)V −1(x− µ)T

]
where |V | is the determinant of V . The standard multivariate normal is defined for
µ = [0, 0, . . . , 0]T , V = In.
All transformations from Assignment 4 can be extended to the multivariate case. Howe-
ver, we are most interested in writing a generic multivariate normal distribution in terms
of the standard multivariate normal.
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To this end, if N ∼ N (0, In) and N g ∼ N (µ, V ), it can be shown that

N g = µ+ EN , (1)

where EET = V (for brevity, we will not prove this here).

Assignment 6

N 1 ∼ N (µ, V ), where µ = [0.1, 0.5]T and V = [[1.0, 0.2], [0.2, 1.0]]. Using Eq. (1), write
a python program in which N 1 in defined in terms of N ∼ N (0, In). Furthermore, for
a comparison, plot the contour and the 3D representation of N 1 defined in both ways.
Hint: to obtain the matrix E from V = EET , you can use a Cholesky decomposition.

Assignment 7 - optional

We know that the entry ij in the covariance matrix V is defined as Vij = cov(Xi, Xj),
where cov(Xi, Xj) = E[XiXj] − E[Xi]E[Xj] measures the covariance between Xi and
Xj. Hence, Xi and Xj are independent if cov(Xi, Xj) = 0.
Therefore, having the covariance matrix V , a quick way to check whether the underlying
random variables are independent is to look at the off-diagonal entries of V ; if they are
non-zero, the variables are dependent, otherwise, they are independent.
Given N 1 ∼ N (µ, V ) such that V has non-zeros off-diagonal entries, how could you use
Eq. (1) to recast your problem in terms of independent random variables?
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