Technische Universität München Lehrstuhl für Informatik V Dr. Tobias Neckel M. Sc. Ionuț Farcaș

May 3, 2017

Algorithms for Uncertainty Quantification

Tutorial 2: Probability and statistics overview

In this worksheet, we focus on aspects related to probability theory and statistics.

Biased vs. unbiased estimators

The formal definition of an estimator states that "an **estimator** is a procedure to construct estimates for a quantity q based on random samples X_1, \ldots, X_n ." If x_1, \ldots, x_n are realizations of X_1, \ldots, X_n , an **estimate** is a realization of the estimator based on x_1, \ldots, x_n . Example estimators include mean, variance, interval estimators.

Assignment 1

Assume that $G = \{1.3, 1.7, 1.0, 2.0, 1.3, 1.7, 2.0, 2.3, 2.0, 1.7, 1.3, 1.0, 2.0, 1.7, 1.7, 1.3, 2.0\}$ represents a set of grades. Compute the mean and the variance of G using numpy's functions mean and var. *Hint: if* **a** *is a list with n elements* X_i , i = 1, ..., n, *numpy.mean* $(a) = \bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ and *numpy.var* $(a) = S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}$.

An estimator is called *biased* if its mean value is not equal to the value of the parameter to be estimated. Otherwise, it is called biased.

Assignment 2

Check whether $\bar{X} = \frac{\sum_{i=1}^{n} X_i}{n}$ and $S^2 = \frac{\sum_{i=1}^{n} (X_i - \bar{X})^2}{n}$ are biased or unbiased estimators. In case they are biased, how would you transform them into unbiased estimators? How would you modify the previous code to account for your modification?

Univariate concepts

In the lecture, you saw some examples of discrete and continuous random variables. In this tutorial, we focus on continuous random variables.

Reminder: Let X be a random variable. Every random variable x has an associated cumulative distribution function (CDF)

$$F_X(x) = \mathcal{P}\{X \le x\}.$$

Furthermore, a continuous random variable X has an associated probability density function (PDF)

$$f_X : \mathbb{R} \to [0, \infty[, f_X(x) = \frac{dF_X(x)}{dx}]$$

Two of the most prominent examples of continuous random variables are the uniform and the normal or Gaussian. A random variable U is uniformly distributed in the interval [a, b], denoted as $U \sim \mathcal{U}(a, b)$, if the associated PDF is $f_U : [a, b] \rightarrow \{0, \frac{1}{b-a}\}$,

$$f_U(x) = \frac{1}{b-a} \mathcal{I}_{[a,b]}(x),$$

where $\mathcal{I}_{[a,b]}(x) = \begin{cases} 1, & x \in [a,b] \\ 0, & \text{otherwise.} \end{cases}$

A random variable N is normally distributed with mean μ and variance σ , denoted as $N \sim \mathcal{N}(\mu, \sigma^2)$, if its PDF is

$$f_N(x) = \frac{1}{\sigma\sqrt{2\pi}} \exp(-(x-\mu)^2/2\sigma^2).$$

Sometimes, certain UQ formulations require standard, reduced random variables, i.e. random variables defined on standard domains, such as [0, 1], $[0, \infty)$, or $(-\infty, \infty)$. Two prominent examples of reduced random variables are $U \sim \mathcal{U}(0, 1)$ or $N \sim \mathcal{N}(0, 1)$. However, the underlying uncertainty might be modeled in terms of random variables that are not reduced or not from a classical family.

Assignment 3

Consider $U \sim \mathcal{U}(0,1)$ and $U_g \sim \mathcal{U}(m,n)$, $m < n \in \mathbb{N}$. Write U_g in terms of U.

Assignment 4

Consider $N_1 \sim \mathcal{N}(\mu_1, \sigma_1^2)$ and $N_2 \sim \mathcal{N}(\mu_2, \sigma_2^2)$. Show that

- $N_1 + c \sim \mathcal{N}(\mu_1 + c, \sigma_1^2), \quad c \in \mathbb{R}$
- $cN_1 \sim \mathcal{N}(c\mu_1, c^2\sigma_1^2), \quad c \in \mathbb{R}$
- $N_1 + N_2 \sim \mathcal{N}(\mu_1 + \mu_2, \sigma_1^2 + \sigma_2^2)$

Finally, show that if $N \sim \mathcal{N}(0, 1)$ and $N_g \sim \mathcal{N}(\mu, \sigma^2)$, $N_g = \mu + \sigma N$.

In cases when the random variable X is not from a classical family, e.g. $X \sim \text{lognormal}$, we might want to write it in terms of classical random variables. One such approach stems from a basic technique for generating random numbers.

Let $F_X(x)$ denote the cdf of the target random variable X. We assume that we have a (pseudo)random number generator capable of generating realizations $U \sim \mathcal{U}(0, 1)$. If we define the random variable $Y = F_X^{-1}(U)$, then Y and X have the same distribution, i.e. sampling X translates into sampling $U \sim \mathcal{U}(0, 1)$ and then evaluating $Y = F_X^{-1}(U)$.

Assignment 5 - optional

Based on the above setup, show that $Y = F_X^{-1}(U)$ has the same distribution as X. *Hint:* start from $F_Y(y)$.

Multivariate concepts

In the lecture, you saw the definition of the multivariate normal distribution. The *n*-dimensional random vector \boldsymbol{X} is normally distributed with mean vector $\boldsymbol{\mu} = [\mu_1, \mu_2, \dots, \mu_n]^T$ and covariance matrix $V, V_{ij} = \operatorname{cov}(X_i, X_j)$, written $\boldsymbol{X} \sim \mathcal{N}(\boldsymbol{\mu}, V)$, if

$$f_{\boldsymbol{X}}(\boldsymbol{x}) = \frac{1}{\sqrt{(2\pi)^n |V|}} \exp\left[-\frac{1}{2}(\boldsymbol{x} - \boldsymbol{\mu})V^{-1}(\boldsymbol{x} - \boldsymbol{\mu})^T\right]$$

where |V| is the *determinant* of V. The standard multivariate normal is defined for $\boldsymbol{\mu} = [0, 0, \dots, 0]^T$, $V = I_n$.

All transformations from Assignment 4 can be extended to the multivariate case. However, we are most interested in writing a generic multivariate normal distribution in terms of the standard multivariate normal. To this end, if $N \sim \mathcal{N}(\mathbf{0}, I_n)$ and $N_g \sim \mathcal{N}(\boldsymbol{\mu}, V)$, it can be shown that

$$\boldsymbol{N}_q = \boldsymbol{\mu} + E\boldsymbol{N},\tag{1}$$

where $EE^T = V$ (for brevity, we will not prove this here).

Assignment 6

 $N_1 \sim \mathcal{N}(\boldsymbol{\mu}, V)$, where $\boldsymbol{\mu} = [0.1, 0.5]^T$ and V = [[1.0, 0.2], [0.2, 1.0]]. Using Eq. (1), write a python program in which N_1 in defined in terms of $N \sim \mathcal{N}(\mathbf{0}, I_n)$. Furthermore, for a comparison, plot the contour and the 3D representation of N_1 defined in both ways. *Hint: to obtain the matrix E from* $V = EE^T$, you can use a Cholesky decomposition.

Assignment 7 - optional

We know that the entry ij in the covariance matrix V is defined as $V_{ij} = cov(X_i, X_j)$, where $cov(X_i, X_j) = \mathbb{E}[X_i X_j] - \mathbb{E}[X_i] \mathbb{E}[X_j]$ measures the *covariance* between X_i and X_j . Hence, X_i and X_j are *independent* if $cov(X_i, X_j) = 0$.

Therefore, having the covariance matrix V, a quick way to check whether the underlying random variables are independent is to look at the off-diagonal entries of V; if they are non-zero, the variables are dependent, otherwise, they are independent.

Given $N_1 \sim \mathcal{N}(\boldsymbol{\mu}, V)$ such that V has non-zeros off-diagonal entries, how could you use Eq. (1) to recast your problem in terms of independent random variables?