Alg. for Scientific Computing

Hierarchical Methods and Sparse Grids
– Archimedes’ Quadrature, High-Dimensional –

Michael Bader, Emily Mo-Hellenbrand
Technical University of Munich

Summer 2016
Numerical Quadrature (So Far . . .)

- Hierarchical and non-hierarchical one-dimensional quadrature
- Aim: dealing with high-dimensional functions
- Quadrature as an example: well-studied, relatively simple

On the way to high dimensionalities we have to consider whether effort (measured in function evaluations, computations, . . .) is well-invested?

⇒ Consider ratio of cost vs. accuracy
Part I

Cost and Accuracy
\(\varepsilon \)-Complexity of Numerical Methods

Relate Cost to Achieved Accuracy:

- Usually approximate solution with error \(\varepsilon \)
 (due to discretization, rounding, truncation, \ldots)
- To measure cost \(W \): count operations (function evaluations, e.g.)
- Relate cost \(W \) to error \(\varepsilon \)
 \[\Rightarrow \text{How many operations } W(\varepsilon) \text{ to obtain error of at most } \varepsilon? \]

Example: Composite Integration Rules

- Composite Trapezoidal (CT) rule with \(n \) subintervals:
 - \(n+1 \) function evaluations
 - Error \(O(n^{-2}) \) (sufficiently smooth)
 - \(\varepsilon \)-complexity \(W(\varepsilon) = O(\sqrt{1/\varepsilon}) \) [function evaluations]
- Composite Simpson’s (CS) rule correspondingly \(W(\varepsilon) = O(4\sqrt{1/\varepsilon}) \)
CT and CS: Cost-Error Diagram

- $F_1 := \int_0^\pi \sin(x) \, dx$, determine $|CT - F_1|$ and $|CS - F_1|$

\[
\begin{align*}
\varepsilon\text{-complexities} & \quad O\left(\sqrt{\frac{1}{\varepsilon}}\right) \quad \text{and} \quad O\left(4\sqrt{\frac{1}{\varepsilon}}\right) \\
\Leftrightarrow \quad \text{Different gradients of the curves} & \quad \text{(asymptotically for large } n; \text{ double-logarithmic scale)}
\end{align*}
\]
Multi-Dimensional Quadrature

- Now on to multi-dimensional functions:

\[
\text{Area of integration } \Omega := \prod_{k=1}^{d} [a_k, b_k], \text{ function } f : \Omega \to \mathbb{R}
\]

- Compute approximation for

\[
F_d(f, \Omega) := \int_{\Omega} f(x_1, \ldots, x_d) \, d\vec{x}.
\]
Decomposition into One-Dimensional Integrals

- Decompose d-dimensional integral into sequence of one-dimensional ones (cf. Fubini’s Theorem)

$$F_d(f, \Omega) = \int_{a_d}^{b_d} \cdots \int_{a_2}^{b_2} \left(\int_{a_1}^{b_1} f(x_1, \ldots, x_d) \, dx_1 \right) \, dx_2 \cdots dx_d.$$
Decomposition: Implementation

- Consider this decomposition using the function F_1 (one-dimensional integration), and functions G_k:

$$G_0(x_1, x_2, x_3, \ldots, x_d) := f(x_1, x_2, x_3, \ldots, x_d)$$
$$G_1(x_2, x_3, \ldots, x_d) := F_1(G_0(\bullet, x_2, x_3, \ldots, x_d), a_1, b_1)$$
$$G_2(x_3, \ldots, x_d) := F_1(G_1(\bullet, x_3, \ldots, x_d), a_2, b_2)$$
$$\vdots \quad \vdots$$
$$G_d() := F_1(G_{d-1}(\bullet), a_d, b_d)$$

- G_k integrates over x_1, \ldots, x_k; remaining variables free

Numerical quadrature

- Replace F_1 by a quadrature formula, such as CT, CS, ...
Cost and Accuracy

Cost

- Uniform grid with \(n \) subintervals for 1d quadrature
- \(d \) dimensions: Cartesian product of 1d grids
- Indices
 \[
 (i_1, \ldots, i_d) \in \{0, 1, 2, \ldots, n\}^d
 \]
 with corresponding grid points
 \[
 (x_1, \ldots, x_d) \text{ with } x_k = a_k + i_k \frac{b_k - a_k}{n}
 \]
- Total cost:
 - \((n + 1)^d\) (with grid points on domain’s boundary \(\partial \Omega \))
 - \((n - 1)^d\) (if \(f \) is zero on \(\partial \Omega \))
Cost and Accuracy (2)

Accuracy

- Still $O(n^{-2})$ for CT, $O(n^{-4})$ for CS
- Remark: starting with G_2, the current function values are erroneous by $O(n^{-2})$ and $O(n^{-4})$ resp.; this does not alter the overall accuracy

\Rightarrow Thus everything is fine. . . ?
Multidimensional Quadrature: Example

- Integration of

\[f(x_1, \ldots, x_d) := \prod_{k=1}^{d} 4x_k(1 - x_k) \]

on \(\Omega = [0, 1]^d \) with the composite Trapezoidal rule

- Error:
Multidimensional Quadrature: Example (2)

- For ϵ-complexity:
 Use cost (number of function evaluations) as abscissa

- Does not look that good any more...
Multidimensional Quadrature: Example (3)

"10^{21} function evaluations":
- Large number...
- 1 ZFlop (Zeta) = 1.000.000.000.000 GFlop = 1.000.000 PFlop (if only one op. per grid point)
- Compute on LRZ’s supercomputer SuperMUC:
 - Peak performance: 3 PFlop/s
- It would take almost 4 days to compute the integral, assuming that one integration operation can be performed in one clock cycle...
Curse of Dimensionality

ϵ-complexity

- CT: $O(\epsilon^{-\frac{d}{2}})$, CS: $O(\epsilon^{-\frac{d}{4}})$

Curse of dimensionality

- Exponential dependency on dimensionality d
- Higher-dimensional problems infeasible to tackle ($d = 10$ is still moderate . . .)
- Property of the problem – or just of the algorithm?
- It’s the algorithm \Rightarrow hierarchical methods (among few others) can mitigate the curse of dimensionality to some extent
Monte-Carlo Integration

- example for a better methods for numerical quadrature:
- simple approach, simple to implement

Monte-Carlo Idea:
- \(X \) be a random variable, uniformly distributed on \(\Omega \)
- The expectation of \(X \) is then given as

\[
E(f(X)) = \frac{1}{\text{Vol}(\Omega)} \int_{\Omega} f(x) \, dx = \frac{1}{\text{Vol}(\Omega)} F_d(f, \Omega)
\]

- On the other hand: if \(x_k \) are realizations of \(X \) we obtain

\[
\lim_{M \to \infty} \frac{1}{M} \sum_{k=1}^{M} f(x_k) = E(f(X))
\]

with probability 1 (strong law of large numbers)
Monte-Carlo Integration (2)

- Simple to implement
- Cost completely independent of d (counting function evaluations)
- Accuracy?
 - Estimate stochastically: compute standard deviation (use additivity of variances)

\[
\sqrt{\text{Var} \left(\frac{1}{M} \sum_{k=1}^{M} f(x_k) \right)} = \sqrt{\frac{1}{M^2} \sum_{k=1}^{M} \text{Var}(f)} = \sqrt{\frac{\text{Var}(f)}{M}}
\]

- Independent of d, too
- Dependencies of d only in $\text{Var}(f)$ and $\text{Vol}(\Omega)$ possible; does not affect exponent of M
- Thus (stochastically) ϵ-complexity of $O(\epsilon^{-2})$
 - Very slow convergence, but independent of d
 - thus: very helpful for tackling high-dimensional problems!
What Next?

• We know, that the curse of dimensionality can be overcome
• Search for alternative (better?) methods
 • … which can be used for other applications apart from integration as well, for example
• approach: hierarchical bases in higher dimensions
Part II

Archimedes, d-Dimensional
Current State: One-Dimensional Quadrature

- One-dimensional functions f, interval $[a, b]$
- Compute approximation $F_1(f, a, b)$ of area:

 $$F_1(f, a, b) \approx \int_a^b f(x) \, dx$$

- Notation for approximation of exact integral value in the following: $F_d(.)$, with d as the dimension

- One-dimensional quadrature rules:
 - Composite trapeziodal rule
 - Composite Simpson’s rule
 - Archimedes’ quadrature
Multi-Dimensional Quadrature

Consider multi-dimensional setting

\[F_d(f, \Omega) \approx \int_{\Omega} f(x_1, \ldots, x_d) \, d\vec{x}, \quad \Omega := \prod_{k=1}^{d} [a_k, b_k] \]
First Attempt

- remember theorem of Fubini:

\[F_d(f, \Omega) = \int_{a_d}^{b_d} \cdots \int_{a_1}^{b_1} f(x_1, \ldots, x_d) \, dx_1 \ldots dx_d \]

- Use full-grid approach as before:

\[
\begin{align*}
G_0(x_1, x_2, x_3, \ldots, x_d) & := f(x_1, x_2, x_3, \ldots, x_d) \\
G_1(x_2, x_3, \ldots, x_d) & := F_1(G_0(\bullet, x_2, x_3, \ldots, x_d), a_1, b_1) \\
G_2(x_3, \ldots, x_d) & := F_1(G_1(\bullet, x_3, \ldots, x_d), a_2, b_2) \\
& \vdots \\
G_d() & := F_1(G_{d-1}(\bullet), a_d, b_d)
\end{align*}
\]

- We now consider the effect of Archimedes’ quadrature as one-dimensional quadrature method for \(F_1 \)
First Attempt: Employing Archimedes

- d nested loops (x_1, x_2, \ldots)
- Summation of weighted function values
- No real advantages apart from adaptivity (which is not very useful this way)

Interplay of hierarchization and summation (integration)

- Consider setting with $d = 2$
- First, compute integrals in x_1-direction: $F_1(G_0(\bullet, x_2), a_1, b_1)$
 - Involves hierarchization in x_1-direction
 - But no impact on $G_1(x_2)$
- $G_1(x_2)$: no hierarchical values, thus all $G_1(x_2)$ of same order
- After summation (integration) in x_1-direction:
 - Hierarchization in x_2-direction
 - Finally summation in x_2-direction
Improved Version

- Consider computing $G_1(x_2)$
 - We are only interested in hierarchical surplus
 - Hierarchical surplus typically much smaller than function value
 \Rightarrow Could be computed with much less grid points in x_1-direction
- We change the order of “integration in x_1-direction” and “hierarchization in x_2-direction”
 - Write hierarchical area elements of quadrature in x_2-direction (trapezoid, segments, triangles) as function of x_1
 - Integrate those in x_1-direction
- Now interplay of dimensions for integration much more complicated
- ...but this will lead to much more efficient method
Example, 2d

Consider

\[f(x_1, x_2) := \left(x_1 + \frac{1}{2} \right) \left(x_1 - \frac{3}{2} \right) \left(x_2 + \frac{1}{2} \right) \left(x_2 - \frac{3}{2} \right) \]

on \(\Omega = [0, 1] \times [0, 2] \)
Trapezoidal Volume and Remainder Segment

First step of the hierarchical decomposition

\[F_2(f, \Omega) = F_1(T_2, a_1, b_1) + S_2(f, \Omega) \]

“Green function” \(\rightarrow \) linear interpolation of values at \(a_2, b_2 \):

\[
\frac{f(x_1, a_2)(b_2 - x_2) + f(x_1, b_2)(x_2 - a_2)}{b_2 - a_2}
\]

for any \(x_1 \)
Trapezoidal Volume and Remainder Segment (2)

Decompose volume into

- trapezoidal (for constant \(x_1 \)) cross-section with area

\[
T_2(x_1) := \frac{b_2 - a_2}{2} (f(x_1, a_2) + f(x_1, b_2)),
\]

→ to be integrated in \(x_1 \)-direction using quadrature rule \(F_1 \)

- and remainder segment

\[
S_2(f, \Omega) := F_2(f, \Omega) - F_1(T_2, a_1, b_1)
\]

\[
= \int_{a_2}^{b_2} \int_{a_1}^{b_1} \left(f(x_1, x_2) - \frac{f(x_1, a_2)(b_2 - x_2) + f(x_1, b_2)(x_2 - a_2)}{b_2 - a_2} \right) \, dx_1 \, dx_2
\]

Note: \(T_2 \) is the integral over the linear interpolation (“green function")
Triangular Volumes and Remainder Segments

Second step of the hierarchical decomposition

\[S_2(f, \Omega) = F_1(D_2, a_1, b_1) + S_2(f, \ldots) + S_2(f, \ldots) \]

again: hierarchization in \(x_2 \)-direction; integrate in \(x_1 \)-direction
Triangular Volumes and Remainder Segments (2)

Decompose remainder segment $S_2(f, \Omega)$ into

- triangular (for constant x_1) cross-section with area

$$D_2(x_1) := \frac{b_2 - a_2}{2} \left(f \left(x_1, \frac{a_2 + b_2}{2} \right) - \frac{f(x_1, a_2) + f(x_1, b_2)}{2} \right)$$

→ to be integrated in x_1-direction using quadrature rule F_1

- and two remainder segments

$$S_2(f, [a_1, b_1] \times [a_2, b_2]) = F_1(D_2, a_1, b_1)$$

$$+ S_2(f, [a_1, b_1] \times \left[a_2, \frac{a_2 + b_2}{2} \right])$$

$$+ S_2(f, [a_1, b_1] \times \left[\frac{a_2 + b_2}{2}, b_2 \right])$$
Recursive decomposition

- Repeat last step for both remainder segments
- Decompose each into triangular sub-volume and two remainder segments
- Example for one of the two segments and sum of trapezoidal and first three triangular sub-volumes:
Recursive Structure of Function Calls

- Nested recursive structure of function calls
- For higher-dimensional problems: one more level \((F_d \text{ and } S_d) \) for each additional dimension

- Consider number of function evaluations for grid point inside of \(\Omega \)
 - Straightforward: \(3^d\) evaluations to compute surplus
 - All but one have already been computed!
Subvolumes

- F_1: the subvolumes (hierarchized in x_2-direction) are decomposed (in x_1-direction) into trapezoid and many triangles
- Integrand itself is area (one slice trapezoidal/triangular subareas)
- Subvolumes which are added in quadrature are pagodas (neglecting trapezoidals)
 - Height of pagodas: d-dimensional hierarchical surplus
 - Volume of pagodas: 2^{-d} times size of support times surplus (more in next part)
- Taking stopping criterion depending on surplus (d criteria: one in S_i each)
 - Find those grid points for which function evaluation is worthwhile
 - In general much less than naive implementation
- Extend from composite trapezoidal rule to Simpsons’ as in one-dimensional setting
Archimedes Quadrature – d Dimensions

→ Summary of the Algorithm

Start of recursion → “trapezoid plus segment S”:

\[
F_d^{Arch}(f(x_1, \ldots, x_d), [a_1, b_1] \times \cdots \times [a_d, b_d])
= F_{d-1}^{Arch}(T_d(x_1, \ldots, x_{d-1}), [a_1, b_1] \times \cdots \times [a_{d-1}, b_{d-1}])
+ S_2(f(x_1, \ldots, x_d), [a_1, b_1] \times \cdots \times [a_d, b_d])
\]

with “trapezoid” function

\[
T_d(x_1, \ldots, x_{d-1}) = \frac{b_d-a_d}{2} (f(x_1, \ldots, x_{d-1}, a_d) + f(x_1, \ldots, x_{d-1}, b_d))
\]
Archimedes Quadrature – d Dimensions

→ Summary of the Algorithm (2)

Dimensional recursion for surplus section S:

$$S_d(f(x_1, \ldots, x_d), [a_1, b_1] \times [a_2, b_2] \times \cdots \times [a_d, b_d])$$

$$= F_{d-1}^{Arch} (D_d(x_1, \ldots, x_{d-1}), [a_1, b_1] \times \cdots \times [a_{d-1}, b_{d-1}])$$

$$+ S_d \left(f(x_1, \ldots, x_d), [a_1, b_1] \times \cdots \times [a_{d-1}, b_{d-1}] \times \left[a_2, \frac{a_2+b_2}{2} \right] \right)$$

$$+ S_d \left(f(x_1, \ldots, x_d), [a_1, b_1] \times \cdots \times [a_{d-1}, b_{d-1}] \times \left[\frac{a_2+b_2}{2}, b_2 \right] \right)$$

with $D_d(x_1, \ldots, x_{d-1}) =$

$$\frac{b_d-a_d}{2} \left(f \left(x_1, \ldots, x_{d-1}, \frac{a_d+b_d}{2} \right) - \frac{f(x_1, \ldots, x_{d-1}, a_d) + f(x_1, \ldots, x_{d-1}, b_d)}{2} \right)$$