Algorithms for Scientific Computing

Space-Filling Curves

Michael Bader
Technical University of Munich
Summer 2016
Questions:

- Can this mapping lead to a contiguous "curve"?
- i.e.: Can we find a continuous mapping?
- and: Can this continuous mapping fill the entire square?
Morton Order and Cantor’s Mapping

Georg Cantor (1877):

\[0.01111001 \ldots \rightarrow \left(\begin{array}{c} 0.0110 \ldots \\ 0.1101 \ldots \end{array} \right) \]

- **bijective** mapping \([0, 1] \rightarrow [0, 1]^2\)
- proved identical cardinality of \([0, 1]\) and \([0, 1]^2\)
- provoked the question: is there a **continuous** mapping? (i.e. a curve)
History of Space-Filling Curves

1877: Georg Cantor finds a bijective mapping from the unit interval $[0, 1]$ into the unit square $[0, 1]^2$.

1879: Eugen Netto proves that a bijective mapping $f: I \rightarrow Q \subset \mathbb{R}^n$ can not be continuous (i.e., a curve) at the same time (as long as Q has a smooth boundary).

1886: rigorous definition of curves introduced by Camille Jordan

1890: Giuseppe Peano constructs the first space-filling curves.

1890: Hilbert gives a geometric construction of Peano’s curve; and introduces a new example – the Hilbert curve

1904: Lebesgue curve

1912: Sierpinski curve
Part I

Space-Filling Curves
What is a Curve?

Definition (Curve)

As a curve, we define the image $f_*(\mathcal{I})$ of a continuous mapping $f: \mathcal{I} \rightarrow \mathbb{R}^n$. $x = f(t), t \in \mathcal{I}$, is called parameter representation of the curve.

With:

- $\mathcal{I} \subset \mathbb{R}$ and \mathcal{I} is compact, usually $\mathcal{I} = [0, 1]$.
- the image $f_*(\mathcal{I})$ of the mapping f_* is defined as
 $f_*(\mathcal{I}) := \{f(t) \in \mathbb{R}^n \mid t \in \mathcal{I}\}$.
- \mathbb{R}^n may be replaced by any Euklidian vector space (norm & scalar product required).
What is a Space-filling Curve?

Definition (Space-filling Curve)

Given a mapping $f: \mathcal{I} \to \mathbb{R}^n$, then the corresponding curve $f_*(\mathcal{I})$ is called a space-filling curve, if the Jordan content (area, volume, ...) of $f_*(\mathcal{I})$ is larger than 0.

Comments:

- assume $f: \mathcal{I} \to Q \subset \mathbb{R}^n$ to be surjective (i.e., every element in Q occurs as a value of f);
 then, $f_*(\mathcal{I})$ is a space-filling curve, if the area (volume) of Q is positive.
- if the domain Q has a smooth boundary, then there can be no bijective mapping $f: \mathcal{I} \to Q \subset \mathbb{R}^n$, such that $f_*(\mathcal{I})$ is a space-filling curve (theorem: E. Netto, 1879).
Remember: Construction of the Hilbert Order

Incremental construction of the Hilbert order:
- start with the basic pattern on 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations
Recursive construction of the Hilbert order:

- start with the basic pattern on 4 subsquares
- for an existing grid and Hilbert order: split each cell into 4 congruent subsquares
- order 4 subsquares following the rotated basic pattern, such that a contiguous order is obtained
Definition of the Hilbert Curve’s Mapping

Definition: (Hilbert curve)

- each parameter \(t \in I := [0, 1] \) is contained in a sequence of intervals
 \[I \supset [a_1, b_1] \supset \ldots \supset [a_n, b_n] \supset \ldots, \]

 where each interval results from a division-by-four of the previous interval.

- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares) → “uniquely mapped” based on grammar for Hilbert order

- the 2D sequence of intervals converges to a unique point \(q \) in
 \(q \in Q := [0, 1] \times [0, 1] – q \) is defined as \(h(t) \).

Theorem

\(h : I \rightarrow Q \) defines a space-filling curve, the **Hilbert curve**.
Proof: \(h \) defines a Space-filling Curve

We need to prove:

- \(h \) is a mapping, i.e. each \(t \in \mathcal{I} \) has a \textbf{unique} function value \(h(t) \rightarrow \text{OK} \), if \(h(t) \) is independent of the choice of the sequence of intervals (see next chapter)
- \(h: \mathcal{I} \rightarrow \mathcal{Q} \) is \textbf{surjective}:
 - for each point \(q \in \mathcal{Q} \), we can construct an appropriate sequence of 2D-intervals
 - the 2D sequence corresponds in a unique way to a sequence of intervals in \(\mathcal{I} \) – this sequence defines an original value of \(q \)
 \(\Rightarrow \) every \(q \in \mathcal{Q} \) occurs as an image point.
- \(h \) is \textbf{continuous}
Continuity of the Hilbert Curve

A function $f : \mathcal{I} \rightarrow \mathbb{R}^n$ is uniformly \textbf{continuous}, if
for each $\epsilon > 0$
\quad a $\delta > 0$ exists, such that
for all $t_1, t_2 \in \mathcal{I}$ with $|t_1 - t_2| < \delta$, the following inequality holds:
$$\|f(t_1) - f(t_2)\|_2 < \epsilon$$

\textbf{Strategy for the proof:}
For any given parameters t_1, t_2, we compute an estimate for the distance
$$\|h(t_1) - h(t_2)\|_2$$
(functional dependence on $|t_1 - t_2|$).
\Rightarrow for any given ϵ, we can then compute a suitable δ
Continuity of the Hilbert Curve (2)

- given: $t_1, t_2 \in I$; choose an n, such that $|t_1 - t_2| < 4^{-n}$
- in the n-th iteration of the interval sequence, all interval are of length 4^{-n}
 $$\Rightarrow [t_1, t_2]$$ overlaps at most two neighbouring(!) intervals.
- due to construction of the Hilbert curve, the values $h(t_1)$ and $h(t_2)$ will be in neighbouring subsquares with face length 2^{-n}.
- the two neighbouring subsquares build a rectangle with a diagonal of length $2^{-n} \cdot \sqrt{5}$;
 therefore: $$\|h(t_1) - h(t_2)\|_2 \leq 2^{-n}\sqrt{5}$$

For a given $\epsilon > 0$, we choose an n, such that $2^{-n}\sqrt{5} < \epsilon$.
Using that n, we choose $\delta := 4^{-n}$; then, for all t_1, t_2 with $|t_1 - t_2| < \delta$, we get:
$$\|h(t_1) - h(t_2)\|_2 \leq 2^{-n}\sqrt{5} < \epsilon.$$ Which proves the continuity!
Part II

Arithmetisation of Space-Filling Curves
Space-filling Orders – Required Algorithms

Traversal of h-indexed objects:
- given a set of objects with “positions” $p_i \in Q$
- traverse all objects, such that $\bar{h}^{-1}(p_{i_0}) < \bar{h}^{-1}(p_{i_1}) < \ldots$
- solved by **grammar representation**

Compute mapping:
- for a given index $t \in I$, compute the image $h(t)$

Compute the index of a given point:
- given $p \in Q$, find a parameter t, such that $h(t) = p$
- problem: inverse of h is not unique (h not bijective!)
- define a “technically unique” inverse mapping \bar{h}^{-1}

Mapping and index computation required for random access to a data structure!
Arithmetic Formulation of the Hilbert Curve

Idea:

- interval sequence within the parameter interval \mathcal{I} corresponds to a quaternary representation; e.g.:

 $$\left[\frac{1}{4}, \frac{3}{4}\right] = [04.1, 04.2], \quad \left[\frac{3}{4}, 1\right] = [04.3, 14.0]$$

- self-similarity: every subsquare of the target domain contains a scaled, translated, and rotated/reflected Hilbert curve.

\Rightarrow Construction of the arithmetic representation:

- find quaternary representation of the parameter
- use quaternary coefficients to determine the required sequence of operations
Arithmetic Formulation of the Hilbert Curve (2)

Recursive approach:

\[h(0.4q_1q_2q_3q_4\ldots) = H_{q_1} \circ h(0.4q_2q_3q_4\ldots) \]

- \(\tilde{t} = 0.4q_2q_3q_4\ldots \) is the relative parameter in the subinterval \([0.4q_1, 0.4(q_1 + 1)]\)
- \(h(\tilde{t}) = h(0.4q_2q_3q_4\ldots) \) is the relative position of the curve point in the subsquare
- \(H_{q_1} \) transforms \(h(\tilde{t}) \) to its correct position in the unit square:
 - rotation
 - translation
- expanding the recursion equation leads to:

\[h(0.4q_1q_2q_3q_4\ldots) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \ldots \]
Arithmetic Formulation of the Hilbert Curve (3)

If \(t \) is given in quaternary digits, i.e. \(t = 0_4.q_1 q_2 q_3 q_4 \ldots \), then \(h(t) \) may be represented as

\[
h(0_4.q_1 q_2 q_3 q_4 \ldots) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \ldots \begin{pmatrix} 0 \\ 0 \end{pmatrix}
\]

using the following operators:

\[
\begin{align*}
H_0 &:= \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}y \\ \frac{1}{2}x \end{pmatrix} & \quad H_1 &:= \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}x \\ \frac{1}{2}y + \frac{1}{2} \end{pmatrix} \\
H_2 &:= \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}x + \frac{1}{2} \\ \frac{1}{2}y + \frac{1}{2} \end{pmatrix} & \quad H_3 &:= \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{1}{2}y + 1 \\ -\frac{1}{2}x + \frac{1}{2} \end{pmatrix}
\end{align*}
\]
Matrix Form of the Operators H_0, \ldots, H_3

In matrix notation, the operators H_0, \ldots, H_3 are:

$$H_0 := \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \quad \quad \quad \quad H_1 := \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$$

$$H_2 := \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \\ \frac{1}{2} \end{pmatrix} \quad \quad \quad \quad H_3 := \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}$$

Governing operations:

- scale with factor $\frac{1}{2}$
- translate start of the curve, e.g. $+ \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}$
- reflect at x and y axis (for H_3)
A First Comment Concerning Uniqueness

Question:
Are the values $h(t)$ independent of the choice of quaternary representation of t concerning trailing zeros:

$$h(0.4.q_1 \ldots q_n) = h(0.4.q_1 \ldots q_n000 \ldots),$$

Outline of the proof:

1. compute the limit $\lim_{n \to \infty} H_0^n$, or $\lim_{n \to \infty} H_0^n \left(\begin{array}{c} x \\ y \end{array}\right)$;

 Result: $\lim_{n \to \infty} H_0^n \left(\begin{array}{c} x \\ y \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$

2. show: $\left(\begin{array}{c} 0 \\ 0 \end{array}\right)$ is a fixpoint of H_0, i.e. $H_0 \left(\begin{array}{c} 0 \\ 0 \end{array}\right) = \left(\begin{array}{c} 0 \\ 0 \end{array}\right)$.

\Rightarrow independence of trailing zeros, as H_{q_n} is applied to the fixpoint!
A Second Comment Concerning Uniqueness

Question:

Are the values \(h(t) \) independent of the choice of quaternary representation of \(t \), as in:

\[
h(0.4.q_1 \ldots q_n) = h(0.4.q_1 \ldots q_{n-1}(q_n - 1)333 \ldots), \quad q_n \neq 0
\]

(if \(q_n = 0 \), then consider \(0.4.q_1 \ldots q_n = 0.4.q_1 \ldots q_{n-1} \))

Outline of the proof:

1. compute the limits \(\lim_{n \to \infty} H_0^n \) and \(\lim_{n \to \infty} H_3^n \).

2. for \(q_n = 1, 2, 3 \), show that

\[
H_{q_n} \circ \lim_{n \to \infty} H_0^n = H_{q_n-1} \circ \lim_{n \to \infty} H_3^n
\]
Algorithm to Compute the Hilbert Mapping

Task: given a parameter t, find $h(t) = (x, y) \in Q$

Most important subtasks:

1. compute quaternary digits – use multiply by 4:

 $$4 \cdot 0.4q_1q_2q_3q_4\ldots = (q_1.q_2q_3q_4\ldots)_4$$

 and cut off the integer part

2. apply operators H_q in the correct sequence – use recursion:

 $$h(0.4q_1q_2q_3q_4\ldots) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \ldots \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

3. stop recursion, when a given tolerance is reached
 \[\Rightarrow \text{track size of interval or set number of digits} \]
Implementation of the Hilbert Mapping

Algorithm 1 \textit{hilbert}(t, \textit{eps})

1: if \textit{eps} > 1 then
2: \hspace{1em} return (0, 0)
3: else
4: \hspace{1em} q ← \textit{floor}(4 \ast t)
5: \hspace{1em} r ← 4 \ast t - q
6: \hspace{1em} (x, y) ← \textit{hilbert}(r, 2 \ast \textit{eps})
7: switch \textit{q} do
8: \hspace{2em} case \textit{q} = 0: return (y/2, x/2)
9: \hspace{2em} case \textit{q} = 1: return (x/2, y/2 + 0.5)
10: \hspace{2em} case \textit{q} = 2: return (x/2 + 0.5, y/2 + 0.5)
11: \hspace{2em} case \textit{q} = 3: return (-y/2 + 1.0, -x/2 + 0.5)
12: \hspace{1em} end
13: end if
Computing the Inverse Mapping

Task: find a parameter t, such that $h(t) = (x, y)$ for a given $(x, y) \in Q$

Problem: h not bijective; hence, t is not unique

\Rightarrow a strict inverse mapping h^{-1} does not exist

\Rightarrow instead, compute a “technically unique” inverse \bar{h}^{-1}

Recursive Idea:

- determine the subsquare that contains (x, y)
- transform (using the inverse operations of H_0, \ldots, H_3) the point (x, y) into the original domain $\rightarrow (\tilde{x}, \tilde{y})$
- recursively compute a parameter \tilde{t} that is mapped to $$(\tilde{x}, \tilde{y})$$
- depending on the subsquare, compute t from \tilde{t}
Inverse Operators of H_0, \ldots, H_3

Example → compute inverse of operator H_0:

\[
\begin{pmatrix}
 x \\
 y
\end{pmatrix}
= H_0 \begin{pmatrix}
 \tilde{x} \\
 \tilde{y}
\end{pmatrix}
= \begin{pmatrix}
 \frac{1}{2} \tilde{y} \\
 \frac{1}{2} \tilde{x}
\end{pmatrix}
\Rightarrow
\begin{pmatrix}
 \tilde{x} \\
 \tilde{y}
\end{pmatrix}
= \begin{pmatrix}
 2y \\
 2x
\end{pmatrix}
\]

By similar computations:

\[
H_0^{-1} := \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 2y \\
 2x
\end{pmatrix}
\quad H_1^{-1} := \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 2x \\
 2y - 1
\end{pmatrix}
\]

\[
H_2^{-1} := \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 2x - 1 \\
 2y - 1
\end{pmatrix}
\quad H_3^{-1} := \begin{pmatrix}
 x \\
 y
\end{pmatrix}
\rightarrow
\begin{pmatrix}
 -2y + 1 \\
 -2x + 2
\end{pmatrix}
\]
Algorithm to Compute the Inverse Mapping

\(\overline{h}^{-1} := \text{proc}(x, y) \)

(1) determine the subsquare \(q \in \{0, \ldots, 3\} \) by checking
\(x <\gg \frac{1}{2} \) and \(y <\gg \frac{1}{2} \):

\[
\begin{array}{cc}
1 & 2 \\
0 & 3 \\
\end{array}
\]

(treat cases \(x, y = \frac{1}{2} \) in a unique way: either \(<\) or \(>\)
\(\Rightarrow \text{technically unique inverse} \))

(2) set \((\tilde{x}, \tilde{y}) := H_q^{-1}(x, y)\)

(3) recursively compute \(\tilde{t} := \overline{h}^{-1}(\tilde{x}, \tilde{y}) \)

(4) return \(t := \frac{1}{4} (q + \tilde{t}) \) as value

(stopping criterion still to be added)
Implementation of the Inverse Hilbert Mapping

Algorithm 2 $\text{hilbertInverse}(x, y, \text{eps})$

1: if $\text{eps} > 1$ then return 0
2: if $x \leq 0.5$ then
3: if $y \leq 0.5$ then
4: return $(0 + \text{hilbertInverse}(2 \cdot y, 2 \cdot x, 4 \cdot \text{eps}))/4$
5: else
6: return $(1 + \text{hilbertInverse}(2 \cdot x, 2 \cdot y - 1, 4 \cdot \text{eps}))/4$
7: end if
8: else
9: if $y \leq 0.5$ then
10: return $(3 + \text{hilbertInverse}(1 - 2 \cdot y, 2 - 2 \cdot x, 4 \cdot \text{eps}))/4$
11: else
12: return $(2 + \text{hilbertInverse}(2 \cdot x - 1, 2 \cdot y - 1, 4 \cdot \text{eps}))/4$
13: end if
14: end if