Algorithms for Scientific Computing

Hierarchical Methods and Sparse Grids
– Algorithms and Data Structures for Sparse Grids –

Michael Bader
Technical University of Munich
Summer 2016
Part I

Algorithms vs. Data Structures

- Consider typical sparse grid algorithms, such as: hierarchization/dehierarchization, integration, classification, data mining, solution of PDE, ...
- Important: *adaptive* representation
- Algorithms depend on data structure:
 - Efficient traversal of sparse grid necessary
 - Thus, we deal with data structures for sparse grids, too
Data Structures ($d = 1$)

- How to store function $u : [0, 1] \rightarrow \mathbb{R}$ in hierarchical representation (i.e. surplusses $v_{l,i}$)?
- Simplest choice: array → does not allow adaptivity
- Order and store grid points and associated values in binary tree
 - Root is node $x_{1,1} = 1/2$
 - Children of node $x_{l,i}$ are – if existent – the grid points $x_{l+1,2i-1}$ and $x_{l+1,2i+1}$ of level $l + 1$
 - Alternative point of view if child does not exist: Complete subtree of binary tree starting from child with all surplusses set to 0
Data Structures \((d = 1) \) (2)
Typical Algorithms \((d = 1)\)

Hierarchization and Dehierarchization

- Prototype for typical algorithm (c.f. tutorials)

- Our data structure has to allow
 1. Iteration over all grid points, considering the hierarchical relations
 - E.g. for hierarchization:
 - first handle all grid points in the support of \(\phi_{l,i}\),
 - then compute \(v_{l,i}\)
 2. Access to *hierarchical neighbors*: grid points at interval boundaries of support of \(\phi_{l,i}\) (if possible – exception for points 0 and 1 as not in the tree), e.g. to compute

\[
v_{l,i} = u_{l,i} - \frac{1}{2}(u_l + u_r).
\]
Typical Algorithms \((d = 1)\) (2)

- Hierarchical neighbors are easy to find geometrically
 \[x_{l,i-1}, \quad x_{l,i+1} \]
- But have even indices \(\Rightarrow\) really are on another level \((< l)\)
- In the binary tree structure:
 - Can be found on way from root to node
 - One is parent node
- For hierarchization/dehierarchization: pass hierarchical neighbors as additional parameters
- Developing algorithms:
 - Try to store all information to process one node at the node and its hierarchical neighbors
 - Access to other nodes typically expensive
 - Tree traversal with “supply of hierarchical neighbors” only linear in number of nodes
Data Structures and Typical Algorithms \((d > 1)\)

- What data structure to use in more than one dimension?
- Algorithmically: use construction of basis functions as product of 1D hat functions. Ideally:
 - Use a loop \(1, \ldots, d\) over the dimensions
 - Apply 1\(d\) algorithm on one-dimensional structures in each dimension (see also worksheet 7)

\(\Rightarrow\) Need access to hierarchical neighbors in each spatial direction; implies to create binary tree structure in each dimension

- Disadvantages:
 - Storage requirements \((2d\) pointers\)
 - High effort to keep structure consistent when inserting or deleting points
Data Structures and Typical Algorithms ($d > 1$) (2)

If you watch closely, you recognize separate binary tree structures for rows (black) and columns (magenta)
Data Structures and Typical Algorithms \((d > 1)\) (3)

Often better:

- Store in a node only two pointers for one direction (e.g. \(x_1\))
- A binary tree of nodes is a row (a 1\(d\) structure parallel to the \(x_1\) axis)
- For next spacial direction \(x_2\), only a binary tree in \(x_2\) direction required
- Stores one plane parallel to \(x_1-x_2\) coordinate plane; nodes are the binary trees with 1\(d\) structures
- For each additional spatial direction \(x_d\) build binary tree with \((d - 1)\)-dimensional structures as nodes
- Disadvantage: Access to hierarchical neighbors not that easy any more (except for \(x_1\)-direction)
- But can be achieved without much more computational effort by suitable reordering of loops and tree traversals
Data Structures and Typical Algorithms ($d > 1$) (4)

Already more clear: One plane (two-dimensional structure) consists of one binary tree (magenta) of which the nodes are binary trees (black) for each row.
Data Structures and Typical Algorithms ($d > 1$) (5)

Hash table

- Much more comfortable (and not too inefficient) alternative
- Store coefficients as target values, with, e.g., (\vec{l}, \vec{i}) as keys
- No need to care about tree structures
- Only requires computation of indices of accessed nodes (hierarchical neighbor, . . .)

\Rightarrow Best solution for your own sparse grid experiments

Further assumptions on data structures

- Algorithms will assume that all hierarchical neighbors exist for each grid point

\Rightarrow If creating grid points adaptively, create them if necessary
- No further assumptions
Data Structures for Regular Sparse Grids

Array-Based Data Structures

- Cartesian meshes with $2^{l_1} \times 2^{l_2} \times \ldots \times 2^{l_d}$ grid points
- suggests classical array indexing similar to $i \cdot n + j$
 → question: what is the “fastest-running” index?
- number of grid points per subspace ist constant along “diagonals”, i.e., for constant $\|l\|_1$
 → sequentialized storage scheme for subspaces
 → start of each subgrid can be easily computed
 → index offset to hierarchical neighbours may be computed
- additional considerations: best layout for vectorization, parallelization, etc.

Towards Dimensional Adaptivity

- add or remove entire subspaces/subgrids in an adaptive fashion
- may introduce higher accuracy only in selected dimensions
Data Structures for Regular Sparse Grids (2)

Example – Array-Based Data Structures (Buse et al., ISPDC 2012)

• note uniform vs. non-uniform index offset for access to hierarchical parents/neighbours in x- vs. y direction
Summary

Data Structures

- array-based for regular sparse grids and combination technique (see tutorials)
- hierarchical adaptivity reflected by tree-based data structures (but: more complicated in higher dimensions)
- hash-based data structures
- dimensional adaptivity allows to stick to array-based data structures

Algorithms

- hierarchisation and dehierarchisation: tree-based recursion plus “hierarchical neighbours”
- archimedes quadrature \rightarrow recursion on dimensions
- much more complicated algorithms, if we want to use sparse grids for solution of partial differential equations
Part II

Classification with Sparse Grids
Recall: Classification in 1D

- Given: training set (normalized)
 \[S := \{(\tilde{x}_i, y_i) \in [0, 1] \times \{+1, -1\}\}_{i=1}^m \]

- Find approximation \(f_N \):
 \[f_N(x) = \sum_{j=1}^{N} v_j \phi_j(x) \]

- Classical approach: minimize quadratic error
 \[\sum_{i=1}^{m} (f_N(x_i) - y_i)^2 = \min \Leftrightarrow \sum_{i=1}^{m} \left(\sum_{j=1}^{N} v_j \phi_j(x_i) - y_i \right)^2 = \min \]

- Solution obtained via “least squares”: \(G^T G \mathbf{v} = G^T \mathbf{y} \), where \(G_{ij} = \phi_j(x_i) \)
Classification and Regularization

- Possible problem: “overfitting”
 - include penalty term to minimize gradient (or similar property) of f_N to avoid oscillations due to noise in training data
- Solve regularized least squares problem

$$f_N = \arg \min_{f_N \in V_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\vec{x}_i))^2 + \lambda \| \nabla f_N \|_{L_2}^2 \right)$$

with $\| g \|_{L_2}^2 := \int g^2 \, d\vec{x}$

- minimize quadratical error and prevent overfitting
 - Parameter λ to control trade-off
Classification and Regularization (2)

How to minimize $\lambda \|\nabla f_N\|_2^2$:

- Piecewise linear function f_N:

\[
\nabla f_N(x) = f'_N(x) = \sum_{i=1}^{N} v_i \phi'_i(x) \quad \Rightarrow \quad \|\nabla f_N\|_2^2 = \int \left(\sum_{i=1}^{N} v_i \phi'_i(x) \right)^2 dx
\]

- Minimize ∇f_N set partial derivatives w.r.t. all v_i to 0:

\[
\begin{align*}
\frac{\partial}{\partial v_k} \left(\|\nabla f_N\|_2^2 \right) &= \cdots = 2 \sum_{j} C_{jk} v_j, \quad \text{with } C_{jk} := \int \phi'_j(x) \phi'_k(x), dx
\end{align*}
\]

- Thus: to solve regularized least squares problem

\[
f_N = \frac{1}{m} \operatorname*{arg\ min}_{f_N \in V_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\bar{x}_i))^2 + \lambda \|\nabla f_N\|_2^2 \right)
\]

solve linear system of the following form: $\frac{1}{m} G^T G v + \lambda C v = \frac{1}{m} G^T y$
Example 1 – Ripley Data Set

- Artificial, 2d data set, frequently used as a benchmark (mixture of Gaussian distributions plus noise)
- 250 points for training, 1000 to test on
- Constructed to contain 8% of noise
Ripley Data Set Using Sparse Grids

- Compute adaptive sparse grid classifier, e.g.:

- Best accuracy: 91.5% on test data (max. 92%)
- Suitable treatment of boundary needed
From Minimization to System of Linear Equations

• d-dim. problem; find function \(f_N(\vec{x}) = \sum \sum v_{\vec{i},i} \phi_{\vec{i},i}(\vec{x}) \) such that

\[
\begin{align*}
f_N = \arg \min_{f_N \in V_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\vec{x}_i))^2 + \lambda \| \nabla f_N \|_{L_2}^2 \right)
\end{align*}
\]

• Again leads to \(N \) linear equations for \(N \) unknowns (\(m \) data points)

\[
\left(\frac{1}{m} G^T G + \lambda C \right) \vec{v} = \frac{1}{m} G^T \vec{y},
\]

Questions when using Sparse Grids:

• How do the matrices \(G \) and \(C \) look like?
• Should we explicitly set up \(G \) and \(C \) or is there a better solution?
• In 1D: \(C \) is a diagonal matrix! (However: \(G \) is complicated)
• In general: level-wise hierarchical/recursive algorithm!
Towards a Hierarchical/Recursive Algorithm

- Consider right-hand side \(\frac{1}{m} G^T \vec{y} \):
\[
(G^T \vec{y})_i = \sum_j G_{ij} y_j = \sum_j \phi_i(\vec{x}_j)y_j
\]

(note that we switch to 1D numbering of basis functions \(\rightsquigarrow \phi_i \))

- Consider a nodal basis \(\phi_i(\vec{x}_j) = \delta_{ij} \), then \(G^T \) easy to set up and \((G^T \vec{y})_i \) easy to compute

- Hierarchical transform when using hierarchical basis \(\psi_i(x) \)?

Approach:

- Consider vectors of basis functions \(\vec{\psi} = (\psi_i)_i \) and \(\vec{\phi} = (\phi)_i \)
- Show that then \(\psi = H\phi \) (matrix-vector product)
- Then: \(\sum_j \psi_i(x_j)y_j = \sum_j (H\phi)_i(x_j)y_j = (HG^T \vec{y})_i \)
- Do not set up matrix \(HG^T \rightarrow \) perform as two matrix-vector products
- Now: how does \(H \) look like and how do we compute \(H\vec{y} \)?
Recall: Hierarchical Basis Transformation

- represent “wider” hat function $\phi_{1,1}(x)$ via basis functions $\phi_{2,j}(x)$
 \[\phi_{1,1}(x) = \frac{1}{2} \phi_{2,1}(x) + \phi_{2,2}(x) + \frac{1}{2} \phi_{2,3}(x)\]
- consider vector of hierarchical/nodal basis functions and write transformation as matrix-vector product:
 \[
 \begin{pmatrix}
 \psi_{2,1}(x) \\
 \psi_{2,2}(x) \\
 \psi_{2,3}(x)
 \end{pmatrix}
 :=
 \begin{pmatrix}
 \phi_{2,1}(x) \\
 \phi_{1,1}(x) \\
 \phi_{2,3}(x)
 \end{pmatrix}
 =
 \begin{pmatrix}
 1 & 0 & 0 \\
 \frac{1}{2} & 1 & \frac{1}{2} \\
 0 & 0 & 1
 \end{pmatrix}
 \begin{pmatrix}
 \phi_{2,1}(x) \\
 \phi_{2,2}(x) \\
 \phi_{2,3}(x)
 \end{pmatrix}
 \]
Recall: Hierarchical Basis Transformation (2)

Consider “semi-hierarchical” transform:

\[\Phi_1, \Phi_2, \Phi_3, \Phi_4, \Phi_5, \Phi_6, \Phi_7 \]

\[\xrightarrow{-\rightarrow} \]

\[\Psi_1, \Psi_2, \Psi_3, \Psi_5, \Psi_6, \Psi_7 \]

Matrices for change of basis are then: \((H_3^{(2)})\) to transform to hierarchical basis)

\[
H_3^{(1)} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]

\[
H_3^{(2)} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 1 & 0 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}
\]
Recall: Hierarchical Basis Transformation (3)

Level-wise hierarchical transform:

- hierarchical basis transformation: \(\psi_{n,i}(x) = \sum_j H_{i,j} \phi_{n,j}(x) \)

- written as matrix-vector product: \(\vec{\psi}_n = H_n \vec{\phi}_n \)

- \(H_n \vec{\phi}_n \) can be performed as a sequence of level-wise transforms:

 \[
 \text{For } k \text{ from 1 to } n-1 \\
 \vec{\phi}_n := H_n^{(k)} \vec{\phi}_n
 \]

- matrix \(H_n \) for hierarchical basis transformation is thus:

 \[
 H_n = H_n^{(n-1)} H_n^{(n-2)} \ldots H_n^{(2)} H_n^{(1)}
 \]

- where each level-wise transform \(H_n^{(k)} \vec{\phi}_n \) has a simple loop implementation:

 \[
 \text{For } j \text{ from } 2^k \text{ to } 2^n \text{ step } 2^k \\
 \phi_{n,j} := \frac{1}{2} \phi_{n,j-2^k-1} + \phi_{n,k} + \frac{1}{2} \phi_{n,j+2^k-1}
 \]
Notes on Implementation

- in higher dimensions: nodal basis leads to simple matrix structures, but the systems of equations are difficult to solve
 → **most important:** curse of dimensionality kicks in
- hierarchical basis leads to system of equations that can be solved efficiently;
 → complicated matrix structures,
 → algorithms based on hierarchization/dehierarchization
- **sparse grids:** implementation is not just a hierarchization of node basis
 → complicated hierarchical, recursive algorithms
 → mitigates curse of dimensionality!