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Exercise 1

According the Hint:

If Xl = −X12−l , then X6 = −X12−6 holds. This is possible only if also X6 = 0 holds. Analog
we get X0 = −X12−0 = −X12. Here the value X12 is the declination for the ascension of
360◦, which is the same as the declination value for 0◦ due to the periodicity of the data.
Thus, it must also apply that X0 = X12. So we can conclude that X0 = 0 must hold.

With these considerations we can compute the values ak and bk, for example with the
IPython-notebook Worksheet 1.ipynb.

According the coefficients:

We guess that the interpolation of the axis symmetrical data should only need the axis sym-
metrical basis functions (i.e. all cos functions), while the interpolation of the point symmet-
rical data will only depends on the point symmetric basis functions (i.e. all sin functions).
Hence, in one case all coefficients bk = 0, while in the other all ak = 0.

To show this we can insert the symmetrical constraints into the equation for the interpola-
tion

Xl = a0 +
5

∑
k=1

(
ak cos

(
πkl

6

)
+ bk sin

(
πkl

6

))
+ a6 cos (πl) . (1)

For X12−l it must hold:

X12−l = a0 +
5

∑
k=1

(
ak cos

(
πk(12− l)

6

)
+ bk sin

(
πk(12− l)

6

))
+ a6 cos (π(12− l))

= a0 +
5

∑
k=1

(
ak cos

(
2πk− πkl

6

)
+ bk sin

(
2πk− πkl

6

))
+ a6 cos (12π − lπ)

= a0 +
5

∑
k=1

(
ak cos

(
πkl

6

)
− bk sin

(
πkl

6

))
+ a6 cos (πl)

1



If Xl = X12−l , then holds Xl − X12−l = 0, i.e.:

a0 +
5

∑
k=1

(
ak cos

(
πkl

6

)
+ bk sin

(
πkl

6

))
+ a6 cos (πl)

−
(

a0 +
5

∑
k=1

(
ak cos

(
πkl

6

)
− bk sin

(
πkl

6

))
+ a6 cos (πl)

)
= 0.

Simplified this results in (for all l):

2
5

∑
k=1

bk sin
(

πkl
6

)
= 0

⇒ bk = 0 for all k.

Remark: To be precise we would need to show that the solution bk = 0 for all k is the
only solution (uniqueness). We will skip this step here and note further that we would
generally need to show the uniqueness of the trigonometric interpolation, since otherwise
the Exercise would not have been properly stated at all. The uniqueness follows from the
fact that the matrix is invertible (See the matrix from the lecture, which is, however, for the
complex DFT).

Analog we get, if Xl = −X12−l which means Xl + X12−l = 0:

2a0 + 2
5

∑
k=1

ak cos
(

πkl
6

)
+ 2a6 cos (πl) = 0

⇒ ak = 0 for all k.

Exercise 2

In accordance with standard FFT-splitting, we form the sum formula for the ck in:

ck =
1
12

11

∑
l=0

Xle−i2πkl/12

=
1
12

5

∑
l=0

(
X2le−i2πk(2l)/12 + X2l+1e−i2πk(2l+1)/12

)
=

1
12

(
5

∑
l=0

X2le−i2πkl/6 + e−i2πk/12
5

∑
l=0

X2l+1e−i2πkl/6

)
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We use this to compute the ck for k = 0, . . . , 5. To compute c6 we reformulate as following:

c6 = c0+6 =
1
12

(
5

∑
l=0

X2le−i2π(0+6)l/6 + e−i2π(0+6)/12
5

∑
l=0

X2l+1e−i2π(0+6)l/6

)

=
1
12

(
5

∑
l=0

X2le−i2π0l/6 + e−i2π0/12 · e−i2π6/12
5

∑
l=0

X2l+1e−i2π0l/6

)

=
1
12

 5

∑
l=0

X2le−i2π0l/6 − e−i2π0/12︸ ︷︷ ︸
=1

5

∑
l=0

X2l+1e−i2π0l/6

 .

This is now the butterfly scheme for c0 and c6!

Now we define the coefficients for the required length 6 DFTs

c̃k :=
5

∑
l=0

X2le−i2πkl/6

ĉk :=
5

∑
l=0

X2l+1e−i2πkl/6,

for each k = 0, . . . , 5, the coefficients ck are calculated:

ck =
1
12

(
c̃k + e−i2πk/12 · ĉk

)
for k = 0, . . . , 5

c6 =
1
12

(c̃0 − ĉ0) .

We calculate the Fourier transform of the 12 real data, dividing them into 2 real Fourier
transforms of length 6.

Calculation of the length 6-DFTs using length 3 DFTs

In exactly the same was, the coefficients c̃k and ĉk are calculated according to the FFT-
Butterfly scheme:

c̃k =
2

∑
l=0

X4le−i2πkl/3 + ei2πk/6
2

∑
l=0

X4l+2e−i2πkl/3

c̃k+3 =
2

∑
l=0

X4le−i2πkl/3 − ei2πk/6
2

∑
l=0

X4l+2e−i2πkl/3
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and

ĉk =
2

∑
l=0

X4l+1e−i2πkl/3 + ei2πk/6
2

∑
l=0

X4l+3e−i2πkl/3

ĉk+3 =
2

∑
l=0

X4l+1e−i2πkl/3 − ei2πk/6
2

∑
l=0

X4l+3e−i2πkl/3,

for each k = 0, 1, 2.

since all Xl are real, we can use the symmetry and write

ĉ6−k = ĉ∗k and c̃6−k = c̃∗k .

Since ĉ and c̃ are each 6-periodic, the following holds: ĉ−k = ĉ∗k respectively, c̃6−k = c̃∗k but
the index k for this case is k = 0, . . . , 6.

We define the above required four DFTs of length 3 as

F (0,4,8)
k :=

2

∑
l=0

X4le−i2πkl/3 F (1,5,9)
k :=

2

∑
l=0

X4l+1e−i2πkl/3

F (2,6,10)
k :=

2

∑
l=0

X4l+2e−i2πkl/3 F (3,7,11)
k :=

2

∑
l=0

X4l+3e−i2πkl/3.

Then the c̃ks are computed from the following Butterflies:

c̃k = F (0,4,8)
k + eiπk/3F (2,6,10)

k for k = 0, 1, 2

c̃3 = F (0,4,8)
0 −F (2,6,10)

0

c̃k = c̃∗N−k for k = 4, 5

and the ĉk as well.

ĉk = F (1,5,9)
k + eiπk/3F (3,7,11)

k for k = 0, 1, 2

ĉ3 = F (1,5,9)
0 −F (3,7,11)

0

ĉk = ĉ∗N−k for k = 4, 5
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Computation of the 3-DFTs

We can easily compute the 3-DFTs relatively easy, e.g.:

F (0,4,8)
0 =

2

∑
l=0

X4l

F (0,4,8)
1 =

2

∑
l=0

X4le−i2πl/3

F (0,4,8)
2 =

{
F (0,4,8)

1

}∗

Exercise 3: DFT of Mirrored data

Steps:

¬ Index shift. Note that we do not interpret the sum as an empty sum, but as a short-
hand notation for writing out all the terms separately. Following this idea, we switch
the summation bounds in the next step.

­ ω−kN
N = e

−2πikN
N = 1

® Change the summation bounds from 1, . . . , N to 0, . . . , N− 1. We can do this because

it is f0 = fN by definition. Furthermore, it is ωkn
N

∣∣∣
n=0

= e0 = 1 = e
2πikN

N = ωkn
N

∣∣∣
n=N

.

F̃k =
1
N

N−1

∑
n=0

f̃nω−kn
N

=
1
N

N−1

∑
n=0

fN−nω−kn
N

¬
=

1
N

1

∑
n=N

fnω
−k(N−n)
N

=
1
N

N

∑
n=1

fnω−kN
N ωkn

N

­
=

1
N

N

∑
n=1

fnωkn
N

®
=

1
N

N−1

∑
n=0

fnωkn
N

=
1
N

N−1

∑
n=0

fnω
−(−k)n
N

= F−k
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Thus, the Fourier coefficients are also mirrored. The coefficients F−k belong to the Ansatz-
functions ei2π(−k)x, which unlike the original Ansatzfunctions, ei2πkx, move in the ”mir-
rored”’ direction. Since the coefficients remain the same, the result is the ”mirrored”’ sig-
nal.

Exercise 4: DFT and ”‘Padding”’

For the classic Fast Fourier Transform the number of discrete data must be a power of two.
If this is not the case, one could try to fill up the dataset by ”zero” entries like this:

f̂n :=
{

fn if n ≤ N − 1
0 if N ≤ n ≤ M− 1

The Fourier coefficients F̂k of the extended dataset then add up to

F̂k =
1
M

M−1

∑
n=0

f̂nω−kn
M =

1
M

N−1

∑
n=0

fnω−kn
M .

This looks like if the F̂k are just the N
M multiple of the original coefficients from the transform

of length N:

Fk =
1
N

N−1

∑
n=0

fnω−kn
N .

However, this is not the case, since

ω−kn
N 6= ω−kn

M .

So, the frequencies of the base functions do change.

If we take the Fourier transform as an interpolation problem, then the extension of the
dataset is equal to an increment of the number of supporting points. Since the observed
interval stays the same ([0, 2π]), the distance between the supporting points must decrease.
By padding the dataset with ”zeros” we actually compressed the signal and therefore the
signal must be assembled from higher-frequency oscillations.

We go on with the equation from above. First we show that

ω−kn
M = e−i2πkn/M = e−i2πkn(N/M)/N =

(
ω−kn

N

)N/M
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holds and therefore

F̂k =
1
M

N−1

∑
n=0

fn

(
ω−kn

N

)N/M
=

N
M
· 1

N

N−1

∑
n=0

fnω
−k(N/M)n
N

In general we cannot express this by the Fk. But if kN/M is an integer number, we get

F̂k =
N
M
· 1

N

N−1

∑
n=0

fnω
−k(N/M)n
N =

N
M

FkN/M

Explanation: The Fourier components F̂k of the compressed signal belong to the wave num-
ber k. In the original signal the same component would belong to the oscillation with wave
number kN/M. If kN/M is an integer number, this Fourier component is also computed
in the ”short” transformation and can be taken from the ”long” transformation directly
without being changed. If kN/M is not an integer number, then there is no according
component in the ”short” transformation.
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