General Instructions

Material:
You may only use one hand-written sheet of paper (size A4, on both pages).
Any other material including electronic devices of any kind is forbidden.
Use only the exam paper that was handed out to solve the exercises. If the space on a page is not enough, choose any empty space provided and state where you continue with your solution. For additional notes and sketches, you can obtain separate exam sheets.
Do not use pencil, or red or green ink.

Errors and ambiguities:
If you think that a question contains an error or ambiguity, then correct it or choose an interpretation that allows you to complete the exercise.
Make sure to point out your correction or disambiguation in your solution!
Note that questions, esp. concerning errors or ambiguities, will not be answered during the exam.

General hint:
Often, exercises b), c), etc. can be solved without the results from the previous exercise a); if you are stuck with exercise a), then don’t immediately skip exercises b), c), etc.

Maximum score:
The total number of points for all exercises exceeds 40, however grades will be computed relative to a maximum score of 40 points.

Working time:
100 minutes.

Please switch off your cell phones!
1 Quarter-Wave Discrete Sine Transform \((\approx 5 + 3 + 3 = 11 \text{ points})\)

Given is a real-valued input data-set \(f_0, \ldots, f_{2N-1} \in \mathbb{R}\) (i.e., length \(2N\)) with the symmetry conditions \(f_{2N-n-1} = -f_n\). Complete the tasks below.

a) Show that the corresponding Quarter-Wave Fourier coefficients

\[
F_k = \frac{1}{2N} \sum_{n=0}^{2N-1} f_n \omega_n^{-k(n+\frac{1}{2})}
\]

have only imaginary values and can be written as

\[
F_k = -\frac{i}{N} \sum_{n=0}^{N-1} f_n \sin \left(\frac{\pi k}{N} \left(n + \frac{1}{2}\right)\right)
\]
b) Show that the coefficients F_k of the QW-DST again justify a symmetry condition!
c) Let real-FFT(g,N) be a procedure that computes the Fourier coefficients G_k efficiently from a real data-set g that consists of $2N$ values g_n.

Describe a procedure QW-DST(g,N) that uses the given procedure real-FFT to compute the coefficients F_k for $k = 0, \ldots, N-1$ from equation (2) for the (non-symmetrical) real data f_0, \ldots, f_{N-1}, stored in the parameter field g.

Note: real-FFT(g,N) does not compute a QW-RDFT!
Wavelets Approximation

The cubic Battle-Lemarié wavelet is given by the coefficients \(\{c_k\} \):

\[
c_0 = \frac{1}{8}, \quad c_1 = \frac{1}{2}, \quad c_2 = \frac{3}{4}, \quad c_3 = \frac{1}{2}, \quad c_4 = \frac{1}{8}.
\]

(3)

Starting with the mother hat function

\[
\phi_0(t) = \max\{1 - |t|, 0\},
\]

(4)

we can compute an approximation of the scaling and wavelet functions by iterating over their dilation equations.

Ignoring the scaling factor such as \(\frac{1}{\sqrt{2}} \), the dilation equation for the scaling (father) function is given by

\[
\phi_{n+1}(t) = \sum_{k=0}^{4} c_k \cdot \phi_n(2t - k),
\]

(5)

and the dilation equation for the wavelet (mother) function is given by

\[
\psi_{n+1}(t) = \sum_{k=0}^{4} (-1)^k c_{K-k} \cdot \phi_n(2t - k), \quad \text{where} \ K = 4.
\]

(6)

a) In the given figure below, sketch the first approximation of the scaling function \(\phi_1(t) \) and the wavelet function \(\psi_1(t) \) on the interval \([-1, 3]\).

Hint 1: Use the given helper table on the right to compute the values of \(\phi_1(t) \) and \(\psi_1(t) \) at given points to help for your sketching.

Hint 2: Backup figure and helper table is provided in case you need to correct your solutions.

<table>
<thead>
<tr>
<th>(t)</th>
<th>(\phi_1(t))</th>
<th>(\psi_1(t))</th>
</tr>
</thead>
<tbody>
<tr>
<td>-1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>-0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>0.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.0</td>
<td></td>
<td></td>
</tr>
<tr>
<td>2.5</td>
<td></td>
<td></td>
</tr>
<tr>
<td>3.0</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Backup figure and helper table

\[\begin{array}{c|c|c}
\phi_1(t) & \psi_1(t) \\
\hline
 t = -1.0 & \\
 t = -0.5 & \\
 t = 0.0 & \\
 t = 0.5 & \\
 t = 1.0 & \\
 t = 1.5 & \\
 t = 2.0 & \\
 t = 2.5 & \\
 t = 3.0 & \\
\end{array}\]
b) By observation, what conclusion can you draw for the integral of the obtained wavelet, i.e., \(\int_{-\infty}^{+\infty} \psi_1(t) \)?

Explain, what this implies for wavelets in general.
3 Sparse Grids (≈ 6 + 4 = 10 points)

a) Name two different data structures for sparse grids. For each of them, discuss the following points:

 (i) Hierarchization/dehierarchization (Hint: consider data access and traversal complexity)
 (ii) Spatial adaptivity
 (iii) Memory consumption
b) Discuss whether the following two grids are valid sparse grids. Explain your reasons. You can annotate the grids directly.
Figure 1: First two iterations of a Peano-Meander curve.

4 Space-filling Curves - Peano-Meander Curve ($\approx 5+3+3=11$ points)

Figure 1 depicts the first two iterations of a Meander type Peano curve.

a) Find a grammar which constructs the Peano-Meander curve from figure 1.
b) Arithmetical representation of the Peano-Meander curve

1) Given is a parametrization \(q(t) \) of the Peano-Meander curve

\[
q(0.n_1n_2n_3n_4...) = Q_{n_1} \circ Q_{n_2} \circ Q_{n_3} \circ Q_{n_4} \circ ... \left(\begin{array}{c} 0 \\ 0 \end{array} \right),
\] \hspace{1cm} (7)

where \(t = 0.n_1n_2n_3n_4... \) is the representation of \(t \) in a base nine system. Determine the operators \(Q_1, Q_4 \) and \(Q_6 \).

2) Compute the coordinates of \(q(\frac{2}{3}) \) and \(q(\frac{1}{2}) \).
Write Q_4 in the following form:

$$Q_4 = \begin{pmatrix} 1 & 3 & 0 & 0 \\ 0 & 1 & 3 & 2 \\ 2 & 3 & 2 & 3 \\ 3 & 0 & 0 & 2 \end{pmatrix}$$

$$A \begin{pmatrix} x \\ y \end{pmatrix} =: v + \begin{pmatrix} 2 & 3 \\ 2 & 3 \\ 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} =: b$$

From this, we get

$$Q_n 4v = A_nv + A_{n-1}b + ... + Ab + b$$

and

$$(I - A) (A_n - 1 b + ... + Ab + b) = b - A_nb = (I - A) b$$

Now we can compute

$$\begin{pmatrix} \alpha \\ \beta \end{pmatrix} =: \lim_{n \to \infty} Q_n 4 \begin{pmatrix} 0 \\ 0 \end{pmatrix} = \lim_{n \to \infty} (A_n v \to 0) (I - A)^{-1} (I - A) b \to 0) b$$

$$\Leftrightarrow (I - A) \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = b \Leftrightarrow \begin{pmatrix} 2 & 3 \\ 2 & 3 \\ 3 & 0 \\ 0 & 2 \end{pmatrix} \begin{pmatrix} \alpha \\ \beta \end{pmatrix} = \begin{pmatrix} 2 & 3 \\ 2 & 3 \\ 3 & 0 \\ 0 & 2 \end{pmatrix}$$

Solution: $\alpha = 1$, $\beta = 1$.

Last name, first name, student ID: