Algorithms of Scientific Computing

Fast Fourier Transform (FFT)

Michael Bader
Technical University of Munich

Summer 2017
The Pair DFT/IDFT as Matrix-Vector Product

DFT and IDFT may be computed in the form

\[F_k = \frac{1}{N} \sum_{n=0}^{N-1} f_n \omega_N^{-nk} \quad f_n = \sum_{k=0}^{N-1} F_k \omega_N^{nk} \]

or as matrix-vector products

\[F = \frac{1}{N} W^H f \quad f = WF \]

with a **computational complexity of** \(O(N^2) \).

Note that

\[\text{DFT}(f) = \frac{1}{N} \overline{\text{IDFT}(f)} \]

A fast computation is possible via the **divide-and-conquer** approach.
Fast Fourier Transform for $N = 2^p$

Basic idea: sum up even and odd indices separately in IDFT

→ first for $n = 0, 1, \ldots, \frac{N}{2} - 1$:

$$x_n = \sum_{k=0}^{N-1} X_k \omega_N^{nk} = \sum_{k=0}^{\frac{N}{2}-1} X_{2k} \omega_N^{2nk} + \sum_{k=0}^{\frac{N}{2}-1} X_{2k+1} \omega_N^{(2k+1)n}$$

We set $Y_k := X_{2k}$ and $Z_k := X_{2k+1}$, use $\omega_N^{2nk} = \omega_N^{nk}$, and get a sum of two IDFT on $\frac{N}{2}$ coefficients:

$$x_n = \sum_{k=0}^{N-1} X_k \omega_N^{nk} = \sum_{k=0}^{\frac{N}{2}-1} Y_k \omega_{N/2}^{nk} + \omega_n^N \sum_{k=0}^{\frac{N}{2}-1} Z_k \omega_{N/2}^{nk} \quad \begin{align*} := y_n \end{align*}$$

Note: this formula is actually valid for all $n = 0, \ldots, N - 1$; however, the IDFTs of size $\frac{N}{2}$ will only deliver the y_n and z_n for $n = 0, \ldots, \frac{N}{2} - 1$ (but: y_n and z_n are periodic!)
Fast Fourier Transform (FFT)

Consider the formula \(x_n = y_n + \omega^N_n z_n \) for indices \(\frac{N}{2}, \ldots, N - 1 \):

\[
x_{n+\frac{N}{2}} = y_{n+\frac{N}{2}} + \omega^{(n+\frac{N}{2})} z_{n+\frac{N}{2}} \quad \text{for } n = 0, \ldots, \frac{N}{2} - 1
\]

Since \(\omega^{(n+\frac{N}{2})} = -\omega^n \) and \(y_n \) and \(z_n \) have a period of \(\frac{N}{2} \), we obtain the so-called butterfly scheme:

\[
\begin{align*}
x_n &= y_n + \omega^n z_n \\
x_{n+\frac{N}{2}} &= y_n - \omega^n z_n
\end{align*}
\]
Fast Fourier Transform – Butterfly Scheme

\[(x_0, x_1, \ldots, x_{N-1}) = \text{IDFT}(X_0, X_1, \ldots, X_{N-1})\]

\[\downarrow\]

\[(y_0, y_1, \ldots, y_{N/2-1}) = \text{IDFT}(X_0, X_2, \ldots, X_{N-2})\]

\[(z_0, z_1, \ldots, z_{N/2-1}) = \text{IDFT}(X_1, X_3, \ldots, X_{N-1})\]
Fast Fourier Transform – Butterfly Scheme (2)
Recursive Implementation of the FFT

\[\text{rekFFT}(X) \rightarrow x \]

1. Generate vectors \(Y \) and \(Z \):

 for \(n = 0, \ldots, \frac{N}{2} - 1 \):

 \[Y_n := X_{2n} \quad \text{und} \quad Z_n := X_{2n+1} \]

2. Compute 2 FFTs of half size:

 \[\text{rekFFT}(Y) \rightarrow y \quad \text{and} \quad \text{rekFFT}(Z) \rightarrow z \]

3. Combine with “butterfly scheme”:

 for \(k = 0, \ldots, \frac{N}{2} - 1 \):

 \[
 \begin{align*}
 x_k &= y_k + \omega_N^k z_k \\
 x_{k + \frac{N}{2}} &= y_k - \omega_N^k z_k
 \end{align*}
 \]
Observations on the Recursive FFT

- Computational effort $C(N)$ ($N = 2^p$) given by recursion equation

 $$C(N) = \begin{cases}
 \mathcal{O}(1) & \text{for } N = 1 \\
 \mathcal{O}(N) + 2C\left(\frac{N}{2}\right) & \text{for } N > 1
 \end{cases} \implies C(N) = \mathcal{O}(N \log N)$$

- Algorithm splits up in 2 phases:
 - resorting of input data
 - combination following the “butterfly scheme”

 \implies Anticipation of the resorting enables a simple, iterative algorithm without additional memory requirements.
Sorting Phase of the FFT – Bit Reversal

Observation:

- even indices are sorted into the upper half, odd indices into the lower half.
- distinction even/odd based on least significant bit
- distinction upper/lower based on most significant bit

⇒ An index in the sorted field has the reversed (i.e. mirrored) binary representation compared to the original index.
Sorting of a Vector ($N = 2^p$ Entries, Bit Reversal)

```c
/** FFT sorting phase: reorder data in array X */
for (int n=0; n<N; n++) {
   // Compute $p$–bit bit reversal of $n$ in $j$
   int j=0; int m=n;
   for (int i=0; i<p; i++) {
      j = 2*j + m%2; m = m/2;
   }
   // if $j > n$ exchange $X[j]$ and $X[n]$
   if (j>n) {
      complex<double> h;
      h = X[j]; X[j] = X[n]; X[n] = h;
   }
}
```

Bit reversal needs $O(p) = O(\log N)$ operations

- Sorting results also in a complexity of $O(N \log N)$
- Sorting may consume up to 10–30% of the CPU time!
Iterative Implementation of the “Butterflies”
Iterative Implementation of the “Butterflies”

{Loop over the size of the IDFT}
for(int L=2; L<=N; L*=2)
 {Loop over the IDFT of one level}
 for(int k=0; k<N; k+=L)
 {perform all butterflies of one level}
 for(int j=0; j<L/2; j++) {
 {complex computation:}
 z ← ω^j_L * X[k+j+L/2]
 X[k+j+L/2] ← X[k+j] - z
 X[k+j] ← X[k+j] + z
 }

• k-loop und j-loop are “permutable”!
• How and when are the ω^j_L computed?
Iterative Implementation – Variant 1

```c
/** FFT butterfly phase: variant 1 */
for (int L=2; L<=N; L*=2)
  for (int k=0; k<N; k+=L)
    for (int j=0; j<L/2; j++) {
      complex<double> z = omega(L,j) * X[k+j+L/2];
      X[k+j+L/2] = X[k+j] - z;
      X[k+j] = X[k+j] + z;
    }
```

Advantage: consecutive ("stride-1") access to data in array X

⇒ suitable for vectorisation

⇒ good cache performance due to prefetching (stream access) and usage of cache lines

Disadvantage: multiple computations of ω^j_L
Iterative Implementation – Variant 2

```c
/** FFT butterfly phase: variant 2 */
for (int L=2; L<=N; L*=2) {
    for (int j=0; j<L/2; j++) {
        complex<double> w = omega(L,j);
        for (int k=0; k<N; k+=L) {
            complex<double> z = w * X[k+j+L/2];
            X[k+j+L/2] = X[k+j] - z;
            X[k+j] = X[k+j] + z;
        }
    }
}
```

Advantage: each ω_L^j only computed once

Disadvantage: “stride-L”-access to the array X

\Rightarrow worse cache performance (inefficient use of cache lines)
\Rightarrow not suitable for vectorisation
Separate Computation of ω_L^j

- necessary: $N - 1$ factors

$$\omega_0^0, \omega_4^0, \omega_4^1, \ldots, \omega_L^0, \ldots, \omega_{L/2-1}^L, \ldots, \omega_N^0, \ldots, \omega_{N/2-1}^N$$

- are computed in advance, and stored in an array w, e.g.:

  ```
  for(int L=2; L<=N; L*=2)
    for(int j=0; j<L/2; j++)
      w[L/2+j] ← $\omega_L^j$;
  ```

- Variant 2: access on w in sequential order
- Variant 1: access on w local (but repeated) and compatible with vectorisation
- Important: weight array $w[:]$ needs to stay in cache! (as accesses to main memory can be slower than recomputation)
Cache Efficiency – Variant 1 Revisited

```c
/** FFT butterfly phase: variant 1 */
for (int L=2; L<=N; L*=2)
    for (int k=0; k<N; k+=L)
        for (int j=0; j<L/2; j++) {
            complex<
double>
            z = w[L/2+j] * X[k+j+L/2];
            X[k+j+L/2] = X[k+j] - z;
            X[k+j] = X[k+j] + z;
        }
```

Observation:
- each L-loop traverses entire array X
- in the ideal case \(\frac{N \log N}{B}\) cache line transfers \((N/B)\) per L-loop, \(B\) the size of the cache line), unless all \(N\) elements fit into cache

Compare with recursive scheme:
- if \(L < M_C\) \((M_C\) the cache size), then the entire FFT fits into cache
- is it thus possible to require only \(\frac{N \log N}{(M_C B)}\) cache line transfers?
Butterfly Phase with Loop Blocking

```c
/** FFT butterfly phase: loop blocking for k */
for(int L=2; L<=N; L*=2)
    for(int kb=0; kb<N; kb+=M)
        for(int k=kb; k<kb+M; k+=L)
            for(int j=0; j<L/2; j++) {
                complex<double> z = w[L/2+j] * X[k+j+L/2];
                X[k+j+L/2] = X[k+j] - z;
                X[k+j] = X[k+j] + z;
            }
```

Question: can we make the L-loop an inner loop?

- kb-loop and L-loop may be swapped, if $M > L$
- however, we assumed $N > M_C$ ("data does not fit into cache")
- we thus need to split the L-loop into a phase $L=2..M$ (in cache) and a phase $L=2*M..N$ (out of cache)
Butterfly Phase with Loop Blocking (2)

```c
/** perform all butterfly phases of size M */
for(int kb=0; kb<N; kb+=M)
    for(int L=2; L<=M; L*=2)
        for(int k=kb; k<kb+M; k+=L)
            for(int j=0; j<L/2; j++) {
                complex<double> z = w[L/2+j] * X[k+j+L/2];
                X[k+j+L/2] = X[k+j] - z;
                X[k+j] = X[k+j] + z;
            }

/** perform remaining butterfly levels of size L>M */
for(int L=2*M; L<=N; L*=2)
    for(int k=0; k<N; k+=L)
        for(int j=0; j<L/2; j++) {
            complex<double> z = w[L/2+j] * X[k+j+L/2];
            X[k+j+L/2] = X[k+j] - z;
            X[k+j] = X[k+j] + z;
        }
```
Loop Blocking and Recursion – Illustration
Outlook: Parallel External Memory and I/O Model

[Arge, Goodrich, Nelson, Sitchinava, 2008]
Outlook: Parallel External Memory

Classical I/O model:

- large, global memory (main memory, hard disk, etc.)
- CPU can only access smaller working memory (cache, main memory, etc.) of M_C words each
- both organised as cache lines of size B words
- algorithmic complexity determined by memory transfers

Extended by Parallel External Memory Model:

- multiple CPUs access private caches
- caches fetch data from external memory
- exclusive/concurrent read/write classification (similar to PRAM model)
Outlook: FFT and Parallel External Memory

Consider Loop-Blocking Implementation:

```c
/** perform all butterfly phases of size M */
for (int kb=0; kb<N; kb+=M)
    for (int L=2; L<=M; L*=2)
        for (int k=kb; k<kb+M; k+=L)
            for (int j=0; j<L/2; j++) {
                /* ... */

• choose M such that one kb-Block (M elements) fit into cache
• then: L-loop and inner loops access only cached data
• number of cache line transfers therefore:
  ≈ M divided by words per cache line (ideal case)
Consider Non-Blocking Implementation:

```c
/** perform remaining butterfly levels of size L>M */
for(int L=2*M; L<=N; L*=2)
 for(int k=0; k<N; k+=L)
 for(int j=0; j<L/2; j++) {
 /* ... */
```

- assume: N too large to fit all elements into cache
- then: each L-loop will need to reload all elements X into cache
- number of cache line transfers therefore:
  \[ \approx \frac{M}{\text{words per cache line}} \] (ideal case) per L-iteration
Compute-Bound vs. Memory-Bound Performance

Consider a memory-bandwidth intensive algorithm:

• you can do a lot more flops than can be read from memory
• computational intensity of a code:
  number of performed flops per accessed byte

Memory-Bound Performance:

• computational intensity smaller than critical ratio
• you could execute additional flops “for free”
• speedup only possible by reducing memory accesses

Compute-Bound Performance:

• enough computational work to “hide” memory latency
• speedup only possible by reducing operations
Outlook: The Roofline Model

![Graph showing the Roofline Model with various benchmarks and performance metrics. Peaks for SpMV, 5-pt stencil, and matrix multiplication are indicated, along with annotations for peak stream bandwidth, without NUMA, non-unit stride, without vectorization, and without instruction-level parallelism.]

[Williams, Waterman, Patterson, 2008]
Outlook: The Roofline Model

Memory-Bound Performance:
- available bandwidth of $a$ bytes per second
- computational intensity small: $x$ flops per byte
- CPU thus executes $x/a$ flops per second
- linear increase of the Flop/s with variable $x \sim$ linear part of “roofline”
- “ceilings”: memory bandwidth limited due to “bad” memory access (strided access, non-uniform memory access, etc.)

Compute-Bound Performance:
- computational intensity small: $x$ flops per byte
- CPU executes highest possible Flop/s $\sim$ flat/constant “rooftop”
- “ceilings”: fewer Flop/s due to “bad” instruction mix (no vectorization, bad branch prediction, no multi-add instructions, etc.)