Algorithms for Scientific Computing

Space-Filling Curves

Michael Bader
Technical University of Munich
Summer 2017
Questions:

- Can this mapping lead to a contiguous “curve”?
- i.e.: Can we find a continuous mapping?
- and: Can this continuous mapping fill the entire square?
Morton Order and Cantor’s Mapping

Georg Cantor (1877):

\[0.01111001 \ldots \rightarrow \left(\begin{array}{c} 0.0110 \ldots \\ 0.1101 \ldots \end{array} \right) \]

- **bijective** mapping \([0, 1] \rightarrow [0, 1]^2\)
- proved identical cardinality of \([0, 1]\) and \([0, 1]^2\)
- provoked the question: is there a **continuous** mapping? (i.e. a curve)
History of Space-Filling Curves

1877: Georg Cantor finds a bijective mapping from the unit interval \([0, 1]\) into the unit square \([0, 1]^2\).

1879: Eugen Netto proves that a bijective mapping \(f: \mathcal{I} \to Q \subset \mathbb{R}^n\) can not be continuous (i.e., a curve) at the same time (as long as \(Q\) has a smooth boundary).

1886: rigorous definition of curves introduced by Camille Jordan

1890: Giuseppe Peano constructs the first space-filling curves.

1890: Hilbert gives a geometric construction of Peano’s curve; and introduces a new example – the Hilbert curve

1904: Lebesgue curve

1912: Sierpinski curve
Part I

Space-Filling Curves
What is a Curve?

Definition (Curve)

As a **curve**, we define the image $f_\ast(I)$ of a **continuous** mapping $f : I \to \mathbb{R}^n$.

$x = f(t), t \in I$, is called **parameter representation** of the curve.

With:

- $I \subset \mathbb{R}$ and I is compact, usually $I = [0, 1]$.
- the **image** $f_\ast(I)$ of the mapping f_\ast is defined as $f_\ast(I) := \{f(t) \in \mathbb{R}^n \mid t \in I\}$.
- \mathbb{R}^n may be replaced by any Euclidean vector space (norm & scalar product required).
What is a Space-filling Curve?

Definition (Space-filling Curve)

Given a mapping \(f : \mathcal{I} \rightarrow \mathbb{R}^n \), then the corresponding curve \(f_*(\mathcal{I}) \) is called a **space-filling curve**, if the Jordan content (area, volume, ...) of \(f_*(\mathcal{I}) \) is larger than 0.

Comments:

- assume \(f : \mathcal{I} \rightarrow \mathcal{Q} \subset \mathbb{R}^n \) to be **surjective** (i.e., every element in \(\mathcal{Q} \) occurs as a value of \(f \)); then, \(f_*(\mathcal{I}) \) is a space-filling curve, if the area (volume) of \(\mathcal{Q} \) is positive.

- if the domain \(\mathcal{Q} \) has a smooth boundary, then there can be **no bijective mapping** \(f : \mathcal{I} \rightarrow \mathcal{Q} \subset \mathbb{R}^n \), such that \(f_*(\mathcal{I}) \) is a space-filling curve (theorem: E. Netto, 1879).
Remember: Construction of the Hilbert Order

Incremental construction of the Hilbert order:
- start with the basic pattern on 4 subsquares
- combine four numbering patterns to obtain a twice-as-large pattern
- proceed with further iterations
Remember: Construction of the Hilbert Order

Recursive construction of the Hilbert order:

- start with the basic pattern on 4 subsquares
- for an existing grid and Hilbert order:
 split each cell into 4 congruent subsquares
- order 4 subsquares following the rotated basic pattern,
 such that a contiguous order is obtained
Definition of the Hilbert Curve’s Mapping

Definition: (Hilbert curve)

- each parameter \(t \in \mathcal{I} := [0, 1] \) is contained in a sequence of intervals

\[
\mathcal{I} \supset [a_1, b_1] \supset \ldots \supset [a_n, b_n] \supset \ldots,
\]

where each interval results from a division-by-four of the previous interval.

- each such sequence of intervals can be uniquely mapped to a corresponding sequence of 2D intervals (subsquares) → “uniquely mapped” based on grammar for Hilbert order

- the 2D sequence of intervals converges to a unique point \(q \) in \(q \in \mathcal{Q} := [0, 1] \times [0, 1] \) – \(q \) is defined as \(h(t) \).

Theorem

\(h : \mathcal{I} \to \mathcal{Q} \) defines a space-filling curve, the **Hilbert curve**.
Proof: \(h \) defines a Space-filling Curve

We need to prove:

- \(h \) is a mapping, i.e. each \(t \in I \) has a **unique** function value \(h(t) \rightarrow \) OK, if \(h(t) \) is independent of the choice of the sequence of intervals (see next chapter)
- \(h: I \rightarrow Q \) is **surjective**:
 - for each point \(q \in Q \), we can construct an appropriate sequence of 2D-intervals
 - the 2D sequence corresponds in a unique way to a sequence of intervals in \(I \) – this sequence defines an original value of \(q \)
 \(\Rightarrow \) every \(q \in Q \) occurs as an image point.
- \(h \) is **continuous**
Continuity of the Hilbert Curve

A function $f : I \to \mathbb{R}^n$ is uniformly \textit{continuous}, if

for each $\epsilon > 0$

a $\delta > 0$ exists, such that

for all $t_1, t_2 \in I$ with $|t_1 - t_2| < \delta$, the following inequality holds:

$\|f(t_1) - f(t_2)\|_2 < \epsilon$

\textbf{Strategy for the proof:}

For any given parameters t_1, t_2, we compute an estimate for the distance $\|h(t_1) - h(t_2)\|_2$ (functional dependence on $|t_1 - t_2|$).

\Rightarrow for any given ϵ, we can then compute a suitable δ
Continuity of the Hilbert Curve (2)

- given: $t_1, t_2 \in I$; choose an n, such that $|t_1 - t_2| < 4^{-n}$
- in the n-th iteration of the interval sequence, all interval are of length 4^{-n}
 $\Rightarrow [t_1, t_2]$ overlaps at most two neighbouring(!) intervals.
- due to construction of the Hilbert curve, the values $h(t_1)$ and $h(t_2)$ will be
 in neighbouring subsquares with face length 2^{-n}.
- the two neighbouring subsquares build a rectangle with a diagonal of
 length $2^{-n} \cdot \sqrt{5}$;
 therefore: $\|h(t_1) - h(t_2)\|_2 \leq 2^{-n} \sqrt{5}$

For a given $\epsilon > 0$, we choose an n, such that $2^{-n} \sqrt{5} < \epsilon$.
Using that n, we choose $\delta := 4^{-n}$; then, for all t_1, t_2 with $|t_1 - t_2| < \delta$, we get:
$\|h(t_1) - h(t_2)\|_2 \leq 2^{-n} \sqrt{5} < \epsilon$. Which proves the continuity!
Part II

Arithmetisation of Space-Filling Curves
Space-filling Orders – Required Algorithms

Traversal of h-indexed objects:
- given a set of objects with “positions” $p_i \in Q$
- traverse all objects, such that $\bar{h}^{-1}(p_{i_0}) < \bar{h}^{-1}(p_{i_1}) < \ldots$
- solved by grammar representation

Compute mapping:
- for a given index $t \in I$, compute the image $h(t)$

Compute the index of a given point:
- given $p \in Q$, find a parameter t, such that $h(t) = p$
- problem: inverse of h is not unique (h not bijective!)
- define a “technically unique” inverse mapping \bar{h}^{-1}

Mapping and index computation required for random access to a data structure!
Arithmetic Formulation of the Hilbert Curve

Idea:

• interval sequence within the parameter interval \mathcal{I} corresponds to a quaternary representation; e.g.:

\[
\left[\frac{1}{4}, \frac{2}{4} \right] = [0.41, 0.42], \quad \left[\frac{3}{4}, 1 \right] = [0.43, 1.40]
\]

• self-similarity: every subsquare of the target domain contains a scaled, translated, and rotated/reflected Hilbert curve.

⇒ Construction of the arithmetic representation:

• find quaternary representation of the parameter
• use quaternary coefficients to determine the required sequence of operations
Arithmetic Formulation of the Hilbert Curve (2)

Recursive approach:

$$h(0.4q_1q_2q_3q_4 \ldots) = H_{q_1} \circ h(0.4q_2q_3q_4 \ldots)$$

- $\tilde{t} = 0.4q_2q_3q_4 \ldots$ is the relative parameter in the subinterval $[0.4q_1, 0.4(q_1 + 1)]$
- $h(\tilde{t}) = h(0.4q_2q_3q_4 \ldots)$ is the relative position of the curve point in the subsquare
- H_{q_1} transforms $h(\tilde{t})$ to its correct position in the unit square:
 - rotation
 - translation
- Expanding the recursion equation leads to:

$$h(0.4q_1q_2q_3q_4 \ldots) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots$$
Arithmetic Formulation of the Hilbert Curve (3)

If t is given in quaternary digits, i.e. $t = 0_4.q_1q_2q_3q_4 \ldots$, then $h(t)$ may be represented as

$$h(0_4.q_1q_2q_3q_4 \ldots) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots \begin{pmatrix} 0 \\ 0 \end{pmatrix}$$

using the following operators:

$$H_0 := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}y \\ \frac{1}{2}x \end{pmatrix} \quad H_1 := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}x \\ \frac{1}{2}y + \frac{1}{2} \end{pmatrix}$$

$$H_2 := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} \frac{1}{2}x + \frac{1}{2} \\ \frac{1}{2}y + \frac{1}{2} \end{pmatrix} \quad H_3 := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -\frac{1}{2}y + 1 \\ -\frac{1}{2}x + \frac{1}{2} \end{pmatrix}$$
Matrix Form of the Operators H_0, \ldots, H_3

In matrix notation, the operators H_0, \ldots, H_3 are:

\[
H_0 := \begin{pmatrix} 0 & \frac{1}{2} \\ \frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} \\
H_1 := \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix} \\
H_2 := \begin{pmatrix} \frac{1}{2} & 0 \\ 0 & \frac{1}{2} \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} \frac{1}{2} \end{pmatrix} \\
H_3 := \begin{pmatrix} 0 & -\frac{1}{2} \\ -\frac{1}{2} & 0 \end{pmatrix} \begin{pmatrix} x \\ y \end{pmatrix} + \begin{pmatrix} 1 \\ \frac{1}{2} \end{pmatrix}
\]

Governing operations:

- scale with factor $\frac{1}{2}$
- translate start of the curve, e.g. $+$ \begin{pmatrix} 0 \\ \frac{1}{2} \end{pmatrix}
- reflect at x and y axis (for H_3)
A First Comment Concerning Uniqueness

Question:

Are the values $h(t)$ independent of the choice of quaternary representation of t concerning trailing zeros:

$$h(0.4.q_1 \ldots q_n) = h(0.4.q_1 \ldots q_n 000 \ldots),$$

Outline of the proof:

1. compute the limit $\lim_{n \to \infty} H^n_0$, or $\lim_{n \to \infty} H^n_0 \left(\begin{array}{c} x \\ y \end{array} \right)$;

 Result: $\lim_{n \to \infty} H^n_0 \left(\begin{array}{c} x \\ y \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$

2. show: $\left(\begin{array}{c} 0 \\ 0 \end{array} \right)$ is a fixpoint of H_0, i.e. $H_0 \left(\begin{array}{c} 0 \\ 0 \end{array} \right) = \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$.

\Rightarrow independence of trailing zeros, as H_{qn} is applied to the fixpoint!
A Second Comment Concerning Uniqueness

Question:

Are the values $h(t)$ independent of the choice of quaternary representation of t, as in:

$$h(0_4.q_1 \ldots q_n) = h(0_4.q_1 \ldots q_{n-1}(q_n - 1)333 \ldots), \quad q_n \neq 0$$

(if $q_n = 0$, then consider $0_4.q_1 \ldots q_n = 0_4.q_1 \ldots q_{n-1}$)

Outline of the proof:

1. compute the limits $\lim_{n \to \infty} H_0^n$ and $\lim_{n \to \infty} H_3^n$.

2. for $q_n = 1, 2, 3$, show that

$$H_{q_n} \circ \lim_{n \to \infty} H_0^n = H_{q_{n-1}} \circ \lim_{n \to \infty} H_3^n$$
Algorithm to Compute the Hilbert Mapping

Task: given a parameter t, find $h(t) = (x, y) \in Q$

Most important subtasks:

1. compute quaternary digits – use multiply by 4:

$$4 \cdot 0_4.q_1q_2q_3q_4\ldots = (q_1.q_2q_3q_4\ldots)_4$$

and cut off the integer part

2. apply operators H_q in the correct sequence – use recursion:

$$h(0_4.q_1q_2q_3q_4\ldots) = H_{q_1} \circ H_{q_2} \circ H_{q_3} \circ H_{q_4} \circ \cdots \left(\begin{array}{c} 0 \\ 0 \end{array} \right)$$

3. stop recursion, when a given tolerance is reached

\Rightarrow track size of interval or set number of digits
Implementation of the Hilbert Mapping

Algorithm 1 $hilbert(t, \text{eps})$

1: if $\text{eps} > 1$ then
2: return $(0, 0)$
3: else
4: $q \leftarrow \text{floor}(4 \times t)$
5: $r \leftarrow 4 \times t - q$
6: $(x, y) \leftarrow hilbert(r, 2 \times \text{eps})$
7: switch q do
8: case $q = 0$: return $(y/2, x/2)$
9: case $q = 1$: return $(x/2, y/2 + 0.5)$
10: case $q = 2$: return $(x/2 + 0.5, y/2 + 0.5)$
11: case $q = 3$: return $(-y/2 + 1.0, -x/2 + 0.5)$
12: end
13: end if
Computing the Inverse Mapping

Task: find a parameter t, such that $h(t) = (x, y)$ for a given $(x, y) \in Q$

Problem: h not bijective; hence, t is not unique

\Rightarrow a strict inverse mapping h^{-1} does not exist

\Rightarrow instead, compute a “technically unique” inverse \bar{h}^{-1}

Recursive Idea:

- determine the subsquare that contains (x, y)
- transform (using the inverse operations of H_0, \ldots, H_3) the point (x, y) into the original domain $\rightarrow (\tilde{x}, \tilde{y})$
- recursively compute a parameter \tilde{t} that is mapped to (\tilde{x}, \tilde{y})
- depending on the subsquare, compute t from \tilde{t}
Inverse Operators of H_0, \ldots, H_3

Example \rightarrow compute inverse of operator H_0:

$$\begin{pmatrix} x \\ y \end{pmatrix} = H_0 \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} \frac{1}{2} \tilde{y} \\ \frac{1}{2} \tilde{x} \end{pmatrix} \Rightarrow \begin{pmatrix} \tilde{x} \\ \tilde{y} \end{pmatrix} = \begin{pmatrix} 2y \\ 2x \end{pmatrix}$$

By similar computations:

$$H_0^{-1} := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2y \\ 2x \end{pmatrix} \quad H_1^{-1} := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2x \\ 2y - 1 \end{pmatrix}$$

$$H_2^{-1} := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} 2x - 1 \\ 2y - 1 \end{pmatrix} \quad H_3^{-1} := \begin{pmatrix} x \\ y \end{pmatrix} \rightarrow \begin{pmatrix} -2y + 1 \\ -2x + 2 \end{pmatrix}$$
Algorithm to Compute the Inverse Mapping

\[h^{-1} := \text{proc}(x, y) \]

\[(1)\] determine the subsquare \(q \in \{0, \ldots, 3\} \) by checking \(x \ll \frac{1}{2} \) and \(y \ll \frac{1}{2} \):

\[
\begin{array}{cc}
1 & 2 \\
0 & 3
\end{array}
\]

(treat cases \(x, y = \frac{1}{2} \) in a unique way: either < or >
\(\Rightarrow \text{technically unique inverse} \))

\[(2)\] set \((\tilde{x}, \tilde{y}) := H_q^{-1}(x, y) \)

\[(3)\] recursively compute \(\tilde{t} := \tilde{h}^{-1}(\tilde{x}, \tilde{y}) \)

\[(4)\] return \(t := \frac{1}{4} (q + \tilde{t}) \) as value

(stopping criterion still to be added)
Implementation of the Inverse Hilbert Mapping

Algorithm 2 \textit{hilbertInverse}(x, y, \textit{eps})

1: \textbf{if} \textit{eps} > 1 \textbf{then} \textbf{return} 0
2: \textbf{if} \textit{x} \leq 0.5 \textbf{then}
3: \hspace{1em} \textbf{if} \textit{y} \leq 0.5 \textbf{then}
4: \hspace{2em} \textbf{return} \ (0 + \textit{hilbertInverse}(2 \ast \textit{y}, 2 \ast \textit{x}, 4 \ast \textit{eps}))/4
5: \hspace{1em} \textbf{else}
6: \hspace{2em} \textbf{return} \ (1 + \textit{hilbertInverse}(2 \ast \textit{x}, 2 \ast \textit{y} - 1, 4 \ast \textit{eps}))/4
7: \hspace{1em} \textbf{end if}
8: \textbf{else}
9: \hspace{1em} \textbf{if} \textit{y} \leq 0.5 \textbf{then}
10: \hspace{2em} \textbf{return} \ (3 + \textit{hilbertInverse}(1 - 2 \ast \textit{y}, 2 - 2 \ast \textit{x}, 4 \ast \textit{eps}))/4
11: \hspace{1em} \textbf{else}
12: \hspace{2em} \textbf{return} \ (2 + \textit{hilbertInverse}(2 \ast \textit{x} - 1, 2 \ast \textit{y} - 1, 4 \ast \textit{eps}))/4
13: \hspace{1em} \textbf{end if}
14: \textbf{end if}