Algorithms for Scientific Computing
Hierarchical Methods and Sparse Grids
– Algorithms and Data Structures for Sparse Grids –

Michael Bader
Technical University of Munich
Summer 2017
Part I

Algorithms vs. Data Structures

- Consider typical sparse grid algorithms, such as: hierarchization/dehierarchization, integration, classification, data mining, solution of PDE, ...

- Important: *adaptive* representation

- Algorithms depend on data structure:
 - Efficient traversal of sparse grid necessary
 - Thus, we deal with data structures for sparse grids, too
Data Structures \((d = 1) \)

- How to store function \(u : [0, 1] \rightarrow \mathbb{R} \) in hierarchical representation (i.e. surplusses \(v_{l,i} \))?
- Simplest choice: array \(\rightarrow \) does not allow adaptivity
- Order and store grid points and associated values in binary tree
 - Root is node \(x_{1,1} = 1/2 \)
 - Children of node \(x_{l,i} \) are \(-\) if existent \(-\) the grid points \(x_{l+1,2i-1} \) and \(x_{l+1,2i+1} \) of level \(l + 1 \)
 - Alternative point of view if child does not exist:
 Complete subtree of binary tree starting from child with all surplusses set to 0
Data Structures \((d = 1)\) (2)
Typical Algorithms ($d = 1$)

Hierarchization and Dehierarchization

- Prototype for typical algorithm (c.f. tutorials)
- Our data structure has to allow

 1. Iteration over all grid points, considering the hierarchical relations
 - E.g. for hierarchization:
 - first handle all grid points in the support of $\phi_{l,i}$,
 - then compute $v_{l,i}$

 2. Access to hierarchical neighbors: grid points at interval boundaries of support of $\phi_{l,i}$ (if possible – exception for points 0 and 1 as not in the tree), e.g. to compute

\[
v_{l,i} = u_{l,i} - \frac{1}{2}(u_l + u_r).
\]
Typical Algorithms \((d = 1)\) (2)

- Hierarchical neighbors are easy to find geometrically
 \[x_{l,i-1}, \quad x_{l,i+1} \]

- But have even indices \(\Rightarrow\) really are on another level \((< l)\)

- Thus, in the binary tree structure:
 - Can be found on way from root to node
 - One of the two indices is the parent node

- For hierarchization/dehierarchization: pass hierarchical neighbors as additional parameters

- Developing algorithms:
 - Try to store all information to process one node at the node and its hierarchical neighbors
 - Access to other nodes may be expensive (esp. for trees)
 - Note: complexity of a tree traversal with “supply of hierarchical neighbors” is at most linear in number of nodes
Data Structures and Typical Algorithms ($d > 1$)

- What data structure to use in more than one dimension?
- Algorithmically: use construction of basis functions as product of 1D hat functions. Ideally:
 - Use a loop $1, \ldots, d$ over the dimensions
 - Apply $1d$ algorithm on one-dimensional structures in each dimension (see also worksheet 7)

⇒ Need access to hierarchical neighbors in each spacial direction; implies to create binary tree structure in each dimension

- Disadvantages:
 - Storage requirements ($2d$ pointers)
 - High effort to keep structure consistent when inserting or deleting points
If you watch closely, you recognize separate binary tree structures for rows (black) and columns (magenta)
Data Structures and Typical Algorithms ($d > 1$) (3)

Often better:

- Store in a node only two pointers for one direction (e.g. x_1)
- A binary tree of nodes is a row (a 1d structure parallel to the x_1 axis)
- For next spacial direction x_2, only a binary tree in x_2 direction required
- Stores one plane parallel to x_1–x_2 coordinate plane; nodes are the binary trees with 1d structures
- For each additional spatial direction x_d build binary tree with $(d-1)$-dimensional structures as nodes
- Disadvantage: Access to hierarchical neighbors not that easy any more (except for x_1-direction)
- But can be achieved without much more computational effort by suitable reordering of loops and tree traversals
Already more clear: One plane (two-dimensional structure) consists of one binary tree (magenta) of which the nodes are binary trees (black) for each row.
Data Structures and Typical Algorithms ($d > 1$) (5)

Hash table
- Much more comfortable (and not too inefficient) alternative
- Store coefficients as target values, with, e.g., (\vec{l}, \vec{i}) as keys
- No need to care about tree structures
- Only requires computation of indices of accessed nodes (hierarchical neighbor, . . .)
⇒ Best solution for your own sparse grid experiments

Further assumptions on data structures
- Algorithms will assume that all hierarchical neighbors exist for each grid point
⇒ If creating grid points adaptively, create them if necessary
- No further assumptions
Data Structures for Regular Sparse Grids

Array-Based Data Structures

- Cartesian meshes with $2^{l_1} \times 2^{l_2} \times \ldots \times 2^{l_d}$ grid points
- suggests classical array indexing similar to $i \cdot n + j$
 → question: what is the “fastest-running” index?
- number of grid points per subspace is constant along “diagonals”, i.e., for constant $\|l\|_1$
 → sequentialized storage scheme for subspaces
 → start of each subgrid can be easily computed
 → index offset to hierarchical neighbours may be computed
- additional considerations: best layout for vectorization, parallelization, etc.

Towards Dimensional Adaptivity

- add or remove entire subspaces/subgrids in an adaptive fashion
- may introduce higher accuracy only in selected dimensions
Data Structures for Regular Sparse Grids (2)

Example – Array-Based Data Structures (Buse et al., ISPDC 2012)
- note uniform vs. non-uniform index offset for access to hierarchical parents/neighbours in x- vs. y direction
Summary

Data Structures

- array-based for regular sparse grids and combination technique (see tutorials)
- hierarchical adaptivity reflected by tree-based data structures (but: more complicated in higher dimensions)
- hash-based data structures
- dimensional adaptivity allows to stick to array-based data structures

Algorithms

- hierarchisation and dehierarchisation: tree-based recursion plus "hierarchical neighbours"
- archimedes quadrature \rightarrow recursion on dimensions
- much more complicated algorithms, if we want to use sparse grids for solution of partial differential equations
Part II

Classification with Sparse Grids
Recall: Classification in 1D

- Given: training set (normalized)

\[S := \{(\tilde{x}_i, y_i) \in [0, 1] \times \{+1, -1\}\}_{i=1}^m \]

- Find approximation \(f_N \):

\[f_N(x) = \sum_{j=1}^{N} v_j \phi_j(x) \]

- Classical approach: minimize quadratic error

\[
\sum_{i=1}^{m} (f_N(x_i) - y_i)^2 \overset{!}{=} \min \quad \Leftrightarrow \quad \sum_{i=1}^{m} \left(\sum_{j=1}^{N} v_j \phi_j(x_i) - y_i \right)^2 \overset{!}{=} \min
\]

- Solution obtained via “least squares”: \(G^T G v = G^T y \), where \(G_{ij} = \phi_j(x_i) \)
Classification and Regularization

• Possible problem: “overfitting”
 include penalty term to minimize gradient (or similar property) of f_N
to avoid oscillations due to noise in training data
• Solve **regularized** least squares problem

\[
 f_N = \arg \min_{f_N \in V_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\vec{x}_i))^2 + \lambda \| \nabla f_N \|_{L_2}^2 \right)
\]

with $\|g\|_{L_2}^2 := \int g^2 \, d\vec{x}$

• minimize quadratical error and prevent overfitting
 → Parameter λ to control trade-off
Classification and Regularization (2)

How to minimize $\lambda \| \nabla f_N \|_{L_2}^2$:

- Piecewise linear function f_N:

$$\nabla f_N(x) = f'_N(x) = \sum_{i=1}^{N} v_i \phi'_i(x) \Rightarrow \| \nabla f_N \|_{L_2}^2 = \int \left(\sum_{i=1}^{N} v_i \phi'_i(x) \right)^2 \, dx$$

- Minimize \Rightarrow set partial derivatives w.r.t. all v_i to 0:

$$\leadsto \frac{\partial}{\partial v_k} (\| \nabla f_N \|_{L_2}^2) = \cdots = 2 \sum_j C_{jk} v_j, \quad \text{with } C_{jk} := \int \phi'_j(x) \phi'_k(x), \, dx$$

- Thus: to solve regularized least squares problem

$$f_N \overset{1}{=} \arg \min_{f_N \in V_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\tilde{x}_i))^2 + \lambda \| \nabla f_N \|_{L_2}^2 \right)$$

solve linear system of the following form:

$$\frac{1}{m} G^T G v + \lambda C v = \frac{1}{m} G^T y$$
Example 1 – Ripley Data Set

- Artificial, 2d data set, frequently used as a benchmark (mixture of Gaussian distributions plus noise)
- 250 points for training, 1000 to test on
- Constructed to contain 8% of noise
Ripley Data Set Using Sparse Grids

- Compute adaptive sparse grid classifier, e.g.:

- Best accuracy: 91.5% on test data (max. 92%)
- Suitable treatment of boundary needed
From Minimization to System of Linear Equations

- d-dim. problem; find function $f_N(\vec{x}) = \sum_{\vec{l}} \sum_{\vec{i}} v_{\vec{l},\vec{i}} \phi_{\vec{l},\vec{i}}(\vec{x})$ such that

$$f_N = \min_{f_N \in \mathcal{V}_N} \left(\frac{1}{m} \sum_{i=1}^{m} (y_i - f_N(\vec{x}_i))^2 + \lambda \|\nabla f_N\|_{L_2}^2 \right)$$

- Again leads to N linear equations for N unknowns (m data points)

$$\left(\frac{1}{m} G^T G + \lambda C \right) \vec{v} = \frac{1}{m} G^T \vec{y},$$

Questions when using Sparse Grids:

- How do the matrices G and C look like?
- Should we explicitly set up G and C or is there a better solution?
- In 1D: C is a **diagonal matrix**! (However: G is complicated)
- In general: level-wise hierarchical/recursive algorithm!
Towards a Hierarchical/Recursive Algorithm

- Consider right-hand side $\frac{1}{m} G^T \vec{y}$:

 $$(G^T \vec{y})_i = \sum_j G^T_{ij} y_j = \sum_j \phi_i(\vec{x}_j) y_j$$

 (note that we switch to 1D numbering of basis functions $\sim \phi_i$)

- Consider a nodal basis $\phi_i(\vec{x}_j) = \delta_{ij}$, then G^T easy to set up and $(G^T \vec{y})_i$ easy to compute

- Hierarchical transform when using hierarchical basis $\psi_i(x)$?

Approach:

- Consider vectors of basis functions $\vec{\psi} = (\psi_i)_i$ and $\vec{\phi} = (\phi)_i$

- Show that then $\psi = H\phi$ (matrix-vector product)

- Then: $\sum_j \psi_i(x_j) y_j = \sum_j (H\phi)_i(x_j) y_j = (HG^T \vec{y})_i$

- Do not set up matrix $HG^T \rightarrow$ perform as two matrix-vector products

- Now: how does H look like and how do we compute $H\vec{y}$?
Recall: Hierarchical Basis Transformation

• represent “wider” hat function $\phi_{1,1}(x)$ via basis functions $\phi_{2,j}(x)$
\[
\phi_{1,1}(x) = \frac{1}{2} \phi_{2,1}(x) + \phi_{2,2}(x) + \frac{1}{2} \phi_{2,3}(x)
\]

• consider vector of hierarchical/nodal basis functions and write transformation as matrix-vector product:
\[
\begin{pmatrix}
\psi_{2,1}(x) \\
\psi_{2,2}(x) \\
\psi_{2,3}(x)
\end{pmatrix}
:=
\begin{pmatrix}
\phi_{2,1}(x) \\
\phi_{1,1}(x) \\
\phi_{2,3}(x)
\end{pmatrix}
= \begin{pmatrix}
1 & 0 & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} \\
0 & 0 & 1
\end{pmatrix}
\begin{pmatrix}
\phi_{2,1}(x) \\
\phi_{2,2}(x) \\
\phi_{2,3}(x)
\end{pmatrix}
\]
Recall: Hierarchical Basis Transformation (2)

Consider “semi-hierarchical” transform:

Matrices for change of basis are then: ($H_3^{(2)}$ to transform to hierarchical basis)

$$H_3^{(1)} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
\frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$

$$H_3^{(2)} = \begin{pmatrix}
1 & 0 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 1 & 0 & 0 & 0 & 0 & 0 & 0 \\
0 & 0 & 1 & 0 & 0 & 0 & 0 & 0 \\
0 & \frac{1}{2} & 0 & 1 & 0 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 1 & 0 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 1 & 0 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1 \\
0 & 0 & 0 & 0 & 0 & 0 & 0 & 1
\end{pmatrix}$$
Recall: Hierarchical Basis Transformation (3)

Level-wise hierarchical transform:

- hierarchical basis transformation: $\psi_{n,i}(x) = \sum_j H_{i,j} \phi_{n,j}(x)$
- written as matrix-vector product: $\vec{\psi}_n = H_n \vec{\phi}_n$
- $H_n \vec{\phi}_n$ can be performed as a sequence of level-wise transforms:

 \[
 \text{For } k \text{ from 1 to } n-1 \\
 \vec{\phi}_n := H_n^{(k)} \vec{\phi}_n
 \]

- matrix H_n for hierarchical basis transformation is thus:
 \[
 H_n = H_n^{(n-1)} H_n^{(n-2)} \ldots H_n^{(2)} H_n^{(1)}
 \]

- where each level-wise transform $H_n^{(k)} \vec{\phi}_n$ has a simple loop implementation:

 \[
 \text{For } j \text{ from } 2^k \text{ to } 2^n \text{ step } 2^k \\
 \phi_{n,j} := \frac{1}{2} \phi_{n,j-2^k-1} + \phi_{n,k} + \frac{1}{2} \phi_{n,j+2^k-1}
 \]
Classification with Sparse Grids

Notes on Implementation

- in higher dimensions: nodal basis leads to simple matrix structures, but the systems of equations are difficult to solve
 → most important: curse of dimensionality kicks in
- hierarchical basis leads to system of equations that can be solved efficiently;
 → complicated matrix structures,
 → algorithms based on hierarchization/dehierarchization
- sparse grids: implementation is not just a hierarchization of node basis
 → complicated hierarchical, recursive algorithms
 → mitigates curse of dimensionality!