Fundamental Algorithms

Chapter 3: More Sorting

Michael Bader

Winter 2011/12
Are Mergesort and Quicksort optimal?

Definition

Comparison sorts are sorting algorithms that use only comparisons (i.e. tests as \(\leq, =, >, \ldots \)) to determine the relative order of the elements.

Examples:
- InsertSort, BubbleSort
- MergeSort, (Randomised) Quicksort

Question:
Is \(T(n) \in \Theta(n \log n) \) the best we can get (in the worst/average case)?
Decision Trees

Definition

A decision tree is a binary tree in which each internal node is annotated by a comparison of two elements. The leaves of the decision tree are annotated by the respective permutations that will put an input sequence into sorted order.
Decision Trees – Properties

Each comparison sort can be represented by a decision tree:
- a path through the tree represents a sequence of comparisons
- sequence of comparisons depends on results of comparisons
- can be pretty complicated for Mergesort, Quicksort, . . .

A decision tree can be used as a comparison sort:
- if every possible permutation is annotated to at least one leaf of the tree!
- if (as a result) the decision tree has at least \(n! \) (distinct) leaves.
A Lower Bound for the Complexity of Comparison Sorts

• A binary tree of height h (h the length of the longest path) has at most 2^h leaves.
• To sort n elements, the decision tree needs $n!$ leaves.

Theorem

Any decision tree that sorts n elements has height $\Omega(n \log n)$.

Proof:

• h comparisons in the worst case are equivalent to a decision tree of height h
• with h comparisons, we can sort n elements (at best), if
 \[n! \leq 2^h \iff h \geq \log(n!) \in \Omega(n \log n) \]
• because:
 \[h \geq \log(n!) \geq \log \left(n^{n/2} \right) = \frac{n}{2} \log n \]
Optimality of Mergesort and Quicksort

Corollaries:

• MergeSort is an optimal comparison sort in the worst/average case
• QuickSort is an optimal comparison sort in the average case

Consequences and Alternatives:

• comparison sorts can be faster than MergeSort, but only by a constant factor
• comparison sorts can not be asymptotically faster
• sorting algorithms might be faster, if they can exploit additional information on the size of elements
• examples: BucketSort, CountingSort, RadixSort
Bucket Sort

Basic Ideas and Assumptions:
• pre-sort numbers in buckets that contain all numbers within a certain interval
• hope (assume) that input elements are evenly distributed and thus uniformly distributed to buckets
• sort buckets and concatenate them

Requires “Buckets”:
• can hold arbitrary numbers of elements
• can insert elements efficiently: in $O(1)$ time
• can concatenate buckets efficiently: in $O(1)$ time
• remark: linked lists will do
Implementation of BucketSort

BucketSort (A: Array[1..n]) {

Create Array B[0..n–1] of Buckets;
// assume all Buckets B[i] are empty at first

for i from 1 to n do {
 insert A[i] into Bucket B[floor(n * A[i])];
}

for i from 0 to n–1 do {
 sort Bucket B[i];
}

concatenate Buckets B[0], B[1], ..., B[n–1] into A
}
Number of Operations of BucketSort

Operations:
- \(n \) operations to distribute \(n \) elements to buckets
- plus effort to sort all buckets

Best Case:
- if each bucket gets 1 element, then \(\Theta(n) \) operations are required

Worst Case:
- if one bucket gets all elements, then \(T(n) \) is determined by the sorting algorithm for the buckets
Bucket sort – Average Case Analysis

- probability that bucket \(i \) contains \(k \) elements:
 \[
P(n_i = k) = \binom{n}{k} \left(\frac{1}{n} \right)^k \left(1 - \frac{1}{n} \right)^{n-k}
 \]

- expected mean and variance for such a distribution:
 \[
 E[n_i] = n \cdot \frac{1}{n} = 1 \\
 Var[n_i] = n \cdot \frac{1}{n} \left(1 - \frac{1}{n} \right) = \left(1 - \frac{1}{n} \right)
 \]

- InsertionSort for buckets \(\Rightarrow \leq cn^2 \in O(n_i^2) \) operations per bucket
- expected operations to sort one bucket:
 \[
 \bar{T}(n_i) \leq \sum_{k=0}^{n-1} P(n_i = k) \cdot ck^2 = cE[n_i^2]
 \]
Bucket sort – Average Case Analysis (2)

- theorem from statistics:
 \[E[X^2] = E[X]^2 + \text{Var}(X) \]

- expected operations to sort one bucket:
 \[\bar{T}(n_i) \leq cE[n_i^2] = c \left(E[n_i]^2 + \text{Var}[n_i] \right) = c \left(1^2 + 1 - \frac{1}{n} \right) \in \Theta(1) \]

- expected operations to sort all buckets:
 \[\bar{T}(n) = \sum_{i=0}^{n-1} \bar{T}(n_i) \leq c \sum_{i=0}^{n-1} \left(2 - \frac{1}{n} \right) \in \Theta(n) \]

 (note: expected value of the sum is the sum of expected values)
Part II

Sorting in Parallel
A (naive?) Example: AccumulateSort

AccumulateSort (A: Array[1..n]) {

Create Array P[1..n] of Integer;
// all P[i]=0 at start

for 1 <= i, j <= n and i<j do in parallel {
 if A[i] > A[j]
 then P[i] := P[i]+1
 else P[j] := P[j]+1;
}

for i from 1 to n do in parallel {
}
}
AccumulateSort – Discussion

Idea:
- do all \(\binom{n}{2} \) comparisons at once and in parallel
- use \(\binom{n}{2} \) processors
- count “wins” for each element to obtain its position
- complexity: \(T_{AS} = \Theta(1) \) on \(n(n - 1)/2 \) processors

Assumptions:
- all read accesses to A can be done in parallel
- increments of P[i] and P[j] can be done in parallel
- second for-loop is executed after the first one (on all processors)
Towards Parallel Algorithms

A First Set of Problems and Questions:
- parallel read access to variables possible?
- parallel write access (or increments?) to variables possible?
- are parallel/global copy statements realistic?
- how do we synchronise parallel executions?

Reality vs. Theory:
- on real hardware: probably lots of restrictions
 (e.g., no parallel reads/writes; no global operations on or access to memory)
- in theory: if there were no such restrictions, how far can we get?
- or: for different kinds of restrictions, how far can we get?
MergeSort in Parallel

MergeSortPar(A: Array[1..n]) {
 if n > 1 then {
 m := floor(n/2);

 do in parallel {
 create array L[1..m];
 for i from 1 to m do { L[i] := A[i]; }
 MergeSort(L);

 create array R[1..n-m];
 for i from 1 to n-m do { R[i] := A[m+i]; }
 MergeSort(R);
 };

 Merge(L, R, A);
 }
}
Parallel MergeSort

Idea:

- parallelise “divide-and-conquer”: recursive calls can be done in parallel
- use $p/2$ processors for each of the recursive calls (if p processors are available)

Merging in Parallel?

- can Merge be executed in parallel?
- by how many processors?
Can Merge be Parallelised?

Merge \((L: \text{Array}[1..p], R: \text{Array}[1..q], A: \text{Array}[1..n])\) {
// merge the sorted arrays \(L\) and \(R\) into \(A\) (sorted)
// we presume that \(n=p+q\)
 \(i:=1; j:=1;\)
 for \(k\) from 1 to \(n\) do {
 if \(i > p\)
 then \(\{ A[k]:=R[j]; j:=j+1; \}\)
 else if \(j > q\)
 then \(\{ A[k]:=L[i]; i:=i+1; \}\)
 else if \(L[i] < R[j]\)
 then \(\{ A[k]:=L[i]; i:=i+1; \}\)
 else \(\{ A[k]:=R[j]; j:=j+1; \}\)
 }
}

Problem: inherently sequential progress through arrays \(A, L, R\)
Odd-Even Merge

Ideas:
• start with a two sorted lists of length $n/2$:
 \[
 \begin{array}{cccccccc}
 2 & 3 & 4 & 7 & 1 & 5 & 6 & 8 \\
 \end{array}
 \]
• consider elements with odd and even index:
 \[
 \begin{array}{cccccccc}
 2 & 3 & 4 & 7 & 1 & 5 & 6 & 8 \\
 \end{array}
 \]
• sort odd- and even-indexed elements separately:
 \[
 \begin{array}{cccccccc}
 1 & 3 & 2 & 5 & 4 & 7 & 6 & 8 \\
 \end{array}
 \]

Observations
• final sequence is nearly sorted (only pairwise exchange required)
• odd- and even-indexed elements can be processed in parallel
Correctness of the Final Exchange Step

Claim (after odd/even sort):

- exchanges of \(a_{2i}\) and \(a_{2i+1}\) are sufficient for sorting

![Sorted List]

Counting Argument: \(x\) an odd-indexed element: \(x = a_{2i+1}\)

- exactly \(i\) odd-indexed elements are smaller than \(x\) (sorted lists)
- \(d_l, d_r\) = number of odd-indexed elements < \(x\) in left/right half
 \(\Rightarrow i = d_l + d_r\)
- \(v_l, v_r\) = number of even-indexed elements < \(x\) in left/right half
- \(x\) in left half: \(v_l = d_l\), \(v_r \in \{d_r, d_r - 1\}\)
- \(x\) in right half: \(v_l \in \{d_l, d_l - 1\}\), \(v_r = d_r\)
- consequence: \(v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i - 1\}\)
Correctness of the Final Exchange Step (2)

Counting Argument:
- count even- and odd-indexed elements \(< x\) in both halves
- \(v_l + v_r \in \{d_l + d_r, d_l + d_r - 1\} = \{i, i - 1\}\)

Possible Scenarios:
- \(v_l + v_r = i \Rightarrow \) exactly \(i\) even elements \(< x\)
 \(\Rightarrow i\)-th even-indexed element \(a_{2i} < x \rightarrow \text{OK}\)
- \(v_l + v_r = i - 1 \Rightarrow \) exactly \(i - 1\) even elements \(< x\)
 therefore: \(a_{2(i-1)} < x\), but \(a_{2i} > x \rightarrow \text{exchange}\)
- in both cases:
 \(a_{2(i+1)} > x\) (at most \(i\) even elements \(< x\)) \(\rightarrow \text{OK}\)
 \(a_{2(i-1)} < x\) (at least \(i - 1\) even elements \(< x\)) \(\rightarrow \text{OK}\)

\(\Rightarrow\) only the left even-indexed neighbour of \(x\) can be out of place
OddEvenMerge – A First Try

OddEvenMerge_1 (A: Array[1..n]) {
// merge the sorted arrays A[1..n/2] and A[n/2+1..n]
// into A (sorted); n is a power of 2

OddEvenSplit(A, Odd, Even);
Sort(Odd); Sort(Even);
OddEvenJoin(A, Odd, Even);

for i from 1 to n/2−1 do {
then exchange A[2i] and A[2i+1]
}
}
OddEvenSplit and OddEvenJoin (in parallel!)

OddEvenSplit (A: Array[1..n],
Odd: Array[1..n/2], Even: Array[1..n/2]) {
 for i from 1 to n/2 do in parallel {
 Odd[i] := A[2i-1];
 Even[i] := A[2i];
 }
}

OddEvenJoin (A: Array[1..n],
Odd: Array[1..n/2], Even: Array[1..n/2]) {
 for i from 1 to n/2 do in parallel {
 A[2i-1] := Odd[i];
 A[2i] := Even[i];
 }
}
Towards a Better Implementation of OddEvenMerge

After OddEvenSplit:

- Odd consists of two halves that are already sorted
- Even consists of two halves that are already sorted

⇒ Odd and Even can be sorted using OddEvenMerge

OddEvenMerge in Parallel:

- OddEvenSplit and OddEvenJoin are already parallel
- calls to OddEvenMerge can be executed in parallel (recursive calls will again issues parallel calls)
- final exchange loop can be parallelised
Parallel OddEvenMerge

OddEvenMerge (A: Array[1..n]) {
 ! add stopping criterion:
 if n<=2 then { SortTwo(A); return; }

 OddEvenSplit(A, Odd, Even);

 do in parallel { OddEvenMerge(Odd);
 OddEvenMerge(Even);
 }

 OddEvenJoin(A, Odd, Even);

}
Parallelism in OddEvenMerge

2 3 7 8 1 4 5 6
↓
2 7 1 5 3 8 4 6
↓
2 1 7 5 3 4 8 6
↓
1 2 5 7 3 4 6 8
↓
1 5 2 7 3 6 4 8
1 2 5 7 3 4 6 8
↓
1 3 2 4 5 6 7 8
1 2 3 4 5 6 7 8
(on 4 processors)
(on 2×2 processors)
(on 4×1 processors)
(on 2×2 processors)
(on 4 processors)
OddEvenMergeSort (in Parallel)

OddEvenMergeSort (A: Array [1..n]) {
 if n >= 2 then {
 do in parallel {
 OddEvenMergeSort (A[1..n/2]);
 OddEvenMergeSort (A[n/2+1..n]);
 }
 OddEvenMerge (A);
 }
}
Complexity of Odd-Even MergeSort

Complexity of OddEvenMerge:
- $\Theta(\log n)$ subsequent steps
- each step executed on $\frac{n}{2}$ processors
- total work: $\Theta(n \log n)$

Complexity of Odd-Even MergeSort:
- requires executions of OddEvenMerge on subarrays of lengths $k = 2, 4, \ldots, n$
- each OddEvenMerge step requires $\Theta(\log k)$ steps
- number of subsequent steps:
 $$\log 2 + \log 4 + \cdots + \log n = \Theta((\log n)^2)$$
- total work: $\Theta(n(\log n)^2)$