Generalised Search Problem

Definition (Search Problem)

Input: a sequence or set \(A \) of \(n \) elements \(\in A \), and an \(x \in A \).
Output: Index \(i \in \{1, \ldots, n\} \) with \(x = A[i] \), or NIL, if \(x \not\in A \).

- complexity depends on data structure
- complexity of operations to set up data structure? (insert/delete)

Definition (Generalised Search Problem)

- Store a set of objects consisting of a key and additional data:

\[
\text{Object} := (\text{key: Integer}, ., \text{record: Data});
\]

- search/insert/delete objects in this set
Direct-Address Tables

Definition (table as data structure)

- similar to array: access element via index
- usually contains elements only for some of the indices

Direct-Address Table:

- assume: limited number of values for the keys:
 \[U = \{0, 1, \ldots, m - 1\} \]
- allocate table of size \(m \)
- use keys directly as index
Direct-Address Tables (2)

DirAddrInsert (T: Table, x: Object) {
 T[x.key] := x;
}

DirAddrDelete (T: Table, x: Object) {
 T[x.key] := NIL;
}

DirAddrSearch (T: Table, key: Integer) {
 return T[key];
}
Direct-Address Tables (3)

Advantage:
• very fast: search/delete/insert is $\Theta(1)$

Disadvantages:
• m has to be small, or otherwise, the table has to be very large!
• if only few elements are stored, lots of table elements are unused (waste of memory)
• all keys need to be distinct (they should be, anyway)
Hash Tables

Idea: compute index from key

- Wanted: function h that maps a given key to an index,
- has a relatively small range of values, and
- can be computed efficiently,

Definition (hash function, hash table)

Such a function h is called a hash function. The respective table is called a hash table.
Hash Tables – Insert, Delete, Search

\[
\text{HashInsert}(T: \text{Table}, x: \text{Object}) \{
 T[h(x.\text{key})] := x;
\}
\]

\[
\text{HashDelete}(T: \text{Table}, x: \text{Object}) \{
 T[h(x.\text{key})] := \text{NIL};
\}
\]

\[
\text{HashSearch}(T: \text{Table}, x: \text{Object}) \{
 \text{return } T[h(x.\text{key})];
\}
\]
So Far: Naive Hashing

Advantages:

- still very fast: search/delete/insert is $\Theta(1)$, if h is $\Theta(1)$
- size of the table can be chosen freely, provided there is an appropriate hash function h

Disadvantages:

- values of h have to be distinct for all keys
- however: impossible to find a hash function that produces distinct values for any set of stored data

ToDo: deal with **collisions**:

objects with different keys that share a common hash value have to be stored in the same table element
Resolve Collisions by Chaining

Idea:

- use a table of containers
- containers can hold an arbitrarily large amount of data
- lists as containers: chaining

```c
ChainHashInsert(T:Table, x:Object) {
    insert x into T[h(x.key)];
}
```

```c
ChainHashDelete(T:Table, x:Object) {
    delete x from T[h(x.key)];
}
```
Resolve Collisions by Chaining

ChainHashSearch(T: Table, x: Object) {
 return ListSearch(x, T[h(x.key)]);
 ! result: reference to x or NIL, if x not found;
}

Advantages:
• hash function no longer has to return distinct values
• still very fast, if the lists are short

Disadvantages:
• delete/search is $\Theta(k)$, if k elements are in the accessed list
• worst case: all elements stored in one single list (very unlikely).
Chaining – Average Search Complexity

Assumptions:

- hash table has m slots (table of m lists)
- contains n elements \Rightarrow load factor: $\alpha = \frac{n}{m}$
- $h(k)$ can be computed in $O(1)$ for all k
- all values of h are equally likely to occur

Search complexity:

- on average, the list corresponding to the requested key will have α elements
- unsuccessful search: compare the requested key with all objects in the list, i.e. $O(\alpha)$ operations
- successful search: requested key last in the list; \Rightarrow also $O(\alpha)$ operations

Expected: Average complexity: $O(1 + \alpha)$ operations
A good hash function should:

- satisfy the assumption of even distribution:
 each key is equally likely to be hashed to any of the slots:

\[
\sum_{k: \ h(k)=j} (P(\text{key} = k)) = \frac{1}{m} \quad \text{for all} \quad j = 0, \ldots, m - 1
\]

- be easy to compute
- be “non-smooth”: keys that are close together should not produce hash values that are close together (to avoid clustering)

Simplest choice: \(h = k \mod m \) (\(m \) a prime number)

- easy to compute; even distribution if keys evenly distributed
- however: **not** “non-smooth”
The Multiplication Method for Integer Keys

Two-step method

1. multiply \(k \) by constant \(0 < \gamma < 1 \), and extract fractional part of \(k\gamma \)
2. multiply by \(m \), and use integer part as hash value:

\[
h(k) := \lfloor m(\gamma k \mod 1) \rfloor = \lfloor m(\gamma k - \lfloor \gamma k \rfloor) \rfloor
\]

Remarks:

- value of \(m \) uncritical; e.g. \(m = 2^p \)
- value of \(\gamma \) needs to be chosen well
- in practice: use fix-point arithmetics
- non-integer keys: use encoding to integers (ASCII, byte encoding, \ldots)
Open Addressing

Definition

- no containers: table contains objects
- each slot of the hash table either contains an object or NIL
- to resolve collisions, more than one position is allowed for a specific key

Hash function: generates sequence of hash table indices:

\[h: U \times \{0, \ldots, m - 1\} \rightarrow \{0, \ldots, m - 1\} \]

General approach:

- store object in the first empty slot specified by the probe sequence
- empty slot in the hash table guaranteed, if the probe sequence \(h(k, 0), h(k, 1), \ldots, h(k, m - 1) \) is a permutation of \(0, 1, \ldots, m - 1 \)
Open Hash Insert \(T: \text{Table}, \ x: \text{Object} \) : Integer {
 for \(i \) from 0 to \(m-1 \) do {
 \(j := h(x.\text{key}, \ i) \);
 if \(T[j] = \text{NIL} \) then {
 \(T[j] := x \); return \(j \);
 }
 }
 cast error “hash table overflow”
}

Open Hash Search \(T: \text{Table}, \ k: \text{Integer} \) : Object {
 \(i := 0 \);
 while \(T[h(k, i)] \not= \text{NIL} \) and \(i < m \) {
 if \(k = T[h(k, i)].\text{key} \) then return \(T[h(k, i)] \);
 \(i := i+1 \);
 }
 return \(\text{NIL} \);
}
Open Addressing – Linear Probing

Hash function: \(h(k, i) := (h_0(k) + i) \mod m \)

- first slot to be checked is \(T[h_0(k)] \)
- second probe slot is \(T[h_0(k) + 1] \), then \(T[h_0(k) + 2] \), etc.
- wrap around to \(T[0] \) after \(T[m - 1] \) has been checked

Main problem: clustering

- continuous sequences of occupied slots ("clusters") cause lots of checks during searching and inserting
- clusters tend to grow, because all objects that are hashed to a slot inside the cluster will increase it
- slight (but minor) improvement: \(h(k, i) := (h_0(k) + ci) \mod m \)
Open Addressing – Quadratic Probing

Hash function: $h(k, i) := (h_0(k) + c_1 i + c_2 i^2) \mod m$

- how to choose constants c_1 and c_2?
- objects with identical $h_0(k)$ still have the same sequence of hash values
 (“secondary clustering”)

Idea: double hashing $h(k, i) := (h_0(k) + i \cdot h_1(k)) \mod m$

- if h_0 is identical for two keys, h_1 will generate different probe sequences
Open Addressing – Double Hashing

\[h(k, i) := (h_0(k) + i \cdot h_1(k)) \mod m \]

How to choose \(h_0 \) and \(h_1 \):

- range of \(h_0 : U \to \{0, \ldots, m - 1\} \) (cover entire table)
- \(h_1(k) \) must never be 0 (no probe sequence generated)
- \(h_1(k) \) should be prime to \(m \) for all \(k \)
 \(\to \) probe sequence will try all slots
- if \(d \) is the greatest common divisor of \(h_1(k) \) and \(m \), only \(\frac{1}{d} \) of the hash slots will be probed

Possible choices:

- \(m = 2^M \) and let \(h_1 \) generate odd numbers, only
- \(m \) a prime number, and \(h_1 : U \to \{1, \ldots, m_1\} \) with \(m_1 < m \)
Collisions and Clustering

Scenarios for Collisions:

• keys share the same primary hash value: \(h(k_1, 0) = h(k_2, 0) \)
 \(\rightarrow\) same sequence of hash values for linear and quadratic probing

• keys share a value of the hash sequence: \(h(k_1, i) = h(k_2, j) \)
 \(\rightarrow\) same sequence of hash values for linear probing
 \(\rightarrow\) different hash values for next try: \(h(k_1, i + 1) \neq h(k_2, j + 1) \)

Example:

• multiple keys that share the same hash value
• linear hashing will cause primary cluster
• cluster will also grow by all keys mapped to a hash value within this cluster
Open Addressing – Deletion

Problem remaining: how to delete?

• search entry, remove it
• does not work:
 • insert 3, 7, 8 having same hash-value, then delete 7
 • how to find 8?
 ⇒ do not delete, just mark as deleted

Next problem:

• searching stops if first empty entry found
• after many deletions: lots of unnecessary comparisons!
Deletion general problem for open hashing

- only “solution”: new construction of table after some deletions
- hash tables therefore commonly don’t support deletion

Inserting

- inserting efficient, but too many inserts \Rightarrow not enough space
 \Rightarrow if ratio α too big, new construction of table with larger size

Still...

- searching faster than $O(\log n)$ possible