HPC – Algorithms and Applications

Dwarf #5 – Structured Grids

Michael Bader

Winter 2012/2013
Dwarf #5 – Structured Grids

1. dense linear algebra
2. sparse linear algebra
3. spectral methods
4. N-body methods
5. structured grids
6. unstructured grids
7. Monte Carlo
Part I

Modelling on Structured Grids
Motivation: Heat Transfer

- **objective:** compute the temperature distribution of some object
- **under certain prerequisites:**
 - temperature at object boundaries given
 - heat sources
 - material parameters
- **observation from physical experiments:**

\[q \approx k \cdot \delta T \]

heat flow proportional to temperature differences
A Wiremesh Model

- consider rectangular plate as fine mesh of wires
- compute temperature x_{ij} at nodes of the mesh
Wiremesh Model (2)

- model assumption: temperatures in equilibrium at every mesh node
- for all temperatures x_{ij}:
 \[
 x_{ij} = \frac{1}{4} \left(x_{i-1,j} + x_{i+1,j} + x_{i,j-1} + x_{i,j+1} \right)
 \]
- temperature known at (part of) the boundary; for example:
 \[
 x_{0,j} = T_j
 \]
- task: solve system of linear equations
A Finite Volume Model

- object: a rectangular metal plate (again)
- model as a collection of small connected rectangular cells

examine the heat flow across the cell edges
Heat Flow Across the Cell Boundaries

- Heat flow across a given edge is proportional to
 - temperature difference \((T_1 - T_0)\) between the adjacent cells
 - length \(h\) of the edge
- e.g.: heat flow across the left edge:
 \[
 q_{ij}^{(\text{left})} = k_x (T_{ij} - T_{i-1,j}) h_y
 \]
- heat flow across all edges determines change of heat energy:
 \[
 q_{ij} = k_x (T_{ij} - T_{i-1,j}) h_y + k_x (T_{ij} - T_{i+1,j}) h_y \\
 + k_y (T_{ij} - T_{i,j-1}) h_x + k_y (T_{ij} - T_{i,j+1}) h_x
 \]
Temperature change due to heat flow

- in equilibrium: total heat flow equal to 0
- but: consider additional source term F_{ij} due to
 - external heating
 - radiation
- $F_{ij} = f_{ij} h_x h_y$ (f_{ij} heat flow per area)
- equilibrium with source term requires $q_{ij} + F_{ij} = 0$:
 \[f_{ij} h_x h_y = -k_x h_y (2T_{ij} - T_{i-1,j} - T_{i+1,j}) \]
 \[-k_y h_x (2T_{ij} - T_{i,j-1} - T_{i,j+1}) \]
Finite Volume Model

- divide by $h_x h_y$:
 $$f_{ij} = -\frac{k_x}{h_x} \left(2T_{ij} - T_{i-1,j} - T_{i+1,j}\right)$$
 $$-\frac{k_y}{h_y} \left(2T_{ij} - T_{i,j-1} - T_{i,j+1}\right)$$

- again, system of linear equations
- how to treat boundaries?
 - prescribe temperature in a cell
 (e.g. boundary layer of cells)
 - prescribe heat flow across an edge;
 for example insulation at left edge:
 $$q_{ij}^{(\text{left})} = 0$$
Towards a Time Dependent Model

- idea: set up ODE for each cell
- simplification: no external heat sources or drains, i.e. \(f_{ij} = 0 \)
- change of temperature per time is proportional to heat flow into the cell (no longer 0):

\[
\dot{T}_{ij}(t) = \frac{\kappa_x}{h_x} \left(2T_{ij}(t) - T_{i-1,j}(t) - T_{i+1,j}(t) \right) \\
+ \frac{\kappa_y}{h_y} \left(2T_{ij}(t) - T_{i,j-1}(t) - T_{i,j+1}(t) \right)
\]

- solve system of ODE
 → using Euler time stepping, e.g.:

\[
T_{ij}^{(n+1)} = T_{ij}^{(n)} + \tau \frac{\kappa_x}{h_x} \left(2T_{ij}^{(n)}(t) - T_{i-1,j}^{(n)}(t) - T_{i+1,j}^{(n)}(t) \right) \\
+ \tau \frac{\kappa_y}{h_y} \left(2T_{ij}^{(n)}(t) - T_{i,j-1}^{(n)}(t) - T_{i,j+1}^{(n)}(t) \right)
\]
General Pattern: Stencil Computation

Characterisation of stencil codes:

- update of unknowns, elements, etc., according to a fixed pattern
- pattern usually defined by neighbours in a structured grid/lattice
- task: “update all unknowns/elements” → traversal
- multiple traversals for iterative solvers (in case of systems of equations) or time stepping (in case of time-dependent problems)

Additional example in the tutorials:
shallow water equation on Cartesian grid (Finite Volume Model)
Stencil Notation

- illustrate structure of system of equations or unknown/element-local update as a *discretisation stencil*
- represents one line of the system matrix (in matrix-vector notation)
- matrix elements (in general: update weights) placed according to their corresponding geometrical position
- stencils for the Poisson equation (h^2 factors ignored):

\[
\text{1D: } \begin{bmatrix} 1 & -2 & 1 \end{bmatrix} \quad \text{2D: } \begin{bmatrix} 1 & -4 & 1 \\ 1 \end{bmatrix}
\]
Part II

Structured Grids – Classification and Overview
Structured Grids – Characterisation

- construction of points or elements follows regular process
- *geometric* (coordinates) and *topological* information (neighbour relations) can be derived (i.e. are not stored)
- memory addresses can be easily computed
Regular Structured Grids

- rectangular/cartesian grids: rectangles (2D) or cuboids (3D)
- triangular meshes: triangles (2D) or tetrahedra (3D)
- often: row-major or column-major traversal and storage
Transformed Structured Grids

- transformation of the unit square to the computational domain
- regular grid is transformed likewise

Variants:
- *algebraic*: interpolation-based
- *PDE-based*: solve system of PDEs to obtain $\xi(x, y)$ and $\eta(x, y)$
Composite Structured Grids

- subdivide (complicated) domain into subdomains of simpler form
- and use regular meshes on each subdomain
- at interfaces:
 - conforming at interface ("glue" required?)
 - overlapping grids (chimera grids)
Block Structured Grids

Special case of composite grids:

- subdivision into *logically* rectangular subdomains (with logically rectangular local grids)
- subdomains fit together in an unstructured way, but continuity is ensured (coinciding grid points)
- popular in computational fluid dynamics
Adaptive Grids

Characterization of adaptive grids:
- size of grid cells varies considerably
- to locally improve accuracy
- sometimes requirement from numerics

Challenge for structured grids:
- efficient storage/traversal
- retrieve structural information (neighbours, etc.)
Block Adaptive Grids

- retain regular structure
- refinement of entire blocks
- similar to block structured grids

- efficient storage and processing
- but limited w.r.t. adaptivity
Recursively Structured Adaptive Grids

- based on recursive subdivision of parent cell(s)
- leads to tree structures
- quadtree/octree or substructuring of triangles:
 - efficient storage; flexible adaptivity
 - but complicated processing (recursive algorithms)
Quadtrees and Octrees

Recursive construction and corresponding quadtree:
Quadtree and Octree Grids (2)

Example: geometry representation of a car body
Part III

Stencil Codes – Parallelization
Stencil Codes – Parallelization

Finding Concurrency:

- update of all unknowns/elements in parallel?
 - → Jacobi iteration: yes
 - → Gauß-Seidel iteration: no (at least limited)
 - → time stepping: yes (“old” vs. “new” values)

- parallel access to shared data:
 - → limited to direct neighbours

Efficiency Considerations:

- low computational intensity:
 - → typically $\mathcal{O}(2D)$ or $\mathcal{O}(3^D)$ operations per stencil update
 - → low potential for cache usage
 - → challenge for computation/communication ratio

- performance typically memory-bound
Stencil Codes – Parallelization (Overview)

Domain Decomposition:
- geometry-oriented decomposition: 1D, 2D, or 3D decomposition?
- “patch” concepts

Communication Patterns:
- communication only to edge-/face-connected neighbours (or all neighbours)?
- ghost cells or non-overlapping domain decomposition?
- multiple ghost cell layers (→ overlapping domain decomposition)
1D Domain Decomposition – Slice-Oriented
2D Domain Decomposition – Block-Oriented

- length of domain boundaries (communication volume)
- fit number of processes to layout of boxes
3D Domain Decomposition – Cuboid-Oriented
“Patches” Concept for Domain Decomposition

- more fine-grain load distribution
- “empty patches” allow flexible representation of complicated domains
- overhead for additional, interior boundaries
- requires scheme to assign patches to processes
Ghost Cells

- replicate data from neighbouring partitions
 → requires exchange after each time step or iteration
- multiple layers to reduce communication operations
 or to allow more complicated data access stencils
- overhead can be large for patches concept (esp. in 3D)
Direct-Neighbour vs. “Diagonal” Communication

2-step scheme to exchange data of “diagonal” ghost cells:

- several “hops” replace diagonal communication
- slight increase of volume of communication (bandwidth), but reduces number of messages (latency)
- similar in 3D (26 neighbours → 6 neighbours!)
Ghost Cells for Quadtree Grids

- here: ghost cells only for direct (non-diagonal) neighbours
- more complicated than for Cartesian grids, e.g.:
 → how to identify neighbours in a quadtree?
 → data structure for ghost layer?
Typically:

- excellent weak scalability
 - computation time dominates communication time
 - as long as partitions are big enough
 (then: volume \gg boundary)
- excellent sequential performance
 - simple data structures (arrays, etc.)
 - low memory footprint (memory-bound performance)
 - various approaches for optimisation (vectorisation, etc.)

Challenges: “science per flop”

- adaptive refinement required?
- complicated domains and domain boundaries?
Part IV

(Cache-)Efficient (Parallel) Algorithms for Structured Grids
Analysis of Cache-Usage for 2D/3D Stencil Computation

We will assume:

- 2D or 3D Cartesian mesh with $N = n^d$ grid points
- stencil only accesses nearest neighbours
 \rightarrow typically $c_M := 2d$ or $c_M := 3d$ accesses per stencil
- c_F floating-point operations per stencil, $c_F \in O(c_M)$

We will examine:

- number of memory transfers in the Parallel External Memory model (equiv. to cache misses)
- for different implementations and algorithms
- similar for ratio of communication to computation
Straight-Forward, Loop-Based Implementation

Example:

```plaintext
for i from 1 to n do
    for j from 1 to n do {
        x[i, j] = 0.25*(x[i-1,j]+x[i+1,j]+x[i, j-1]+x[i, j+1])
    }
```

Number of cache line transfers:

- x[i-1,j], x[i, j], and x[i+1,j] stored consecutive in memory \(\leadsto\) loaded as one cache line (of size \(L\))
- question: Cache size \(M\) large enough to hold \(n\) floats?
- if \(n > M\): cache misses for \(x[i, j-1]\) and \(x[i, j+1]\)
- this: \(3N/L = 3n^2/L\) transfers; no impact of cache size \(M\)
Loop-Based Implementation with Blocking

Example:

```
for ii from 1 to n by b do
    for jj from 1 to n by b do
        for i from ii to ii + b - 1 do
            for j from jj to jj + b - 1 do {
                x[i, j] = 0.25*(x[i-1, j]+x[i+1, j]+x[i, j-1]+x[i, j+1])
            }
```

Number of cache line transfers:

- choose b such that the cache can hold 3 rows of x: $M > 3b$
- then: N/L transfers; still independent of cache size M
 (besides condition for b)
Extension to 3D stencils

Simple loops:
- if cache holds 3 planes of x, $M > 3n^2$, then N/L transfers
- if cache only holds 1 plane, $M > n^2$, then $3N/L$ transfers
- if cache holds less than 1 row, $M < n$, then $5N/L$ transfers (if $c_M = 6$) or $9N/L$ transfers (if $c_M = 3^3 = 27$)

With blocking:
- cache needs to hold 3 planes of a b^3 block: $M > 3b^2$
- then: N/L transfers; again independent of cache size M
 (besides condition for b)
Further Increase of Cache Reuse

Requires multiple stencil evaluations:

\[
\begin{align*}
\text{for } t \text{ from } 1 \text{ to } m \text{ do } \\
\quad \text{for } i \text{ from } 1 \text{ to } n \text{ do } \\
\quad \quad \text{for } j \text{ from } 1 \text{ to } n \text{ do } \{ \\
\quad \quad \quad x[i,j] &= 0.25 \times (x[i-1,j]+x[i+1,j]+x[i,j-1]+x[i,j+1]) \\
\quad \quad \}\}
\end{align*}
\]

→ for multiple iterations or time steps, e.g.

Possible approaches:

- blocking in space and time?
- what above precedence conditions of stencil updates?
Region of Influence for Stencil Updates

1D Example:

- area of “valid” points narrows by stencil size in each step
- leads to trapezoidal update regions
- similar, but more complicated, in 2D and 3D
Divide & Conquer Algorithm: Space Split

1D Example:

- applied, if spatial domain is at least “twice as large” as number of time steps
- note precedence condition for left vs. right subdomain
Divide & Conquer Algorithm: Time Split

1D Example:

- applied, if spatial domain is less than “twice as large” as number of time steps
- space split likely as the next split for the lower domain
Cache Oblivious Algorithms for Structured Grids

Algorithm by Frigo & Strumpen:

- divide & conquer approach using time and space splits
- $O\left(\frac{N}{d\sqrt{M}}\right)$ cache misses in “cache oblivious” model
 (“Parallel External Memory” with only 1 CPU and “ideal cache”)

References/Literature:

- Matteo Frigo and Volker Strumpen: *Cache Oblivious Stencil Computations*, Int. Conf. on Supercomput., ACM, 2005.