HPC – Algorithms and Applications

Dwarf #6 – Unstructured Grids

Michael Bader

Winter 2014/2015
Dwarf #6 – Unstructured Grids

1. dense linear algebra
2. sparse linear algebra
3. spectral methods
4. N-body methods
5. structured grids
6. **unstructured grids**
7. Monte Carlo
Unstructured Grids – Characterisation

- (almost) no restrictions on grid generation, maximum flexibility
- explicit storage of basic geometric and topological information → usually complicated data structures
Example: Delaunay Triangulation

- assume: grid points are already given
- to do: generate triangular grid cells
- satisfy Delaunay property: circumcircle of any grid triangle does not contain other grid vertices
- leads to triangles with favourable properties: avoid acute/obtuse angles
- related to Voronoi diagrams (next slide)
- widespread (computer graphics, meshes for Finite Element methods, etc.)
Delaunay Triangulation and Voronoi Diagrams

Algorithm:

1. Voronoi region around each given grid point:
 \[V_i = \{ P : \| P - P_i \| < \| P - P_j \| \ \forall j \neq i \} \]

2. connect points from adjacent Voronoi regions

3. leads to set of disjoint triangles (tetrahedra in 3D)
Example: Advancing Front Methods

- approach to generate both grid points and grid cells
- advance a *front* step-by-step towards interior
- starting from the boundary (*starting front*)
Advancing Front Methods (2)

Algorithm:
1. choose an edge on the current front, say PQ
2. create a new point R at equal distance d from P and Q
3. determine all grid points lying within a circle around R, radius r
4. order these points w.r.t. distance from R
5. for all points, form triangles with P and Q; select one of these triangles
6. add triangle to grid (unless: intersections, . . .)
7. update triangulation and front line: add new cell, update edges
Parallelization of Unstructured-Grid Computations

Load Distribution and Communication:

- divide grid into partitions (e.g., one partition per CPU/core)
- with uniform computational load
 → usually: partitions of equal size
- with minimal communication effort
 → minimise number of grid cells at partition boundaries
Partitioning Unstructured Grids

Partitioning problem:

- divide grid into K partitions
- with the same number of grid cells
 (with weighted cells: same collective weight per partition)
- with minimal number of cells at the boundary
 → count (weighted?) edges (or vertices?) at the boundary

![Partitioning Diagram]
Graph-Based Partitioning

Graph-Representation of Grids:

- “standard” graph \((V, E)\) for a grid:
 \(V = \) grid vertices, \(E = \) set of all grid cell edges

- vs. “dual” graph \((V', E')\):
 \(V' = \) grid cells, \(E' = \) tuples of adjacent grid cells
Graph-Based Partitioning

Graph-Representation of Grids:

- "standard" graph \((V, E)\) for a grid:
 \(V = \) grid vertices, \(E = \) set of all grid cell edges

- vs. "dual" graph \((V', E')\):
 \(V' = \) grid cells, \(E' = \) tuples of adjacent grid cells
\(K\)-way Graph Partitioning

- divide \(V\) (or \(V'\)) into \(K\) equal-sized partitions \(V_k\):
 \[\bigcup_k V_k = V \text{ and } |V_k| = |V|/K \text{ and } V_k \cap V_j = \emptyset \text{ (if } k \neq j\)]
- minimise edge cut: \[\{(e, f) \in E : e \in V_k, f \notin V_k\}\]
- \(NP\)-complete problem \(\Rightarrow \) use heuristics-based algorithms
Multilevel k-Way Partitioning

Algorithm by Karypis and Kumar (1998):

1. **coarsening phase:**
 - successively collapse sets of vertices to reduce problem size
 - conserve vertex/edge weights

2. **partitioning phase:**
 - perform K-way partitioning on a coarse graph

3. **uncoarsening phase:**
 - successively expand collapsed vertices to obtain respective partitioning of the original graph
 - postprocessing after each uncoarsening step to improve load balance
Coarsening Phase

Coarsening by **Matching:**
- “matching”: set of edges, where no two edges share a common vertex
- “maximal” matching: a matching, where no further edges can be added (but some vertices might still be without a match)
- in contrast: “perfect” matching (matching covers all vertices)

Matching-based Coarsening:
- two vertices connected by an edge of the matching will be collapsed
- stop coarsening, if graph is small enough or matching does no longer lead to sufficient coarsening
Algorithms for Matching

Random Matching:

- vertices are visited in random order
- an unmatched vertex u randomly selects an unmatched connected vertex v
 $\rightarrow (u, v)$ is added to the matching
- vertices stay unmatched, if they no longer have an unmatched neighbour

\Rightarrow simple, greedy approach; however, does not consider minimisation of edge-cut
Algorithms for Matching (2)

Heavy Edge Matching:

- use weighted edges: $W(e)$;
 and $W(A) := \sum_{e \in A} W(e)$ for a set A of edges
- E_{i+1} and E_i the edges of coarse/fine graph due to a matching M_i, then: $W(E_{i+1}) = W(E_i) - W(M_i)$
- motivates heuristics: use “heavy” edges for matching
- again: visit vertices in random order;
 pick edge (to unmatched vertex) with the largest edge weight

\Rightarrow greedy approach, heuristics to keep edge-cut low, but does not guarantee minimisation of edge-cut
Modified Heavy Edge Matching:

- observation: coarse graphs with low average degree (number of outgoing edges) of edges usually lead to partitions with lower edge-cut
- chose random vertex \(v \)
 \[H(v) \] the set of adjacent edges with largest weight
- for each \((v, u) \in H(v) \), define \(\hat{W}(v, u) := \sum_e W(e) \) for all edges \(e \) that
 - are adjacent to \(v \), i.e. \(e = (v, u') \)
 - \(u' \) is connected to \(u \)
- determine maximum \(\hat{W}(v, u) \) and pick respective \((v, u) \) for matching
Collapse Graph after Matching

Determine Coarse Vertices:

- matching M_i computed for (V_i, E_i)
- each $m \in M_i$ becomes a vertex v_m of V_{i+1}
- each non-matched $v \in V_i$ becomes a vertex of V_{i+1}
- weight vertices to preserve load balance info: $W(v_m)$ by adding the weights of the two matched vertices

Determine Coarse Edges:

- an edge between two vertices of V_{i+1} is generated, if an edge in E_i connects any of the former members
- the edge weights are added over all such connections
 \Rightarrow preserve information to determine edge-cut
Partitioning of the Coarse Graph

Options:

- coarsen until only \(k \) graph vertices are left?
 \[\rightarrow \text{bad partitions (vertices no longer equally weighted)}; \]
 \[\rightarrow \text{matching does not reduce graph size well for small partitions} \]

- switch to multilevel recursive bisection
 \[\rightarrow \text{turns out as successful choice} \]

- Fiedler vector for partitioning (spectral methods)
 \[\rightarrow \text{solve eigenvalue problem on the adjacency matrix} \]

- geometric methods (coordinates required)

- combinatorial methods
Uncoarsening of the Graph Partitions

Backprojection:
- partitioning P_{i+1} given on coarse graph
- put vertex v of P_i to partition $p \in P_i$, if match-vertex of v belongs to p in P_{i+1}

Local Refinement:
- even, if P_{i+1} might be (locally) optimal, P_i can be improved, as more degrees of freedom are available
- greedy approach: swap vertices between partitions to reduce edge cut (until a local minimum is reached)
Local Refinement Algorithm

- define *neighbourhood* \(N(v) \) for each vertex \(v \): set of adjacent partitions
- for each vertex \(v \) and partition \(B \in N(v) \): compute gain \(g(v, B) \) for moving \(v \) into partition \(B \)
- move vertex from its original partition \(A \) to \(B \), if
 1. gain \(g(v, B) \) is largest among \(N(v) \) and \(> 0 \) and
 2. load balance is maintained:

\[
\mathcal{W}(B) + \mathcal{W}(v) \leq \mathcal{W}_{\text{max}} \quad \text{and} \quad \mathcal{W}(A) - \mathcal{W}(v) \geq \mathcal{W}_{\text{min}}
\]
- move vertex, if edge cut stays equal, i.e. \(g(v, B) = 0 \), but balance is improved
- *greedy refinement*: visit vertices at partition boundaries in random order; move to the partition with largest gain
Local Refinement Algorithm (2)

Determine gain of vertex:

- sum up weights of edges to neighbour partition B

 \rightarrow external degree: $\text{ED}(v, B) := \sum_{u \in P_B} W(v, u)$

- sum up weights of edges in the same partition A

 \rightarrow internal degree: $\text{ID}(v) := \sum_{u \in P_A} W(v, u)$

- gain of moving v to b: $g(v, B) = \text{ED}(v, B) - \text{ID}(v)$
MLkP-Example – Coarsening Phase

Start with dual graph:
MLkP-Example – Coarsening Phase

Start with dual graph:
Random matching:
MLkP-Example – Coarsening Phase

Collapse vertices and re-build adjacency graph:

(bigger discs indicated heavier vertices, i.e. multiple grid cells)
MLkP-Example – Coarsening Phase

Random matching:
MLkP-Example – Coarsening Phase

Collapse vertices and re-build adjacency graph:

(multiple edges between matchings lead to edge weights > 1)
MLkP-Example – Coarsening Phase

Random matching:
MLkP-Example – Coarsening Phase

Collapse vertices and re-build adjacency graph:

(yellow numbers indicated vertex weights)
MLkP-Example – Partitioning

Determine initial partitioning on coarsened graph:

(edge-cut: 11
balance: 25–26–19

(minimize edge-cut: do not cut 2-/3-weighted edges)
MLkP-Example – Uncoarsening Phase

Inflate collapsed vertices:

- edge-cut: 11
- balance: 25–26–19
MLkP-Example – Uncoarsening Phase

Local improvement:

* edge-cut: 11
* balance: 25–23–22

(right-most vertex moves from pink to blue partition)
MLkP-Example – Uncoarsening Phase

Inflate collapsed vertices:

edge-cut: 11
balance: 25–23–22
MLkP-Example – Uncoarsening Phase

Local improvement:

edge-cut: 11
balance: 25–23–22

(here: no vertex moves that improve edge-cut or balance)
MLkP-Example – Uncoarsening Phase

Inflate collapsed vertices:

debge-cut: 11
balance: 25–23–22
Local improvement:

edge-cut: 11
balance: 24–24–22

(top-left vertex moves from green to pink partition)
Partitioning obtained via (our) MLkP algorithm:

edge-cut: 11

bal.: 24−24−22
MLkP-Example – Computed Partition

Compare with optimal(?) partitioning:

edge-cut: 9
bal.: 24−23−23

Analyse: what choices lead to different partitioning?