Parallel Numerics

Exercise 5: Parallel LU Decomposition & Collective Operations

1 LU Decomposition

To calculate the solution of a linear equation system

\[Ax = b \]

with a non singular matrix \(A = (a_{i,j}) \in \mathbb{R}^{n \times n} \) and \(b \in \mathbb{R}^n \) the LU decomposition algorithm can be applied. The algorithm decomposes the matrix \(A \) in a lower triangular matrix \(L \) and an upper triangular matrix \(U \): \(A = LU \) (cp. lecture notes).

A recursive procedure for calculating the upper triangular matrix \(U =: A^{(n)} \) from the matrix \(A \) can be given as follows:

1. Define \(A^{(1)} = (a^{(1)}_{i,j}) := A \)

2. Calculate for \(k = 1, \ldots, n - 1 \) the values \(l_{i,k}, i = k + 1, \ldots, n \) and the matrices \(A^{(k+1)} = (a^{(k+1)}_{i,j}) \) iteratively with

\[
 l_{i,k} := a^{(k)}_{i,k} / a^{(k)}_{k,k} \\
 a^{(k+1)}_{i,j} := \begin{cases}
 a^{(k)}_{i,j} - l_{i,k} a^{(k)}_{k,j} & \text{for } i \in \{k+1, \ldots, n\}, j \in \{k, \ldots, n\} \\
 a^{(k)}_{i,j} & \text{otherwise}
\end{cases}
\]

A serial implementation of this iterative algorithm could have the following form ("\(kij \)-loop-arrangement"):?

\[
 \text{for } k = 1 \text{ to } n - 1 \\
 i = k + 1 \text{ to } n \\
 \quad l_{i,k} := a_{i,k} / a_{k,k} \\
 \quad \text{for } j = k \text{ to } n \\
 \quad \quad a_{i,j} := a_{i,j} - l_{i,k} a_{k,j}
\]

a) Define the term \textit{in situ} storage scheme.

b) Define the term \textit{Forward Elimination} and the term \textit{Backward Elimination} mathematically.
c) Given is

\[M = \begin{pmatrix} 2 & 2 & 1 \\ 4 & 2 & 3 \\ 2 & 2 & 2 \end{pmatrix} \]

Compute the LU decomposition \(M = L \cdot U \).

d) Compute the LU decomposition using a pivot search (move the entry with the largest absolute value to the pivot position).

2 Collective Operations

a) Define the MPI term *collective operation*.

b) Are there any non-blocking collective operations?

c) Give examples for this three different types of collective operations:

<table>
<thead>
<tr>
<th>Collective Computations</th>
<th>...</th>
</tr>
</thead>
<tbody>
<tr>
<td>Data movement</td>
<td>...</td>
</tr>
<tr>
<td>Synchronisation</td>
<td>...</td>
</tr>
</tbody>
</table>

d) The MPI_Reduce command supports lots of predefined computations. List and explain them. What is the difference to MPI_Allreduce?

3 Parallel LU Decomposition

a) Give the data dependency graph for the first two equations of the backward elimination. Is there a parallel algorithm to compute the backward elimination?

b) Divide the matrix into blocks of rows. Scatter the blocks among the nodes of a parallel machine. Give a parallel algorithm. What collective operations are used? How many nodes are idle throughout the computation?

c) Divide the matrix into blocks of columns. Scatter the blocks among the nodes of a parallel machine. Give a parallel algorithm. What collective operations are used? How many nodes are idle throughout the computation?

d) Assign the columns of the matrix alternating to the different machines. Reformulate a parallel algorithm in words (or pseudocode). What about the load balancing and load difference, respectively?