Parallel Numerics
Exercise 8: Stationary Methods

1 Stationary Methods Revisited

To solve the equation system \(Ax = b \) stationary methods split up the matrix \(A \) into \(A = M - N \):

\[
\begin{align*}
Ax &= b \\
(M - N)x &= b \\
Mx &= Nx + b \\
Mx^{(n+1)} &= Nx^{(n)} + b
\end{align*}
\]

a) Give the Richardson, Jacobi and Gauß–Seidel method using matrix notation.
b) Give the Richardson, Jacobi and Gauß-Seidel method in pseudo code and identify GAXPYs, SAXPYs, . . .
c) For the weighted relaxation schemes, one scales the iteration rule above with a factor \(\omega \) and adds the trivial iteration \(x^{(n+1)} = x^{(n)} \). Derive the \(\omega - JAC \) and SOR (Successive-Over-Relaxation) scheme in matrix notation.

2 Residual-based Notation

The residual is defined as

\[
r = b - Ax
\]

a) Give the Richardson, Jacobi and Gauß-Seidel method using the residual.
b) Give the \(\omega - JAC \) and SOR scheme using the residual.
c) Give a sketch of the data dependency graph for both computing the residual and updating the solution according to the Jacobi and the GS scheme. (To simplify matters: Assume that \(A \) is tridiagonal)
d) Which parallel algorithms for matrix vector products do you know (already)?
3 SOR Implementation

In this section, we want to implement the SOR. As simplification for the following algorithms we assume that the iteration index k is always running from 0 to a maximum number k_{stop}. With the definitions

$$\alpha_i := \frac{\omega}{a_{ii}} \quad \text{for} \quad i = 1, \ldots, n \quad \text{and} \quad b_{ij} := \begin{cases} -a_{ij} & \text{for} \quad i \neq j \\ \frac{1-\omega}{\omega} a_{ii} & \text{for} \quad i = j \end{cases}$$

a serial algorithm for the SOR method can be given as follows:

\begin{verbatim}
for k = 0 to k_{\text{stop}}
 for i = 1 to n
 s := d_i
 for j = 1 to n
 s := s + b_{ij}x_j
 x_i := \alpha_i s
\end{verbatim}

A parallel algorithm can be implemented in a similar way: The b_{ij} are distributed columnwise on p processors in a cyclic way (cp. the Parallel Gauss Elimination, Exercise 6). Every processor calculates only a part of the sum in (*). Following, the x_i are calculated successively on different processors after receiving the parts of the sum form the other processors. Suitable communication is necessary. The parallel algorithm has the following shape:

\begin{verbatim}
for k = 0 to k_{\text{stop}}
 for i = 1 to n
 a := \sum_{j \in \text{mycolumns}} b_{ij}x_j
 if i \in \text{mycolumns}
 Get a from all other processors and calculate $s := \sum_p a$
 $x_i := \alpha_i (s + d_i)$
\end{verbatim}

Implement the serial and parallel algorithm! On which processor do you find the solution x after running the parallel algorithm? Can you observe a speedup?