Tools: Libraries and Software

- In addition to standard tools like editors, compilers, or debuggers, there is a lot of (commercial or public domain) support available:
 - **Modelling**: Computer algebra programs like Mathematica, Maple, Axiom, or Reduce support derivations and proofs of theorems via symbolic means.
 - **Numerics**: Mathematica, Maple, or MATLAB support the development, testing, and analysis of (numerical) algorithms and allow an efficient prototyping.
 - **Implementation**: A zoo of (numerical) libraries provide up-to-date modules for standard tasks (numerical linear algebra etc.), tailored to specific target architectures.
 - **Visualization**: Packages like IDL, IRIS Explorer, or AVS/Express offer (nearly) all you want.

Libraries and Collections

- **GAMS**: Guide to Available Mathematical Software
 - service offered by the National Institute of Standards & Technology (NIST)
 - see http://gams.nist.gov
 - catalogue and database of more than 100 packages and libraries with together several tens of thousands of routines
 - Topics range from number theory to statistics!
 - majority: FORTRAN programs for numerical tasks (systems of linear equations, eigenvalues, roots, differential equations, ...)
 - includes both public domain material (at NIST or at NETLIB, see below) and commercial (licenced) products
 - good user guidance
Libraries and Collections

- Matrix Market:
 - see http://math.nist.gov/MatrixMarket/
 - repository of test data for use in comparative studies of algorithms for numerical linear algebra
 - features nearly 500 (sparse) matrices from various fields of applications (chemical engineering, fluid flow, power system networks, quantum physics, or structural engineering, e.g.)
 - provides also matrix generation tools
 - classification according to matrix properties:
 - number field: real or complex
 - nonzero structure: dense, banded, sparse, tridiagonal, ...
 - symmetry: none, symmetric, skew symmetric, SPD, SPD, ...
 - shape: square, more rows than columns, ...

Libraries and Collections

- NETLIB: repository of free software for numerical purposes
 - see http://www.netlib.org/
 - offered by University of Tennessee and Oak Ridge Natl Lab
 - several mirrored copies all over the world
 - about 135 million requests since 1985, > 40 million in 2000
 - > 90% http, rest ftp and email
 - about 160 different libraries, among which
 - BLAS (Basic Linear Algebra Subprograms)
 - LAPACK (Linear Algebra PACKage)
 - ODEPACK (ordinary differential equations)
 - MPI (message passing interface for parallelization)
 - PLTMG (elliptic boundary value problems)
BLAS

- collection of robust, efficient, and portable modules for elementary vector and matrix operations
- basis for LAPACK routines, for example
- allows plug-and-play for numerical subroutines
- FORTRAN, to be used from FORTRAN/C/C++
- Java BLAS available, too
- levels:
 - **Level 1**: vector and vector-vector operations (norm, scalar product, vector addition, SAXPY, ...)
 - **Level 2**: matrix-vector operations (rank-1-modifications, matrix-vector product, tridiagonal systems); vector processors
 - **Level 3**: matrix-matrix operations; parallel computers!

LAPACK

- popular collection of FORTRAN subroutines for standard problems from numerical linear algebra like linear systems, regression, eigenvalues, SVD, ...
- dense and band matrices (not general sparse ones)
- successor of EISPACK and LINPACK, tuning for modern microprocessors and supercomputer architectures (reduction of memory accesses, block operations, ...)
- LAPACK routines use BLAS modules
- variants:
 - LAPACK90, CLAPACK, LAPACK++
 - ScALAPACK (MIMD systems, scalability!)
Libraries and Collections

- Visual Numerics:
 - see http://www.vni.com
 - mathematical libraries
 - predecessor: IMSL (The Int'l Math. & Statist. Library)

- Diffpack:
 - offered by Numerical Objects, see http://www.nobobject.com
 - environment for the development of code for numerical simulation problems plus libraries of efficient routines
 - object-oriented concept, available for most UNIX platforms

- NAG (Numerical Algorithms Group):
 - see http://www.nag.co.uk
 - non-profit software house, spin-off of Oxford University
 - FORTRAN/FORTRAN90/C/Parallel libraries;
 - Axiom; IRIS Explorer (Visual); Fastflo (CFD and more)

Libraries and Collections

- Numerical Recipes:
 - see http://www.nr.com
 - sophisticated algorithms and their implementations
 - available for FORTRAN 77, FORTRAN 90, C, Pascal, ...
 - corresponding software is licenced and commercial
 - about 350 routines for topics like
 - solution of linear systems
 - interpolation and extrapolation
 - numerical quadrature
 - differentiation and approximation
 - roots and extrema
 - eigenvalues, differential equations, and more
Tools for Algorithm Development

- Libraries offer tested and efficient (w.r.t. both storage and runtime) standard modules for competitive simulation codes (*do something classical cheap!*)
- Another problem is algorithm development (*develop something new and cheaper*):
 - design of algorithms
 - testing and rapid prototyping
 - analysis (convergence behaviour etc.)
 - not yet: production runs, memory or runtime optimization
- widespread solutions:
 - computer algebra programs like Maple or Mathematica
 - MATLAB

Maple

- by Waterloo Maple Inc., a spin-off of the University of Waterloo in Ontario (see http://www.maplesoft.com)
- originally a mere computer algebra program, today „interactive environment for mathematical problem solving and programming“
- focus:
 - symbolic computations, formula manipulation
 - numerical computations with arbitrary accuracy
 - 2D and 3D graphical output
 - straightforward programming for algorithm development
- structure:
 - kernel + main library + mixed library + packages
MATLAB

- by The MathWorks (see http://www.mathworks.com/)
- originally: primarily for use in (maths) education
- today: „high-performance numerical computation and visualization software“, standard tool for scientific computing research groups:
 - development, prototyping, programming
 - computations
 - visualization
- singular success story: >500 employees, >100 countries, >2000 universities and research institutes
- structure: basic program plus a collection of specialized tool boxes