Continuous Models 2: PDE

- so far: only time as independent variable
- ODE-based population models sometimes too coarse:
 - population in the USA during California gold rush in the 1850s
 - predictions of the UN concerning world population (industrialized countries versus third world)
- therefore: suppose p(x,t) or p(x,y,t) instead of p(t)
 - California gold rush: 1D sufficient (east-west)
 - world population: perhaps 1D (north-south), perhaps 2D
- taking space into account makes models
 - more accurate (spatial effects are no longer neglected)
 - more complicated (analytical solution becomes harder, numerical solution means a lot of additional work)
- standard example: heat conduction

Modelling with PDE

- taking space into account is typical for many problems or phenomena from physics or continuum mechanics:
 - fluid mechanics: where will we get a tornado?
 - structural mechanics: where will be the crack?
 - process engineering: where is it how hot in the reactor?
 - electromagnetism: where is which electron density?
 - geology: where will the earthquake happen?
- more independent variables entail partial derivatives
- we distinguish:
 - stationary problems: no time-dependence
 - unsteady problems: time-dependence (perhaps, but not necessarily, with a stationary limit for increasing time)
Heat Conduction

- central problem of thermodynamics
- let heat affect an object’s boundary – propagation?
 - a wire, heated at one end
 - a metal plate, heated at one side
 - water cooling the reactor in a nuclear power plant
 - a room in winter: where to place the heating
 - a room in summer: effect of direct sunshine
 - boiling water in a pot on a ceramic hob
- central function of interest: temperature T
 \[T(x,t) \text{ or } T(x,y,t) \text{ or } T(x,y,z;t) \]
- The values of T will depend on the material and its heat conductivity.

Modelling Heat Conduction 1

- part 1 of the model: the PDE, indicating the relations of changes of T with respect to time and space (3D):
 \[\kappa \cdot \left(T_{xx} + T_{yy} + T_{zz} \right) = \kappa \cdot \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right) = \frac{\partial T}{\partial t} = T, \]
 or shortly $\kappa \cdot \Delta T = T$, with the Laplace operator Δ

- short derivation (excursion to physics):
 - starting point is the basic principle of energy conservation
 - changes of heat in some part D of our domain are due to flux in/out D’s surface and to external sources and drains in D
 \[\frac{\partial}{\partial t} \int_D \rho \, c \, T \, dV = \int_D q \, dV + \int \kappa \nabla T : \vec{n} \, dS \]
 - density ρ, specific heat c, external term q, heat conductivity k, outer normal vector \vec{n}, volume/surface element dV/dS
Modelling Heat Conduction 2

- derivation of the heat equation (continued):
 - transform the above equation according to Gauß' theorem:
 \[\int_D \left(\rho c T_t - q - k \Delta T \right) dV = 0 \]
 - This holds for an arbitrary part \(D \) of our domain. Hence, the integrand must vanish:
 \[T_t = \kappa \Delta T + \frac{q}{\rho c}, \quad \kappa = \frac{k}{\rho c} \]
 - \(\kappa > 0 \) is called the thermal diffusion coefficient (since the Laplace operator stands for a (heat) diffusion process)
 - For vanishing external influence \(q=0 \), we get (and, thus, have derived) the famous heat equation:
 \[T_t = \kappa \Delta T \]

Modelling Heat Conduction 3

- part 2 of the model: the PDE needs boundary or initial-boundary conditions to provide a unique solution:
 - Dirichlet boundary conditions: fix \(T \) on (part of) the boundary
 \[T(x, y, z) = \varphi (x, y, z) \]
 - Neumann boundary conditions: fix \(T \)'s normal derivative on (part of) the boundary:
 \[\frac{\partial T}{\partial n}(x, y, z) = \varphi (x, y, z) \]
 - pure Dirichlet and mixtures are allowed, pure Neumann b.c. do not lead to a unique solution (with \(T \) solves \(T + \)constant the PDE, too)
 - in case of time-dependence: initial conditions for \(t=0 \)
- in case of no time-dependence: Laplace equation
Modelling Heat Conduction 4

- meaning of boundary conditions:
 - Dirichlet: the temperature T is prescribed itself along (part of) the boundary (some defined heating or cooling)
 - Neumann: the temperature flux through (part of) the boundary is prescribed (if vanishing: complete isolation, no orthogonal transport of heat into or out of the domain)

- analytical solutions:
 - In simple (1D) configurations, solutions can be given explicitly via separation of variables (Fourier's method). We will discuss these in the exercises.
 - The heat equation is a simple case of a PDE, where general statements concerning existence and uniqueness of solutions are possible. Often, such theorems cannot be proven.

Types of PDE

- The heat equation is a linear PDE of second order:
 \[\sum_{i,j=1}^{d} a_{ij}(x) \cdot u_{i,j}(x) + \sum_{i=1}^{d} a_i(x) \cdot u_i(x) + a(x) \cdot u(x) = f(x) \]

- three types are distinguished:
 - elliptic PDE: the matrix A of the \(a_{ij} \) is pos. or neg. definite
 - parabolic PDE: one eigenvalue of A is zero, the others have the same sign, and the rank of A together with the vector of the \(a_i \) is full (d)
 - hyperbolic PDE: A has 1 pos. and d-1 neg. eigenvalues or v v v.

- examples:
 - elliptic: Laplace equation \(\Delta u = 0 \)
 - parabolic: heat equation \(\Delta u = u_t \)
 - hyperbolic: wave equation \(\Delta u = u_{tt} \)