
Scientific Computing I
Module 4: Numerical Methods for ODE

Michael Bader

Lehrstuhl Informatik V

Winter 2005/2006

Part I

Basic Numerical Methods

Motivation: Direction Fields

given: initial value problem:

ẏ(t) = f(t,y(t)), y(t0) = y0

easily computable: direction field

p(t)

t

5

10

4

3

8

2

1

6
0

420

idea: “follow the arrows”

“Following the Arrows”

direction field illustrates slope for given time tn and
value yn:

ẏn = f(tn,yn)

“follow arrows” = make a small step in the given
direction:

yn+1 := yn + τ ẏn = yn + τ f(tn,yn)

motivates numerical scheme:

y0 := y0

yn+1 := yn + τ f(tn,yn) for n = 0,1,2, . . .

Euler’s Method

numerical scheme is called Euler’s method:

yn+1 := yn + τ f(tn,yn)

results from finite difference approximation:

yn+1−yn

τ
≈ ẏn = f(tn,yn)

(difference quotient instead of derivative)

or from truncation of Taylor expansion:

y(tn+1) = y(tn)+ τ ẏ(tn)+O(τ2)

Euler’s Method – 1D examples

model of Maltus, ṗ(t) = αp(t):

pn+1 := pn + τα pn

Logistic Growth, ṗ(t) = α (1−p(t)/β)p(t):

pn+1 := pn + τα

(
1− pn

β

)
pn

Logistic growth with threshold:

pn+1 := pn + τα

(
1− pn

β

)(
1− pn

δ

)
pn

Euler’s Method in 2D
Euler’s method is easily extend to systems of ODE:

yn+1 := yn + τ f(tn,yn)

example: nonlinear extinction model

ṗ(t) =
(

71
8 − 23

12p(t)− 25
12q(t)

)
p(t)

q̇(t) =
(

73
8 − 25

12p(t)− 23
12q(t)

)
q(t)

Euler’s method:

ṗ(t) = pn + τ

(
71
8 − 23

12pn− 25
12qn

)
pn

q̇(t) = qn + τ

(
73
8 − 25

12pn− 23
12qn

)
qn

Discretized Model vs. Discrete Model
simplest example: model of Maltus

pn+1 := pn− τα pn, α > 0

compare to discrete model:

pn+1 := pn−δpn, δ > 0

with decay rate δ (“percentage”)

obvious restriction in the discrete model: δ < 1

obvious restriction for τ in the discretized model?

τα < 1⇒ τ < α
−1

not that simple in non-linear models or systems of
ODE!

Implicit Euler

Euler’s method (“explicit Euler”):

yn+1 := yn + τ f(tn,yn)

implicit Euler:

yn+1 := yn + τ f(tn+1,yn+1)

explicit formula for yn+1 not immediately available

to do: solve equation for yn+1

Implicit Euler – Examples

example: Model of Maltus

pn+1 := pn + τα pn+1 ⇒ pn+1 =
1

1− τα
pn

correct (discrete) model?

α < 0 : then 0 < (1− τα)−1 < 1 for any τ

α > 0 : then τ < α
−1 required!

in physics α < 0 is more frequent!
(damped systems, friction, . . .)

implicit schemes preferred when explicit schemes
require very small τ

Implicit Euler – 2D Example

example: arms race

pn+1 = b1 +a11pn+1 +a12qn+1

qn+1 = b2 +a21pn+1 +a22qn+1)

solve linear system of equations:

(1−a11)pn+1−a12qn+1 = b1

−a21pn+1 +(1−a22)qn+1 = b2

(for each time step n)

Local Discretisation Error

local influence of using differences instead of
derivatives

example: Euler’s method

l(τ) = max
[a,b]

{∥∥∥∥yt+τ −y(t)
τ

− f(t,y(t))
∥∥∥∥}

memory hook: insert exact solution y(t) into

yn+1−yn

τ
− ẏn

A numerical scheme is called consistent, if

l(τ)→ 0 for τ → 0

Global Discretisation Error

compare numerical solution with exact solution

example: Euler’s method

e(τ) = max
[a,b]

{‖yk−y(tk)‖}

(y(t) the exact solution; yk the solution of the
discretized equation)

A numerical scheme is called convergent, if

e(τ)→ 0 for τ → 0

Order of Consistency/Convergence

A numerical scheme is called consistent of order p (p-th
order consistent), if

l(τ) =O(τp)

A numerical scheme is called convergent of order p
(p-th order convergent), if

e(τ) =O(τp)

Part II

Advanced Numerical Methods

Runge-Kutta-Methods

1st idea: use additional evaluations of f, e.g.:

yn+1 = g(yn, f(tn,yn), f(tn+1,yn+1))

open question: where to obtain yn+1), how to
choose g

2nd idea: numerical approximations for missing
values of y:

yn+1 ≈ yn + τf(tn,yn)

⇒ yn+1 = g
(
yn, f(tn,yn), f(tn+1,yn + τf(tn,yn))

)

Runge-Kutta-Methods of 2nd order

3rd idea: choose g such that order of consistency is
maximal

example: 2nd-order Runge-Kutta:

yn+1 = yn +
τ

2
(
f(tn,yn)+ f(tn+1,yn + τf(tn,yn))

)
(“method of Heun”)

further example: modified Euler (also 2nd order)

yn+1 = yn + τ f
(
tn +

τ

2
,yn +

τ

2
f(tn,yn))

)

Runge-Kutta-Method of 4th order

classical 4th-order Runge-Kutta:

intermediate steps:

k1 = f(tn,yn)

k2 = f
(

tn +
τ

2
,yn +

τ

2
k1

)
k3 = f

(
tn +

τ

2
,yn +

τ

2
k2

)
k3 = f (tn + τ,yn + τk3)

explicit scheme:

yn+1 = yn +
τ

6
(
k1 +2k2 +2k3 +k4

)

Multistep Methods

1st idea: use previous steps for computation:

yn+1 = g(yn,yn−1, . . . ,yn−q+1)

2nd idea: use integral form of ODE

ẏ(t) = f(t,y(t))
tn+1∫
tn

ẏ(t)dt =

tn+1∫
tn

f(t,y(t))dt

y(tn+1)−y(tn) =

tn+1∫
tn

f(t,y(t))dt =?

Multistep and Numerical Quadrature
3rd idea: use numerical method for integration
→ interpolate f using a polynomial p:

y(tn+1)−y(tn) =

tn+1∫
tn

f(t,y(t))dt≈
tn+1∫
tn

p(t)dt

where

p(tj) = f(tj,y(tj)) for j = n− s+1, . . . ,n.

compute integral and obtain quadrature rule:

yn+1 = yn +
n

∑
j=n−s+1

αj f(tj,yj)

Adams-Bashforth

s = 1⇒ use yn only (leads to Euler’s method):

p(t) = f(tn,yn), yn+1 = yn + τ f(tn,yn)

s = 2⇒ use yn−1 and yn:

p(t) =
tn− t

τ
f(tn−1,yn−1)+

t− tn−1

τ
f(tn,yn),

yn+1 = yn +
τ

2
(
3f(tn,yn)− f(tn−1,yn−1)

)
usually consistent of s-th order

modified at start (no previous values available)

Adams-Moulton

use idea of Adams-Bashforth, but:
include value yn+1 ⇒ implicit scheme

first order: implicit Euler

p(t) = f(tn+1,yn+1), yn+1 = yn + τ f(tn+1,yn+1)

second order:

yn+1 = yn +
τ

2
(f(tn,yn)+ f(tn+1,yn+1))

how to obtain yk+1?
solve (nonlinear) equation ⇒ difficult!
easier and more common: predictor-corrector
approach

Problems for Numerical Methods for ODE

Possible problems:

Ill-Conditioned Problems:
small changes in the input ⇒ big changes in the
exact solution of the ODE

Instability:
big errors in the numerical solution compared to the
exact solution (for arbitrarily small time steps
although the method is consistent)

Stiffness:
small time steps required for acceptable errors in
the approximate solution (although the exact
solution is smooth)

Ill-Conditioned Problems
small changes in input entail completely different
results

Numerical treatment of such problems is always
difficult!
discriminate:

only at critical points?
everywhere?

possible risks:
non-precise input
round-off errors,. . .

question: what are you interested in?
really the solution for specific initial condition?
statistical info on the solution?
general behaviour (patterns)?

Stability

Example:
ẏ(t) =−2y(t)+1, y(0) = 1

exact solution: y(t) = 1
2(e−2t +1)

well-conditioned: yε(0) = 1+ ε ⇒ yε(t)−y(t) = εe−2t

use midpoint rule (multistep scheme):

yn+1 = yn−1 +2τ · f(xn,yn)

leads to numerical scheme:

yn+1 = yn−1 +2τ (1−2yn)

Stability (2)

Observation:

2-step rule:

yn+1 = yn−1 +2τ (1−2yn)

start with exact initial values: y0 = y(0) and y1 = y(τ)

numerical results for different sizes of τ:
τ = 1.0⇒ y9 =−4945.5, y10 = 20953.9
τ = 0.1⇒ y79 =−1725.3, y80 = 2105.7
τ = 0.01⇒ y999 =−154.6, y1000 = 158.7

midpoint rule is 2nd-order consistent, but does not
converge here: oscillations or instable behaviour

Stability (3)

reason: difference equation generates spurious
solutions

analysis: roots µi of characteristic polynomial
y2 = y0 +4τ(1−y); all |µi|< 1?

Stability of ODE schemes:

single step schemes: always stable

multistep schemes: additional stability conditions

in general:
consistency + stability = convergence

Stiff Equations
Example:

ẏ(t) =−1000y(t)+1000, y(0) = y0 = 2

exact solution: y(t) = e−1000t +1

explicit Euler (stable):

yk+1 = yk + τ(−1000yk +1000)

= (1−1000τ)yk +1000τ

= (1−1000τ)k+1 +1

oscillations and divergence for δ t > 0.002

Why that? Consistency and stability are asymptotic
terms!

Stiff Equations – Summary

Typical situation:

one term in the ODE demands very small time step

but does not contribute much to the solution

Remedy: use implicit (or semi-implicit) methods

Summary
Runge-Kutta-methods:

multiple evaluations of f (expensive, if f is expensive
to compute)

stable, well-behaved, easy to implement

Multistep methods:

higher order, but only evaluations of f (interesting,
if f is expensive to compute)

stability problems; behave “like wild horses”

in practice: do not use uniform τ and s

Implicit methods:

for stiff equations

most often used as corrector scheme

