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Motivation: Direction Fields

@ given: initial value problem:

y(t)=f(ty),  y(to)=yo

@ easily computable: direction field

@ idea: "follow the arrows”

Euler's Method

@ numerical scheme is called Euler’'s method:

Yn+1 :=Yn+tf(tn,yn)
@ results from finite difference approximation:

@ RYn= f(tnaJ/n)

(difference quotient instead of derivative)
@ or from truncation of Taylor expansion:

Y(tns1) =y(tn) + Ty(tn) + O(7?)

Part |

Basic Numerical Methods

“Following the Arrows”

o direction field illustrates slope for given time t, and

value yp:
Yn="1(tn,¥n)
o “follow arrows” = make a small step in the given
direction:

Yn41:=Yn+TYn =Yn+Tf(tn,yn)

@ motivates numerical scheme:

Yo = Yo
Yn+1 = Yn+7Tf(tn.yn) forn=0,1,2,...

Euler’'s Method — 1D examples

@ model of Maltus, p(t) = ap(t):

Pn4+1:=Pn+TAPn

@ Logistic Growth, p(t) = o (1 —p(t)/B)p(t):

Pn+1:=pPn+TX <1 —%) Pn

@ Logistic growth with threshold:

Pnt+1:=Ppn+ 10 (1 —%") (1 —%)Pn



Euler’'s Method in 2D
@ Euler’'s method is easily extend to systems of ODE:
Yni1:=Yn+TF(tn,¥n)
@ example: nonlinear extinction model
pt) = (B -Bpt)-Ha(t))p(t)
a0) = (% -Bp®-Ham)al)

@ Euler’'s method:

p(t) = pn+7(ﬂ**Pn 12qn)pn
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Implicit Euler

@ Euler’'s method (“explicit Euler”):
Yn+1:=Yn+Tf(tn,yn)
@ implicit Euler:

Ynt1 :=Yn+Tf(ths1,Yn+1)

@ explicit formula for y, . 1 not immediately available
@ to do: solve equation for y, 1

Implicit Euler — 2D Example

1 example: arms race

Pn+1 = bi1+a11pnt1+a120n+1
Qny1 = by +a1Pni1+a229n41)

@ solve linear system of equations:

(1—a11)Pn+1—a@12Gn+1 = by
—a21Pn+1+ (1 —a22)qn41 b,

(for each time step n)

Discretized Model vs. Discrete Model

@ simplest example: model of Maltus

Pn+1:=Pn—TQAPn, a>0

@ compare to discrete model:
Pn+1:=Pn— OPn, 6>0

with decay rate 6 (“percentage”)
@ obvious restriction in the discrete model: 6 < 1
@ obvious restriction for 7 in the discretized model?

a<l=t<a’

@ not that simple in non-linear models or systems of

ODE!

Implicit Euler — Examples

@ example: Model of Maltus

Pn+1:=Pn+TAPn11 = Pny1 = mpn

@ correct (discrete) model?

a<0: then 0<(1—7a) '<1foranyt

1

o>0: then 7<o™ ' required!

@ in physics a < 0 is more frequent!
(damped systems, friction, ...)

@ implicit schemes preferred when explicit schemes
require very small t

Local Discretisation Error

@ local influence of using differences instead of
derivatives

@ example: Euler's method
I(z) = rpg?{' Yero=¥(t) —f(t,y(t))H}
a,

T
@ memory hook: insert exact solution y(t) into

Yn+1—Yn
-—JYn
T

A numerical scheme is called consistent, if

I(z)—0  fort—0



Global Discretisation Error

@ compare numerical solution with exact solution
@ example: Euler's method

e(r)= rpg?{l\yk —y(t)l}

(y(t) the exact solution; yj the solution of the
discretized equation)

A numerical scheme is called convergent, if

e(t)—0 fort—0
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Advanced Numerical Methods

Runge-Kutta-Methods of 2nd order

@ 3rd idea: choose g such that order of consistency is
maximal

@ example: 2nd-order Runge-Kutta:

T
Ynt1=Yn+ 3 (f(tny}/n) +f(th1,¥n+ Tf(tn:Yn)))

(“method of Heun")

o further example: modified Euler (also 2nd order)

T T
Ynt1 =Yn+7f(th + 3 Yt if(tmyn)))

Order of Consistency/Convergence

A numerical scheme is called consistent of order p (p-th
order consistent), if

I(t) = O(7P)

A numerical scheme is called convergent of order p
(p-th order convergent), if

e(t) = 0O(7P)

Runge-Kutta-Methods

@ 1st idea: use additional evaluations of f, e.g.:

Ynt1 =9Wn, f(tn.Yn), f(tn+1,¥n+1))

open question: where to obtain y,,1), how to

choose g
@ 2nd idea: numerical approximations for missing
values of y:
Ynt1 = Yn+1f(th,yn)
=Yni1 = 9Wn.f(tn.yn) f(tni1.Yn+ Tf(tn.yn)))

Runge-Kutta-Method of 4th order

classical 4th-order Runge-Kutta:
@ intermediate steps:

k1 f(tn,yn)
T T
k2 = f(tn+5,yn+§k1)
T T
ks = f(tn+§7y”+§k2)
k3 = f(tn+77yn+fk3)

@ explicit scheme:

T
Yny1=Yn+ 5 (k1 + 2k + 2k3 +k4)



Multistep Methods

@ 1stidea: use previous steps for computation:

Yn+1 :g(ynv}’n—h--an—qH)

@ 2nd idea: use integral form of ODE

y(t) = f(ty(t)

th41 thi1
/ y(t)dt — / F(ty(t))dt
" 0
Ytni1) —y(ta) = / F(ty(t))dt =2
th

Adams-Bashforth

@ s=1= usey, only (leads to Euler's method):

P(t):f(tna)’nL Yni1 :yn+Tf(tn,yn)

@ s=2=usey, 1 and yu:

t,—t t—th 1

p(t) = f(tn717.)/n71)+ f(tm_Vn)7

T
Yn+1 = Yn+§<3f(tn7}/n)_f(tn—‘lz}/n—‘l))

@ usually consistent of s-th order
@ modified at start (no previous values available)

Problems for Numerical Methods for ODE

Possible problems:

@ lll-Conditioned Problems:
small changes in the input = big changes in the
exact solution of the ODE

@ Instability:
big errors in the numerical solution compared to the
exact solution (for arbitrarily small time steps
although the method is consistent)

o Stiffness:
small time steps required for acceptable errors in
the approximate solution (although the exact
solution is smooth)

Multistep and Numerical Quadrature

@ 3rd idea: use numerical method for integration
— interpolate f using a polynomial p:

thi1 thi1
Yitnin)=yltn) = [ flty(©)dt~ [ p(oydt
th tn

where

p(t) =f(t.y(t))  forj=n-s+1...n.

@ compute integral and obtain quadrature rule:

n
Ynr1=Yn+ > of(tiy))
Jj=n—s+1

Adams-Moulton

@ use idea of Adams-Bashforth, but:
include value y, .1 = implicit scheme

o first order: implicit Euler

p(t) =f(tni1,Yns1), Yn+1 =Yn+Tf(ths1,Yn1)

@ second order:

T
Yn+1 =Yn+ 5 (F(tn,yn) +Ff(tns1.Yn+1))

@ how to obtain y;,1?

@ solve (nonlinear) equation = difficult!
o easier and more common: predictor-corrector
approach

lll-Conditioned Problems

@ small changes in input entail completely different
results
@ Numerical treatment of such problems is always
difficult!
@ discriminate:
o only at critical points?
o everywhere?
@ possible risks:
@ non-precise input
e round-off errors,. ..
@ question: what are you interested in?

o really the solution for specific initial condition?
e statistical info on the solution?
o general behaviour (patterns)?



Stability Stability (2)

Example: Observation:

/(t) = —2y(t)+1 0)=1
y(t) y(B)+1, y(0) @ 2-step rule:
@ exact solution: y(t) = J(e72t+1) Ynt1=Yn-1+27(1 = 2yn)
o well-conditioned: y(0) = 1+& = y¢(t) —y(t) = e~
@ use midpoint rule (multistep scheme):

start with exact initial values: yo =y(0) and y1 =y(7)
@ numerical results for different sizes of t:

o 7=1.0=yg=—4945.5, y;o = 20953.9

Yni1 =Yn-1+27-f(xn.yn) 0 T=0.1= y79=—1725.3, ygo = 2105.7

@ leads to numerical scheme: o 7=0.01= yg99 = —154.6, y1000 = 158.7
@ midpoint rule is 2nd-order consistent, but does not
Yn+1 =Yn-1+27(1—2yn) converge here: oscillations or instable behaviour
Stability (3) Stiff Equations
Example:

@ reason: difference equation generates spurious y(t)=—-1000y(t)+1000,  y(0)=yo=2

solutions
@ analysis: roots y; of characteristic polynomial @ exact solution: y(t) = e~ 1009 4.1

y2 =y04+4t(1—y); all || < 1? @ explicit Euler (stable):

Stability of ODE schemes:

Yikr1 = Yr+7(—1000y,+1000)
@ single step schemes: always stable

= (1-10007)y, + 10007

@ multistep schemes: additional stability conditions _ (1- 10001:)“1 1

@ in general:
consistency + stability = convergence @ oscillations and divergence for 6t > 0.002
@ Why that? Consistency and stability are asymptotic
terms!
Stiff Equations — Summary Summary
Runge-Kutta-methods:
@ multiple evaluations of f (expensive, if f is expensive
to compute)
Typical situation: @ stable, well-behaved, easy to implement
@ one term in the ODE demands very small time step Multistep methods:
@ but does not contribute much to the solution @ higher order, but only evaluations of f (interesting,

Remedy: use implicit (or semi-implicit) methods if f is expensive to compute)
@ stability problems; behave “like wild horses”
@ in practice: do not use uniform 7 and s
Implicit methods:
o for stiff equations

@ most often used as corrector scheme



