Part I: Discrete Models

Motivation: Heat Transfer

- **objective:** compute the temperature distribution of some object
- under certain prerequisites:
 - temperature at object boundaries given
 - heat sources
 - material parameters
- observation from physical experiments:

 \[q \approx k \cdot \delta T \]

 heat flux proportional to temperature differences

A Wiremesh Model

- consider rectangular plate as fine mesh of wires
- compute temperature \(x_{i,j} \) at nodes of the mesh

```
  x_{i,j}
  x_{i+1,j}
  ...
  x_{i,j+1}
```

- model assumption:
 - temperatures in equilibrium at every mesh node
 - equilibrium: steady state (of temperature), energy balance (inflow = outflow) in each node of the mesh
 - incoming temperature fluxes at point \(i,j \) via the four wires:
 - from the left: \(k \cdot \left(x_{i-1,j} - x_{i,j} \right) \)
 - from the right: \(k \cdot \left(x_{i+1,j} - x_{i,j} \right) \)
 - from below: \(k \cdot \left(x_{i,j-1} - x_{i,j} \right) \)
 - from above: \(k \cdot \left(x_{i,j+1} - x_{i,j} \right) \)
 - equation for steady state: sum over all fluxes = zero:

 \[x_{i,j} = \frac{1}{4} \left(x_{i-1,j} + x_{i+1,j} + x_{i,j-1} + x_{i,j+1} \right) \]

 for all temperatures \(x_{i,j} \).

A Wiremesh Model (2)

- temperature known at (part of) the boundary; for example
 \[x_{0,j} = T_j \]

 models a heated/cooled wall with constant temperature \(T_j \) at the left boundary.
- temperature flux known at (part of) the boundary; for example
 \[x_{i,0} = x_{i,1} \Leftrightarrow x_{i,1} - x_{i,0} = 0 \]

 models an isolated wall at the lower boundary.
- heat sources: temperature given at a certain position \(i,j \):
 \[x_{i,j} = T_s \]

 task: solve Linear System of Equations

A Wiremesh Model (3)

- object: a rectangular metal plate (again)
- model as a collection of small connected rectangular cells

A Finite Volume Model

- examine the heat flux across the cell edges
A Finite Volume Model (2)

- model assumption: temperatures in equilibrium in every grid cell
- heat flux across a given edge is proportional to
 - temperature difference \((T_i - T_j)\) between the adjacent cells
 - length \(h\) of the edge
- e.g.: heat flux across the left edge:
 \[
 q_{ij}^{\text{left}} = k_y (T_i - T_{i-1,j}) h_y
 \]
- note: heat flux out of the cell (and \(k_y > 0\))
- heat flux across all edges determines change of heat energy:
 \[
 \frac{d}{dt} \sum_i h_i \frac{\partial T_i}{\partial t} = - \sum_{\text{edges}} k_y \frac{\partial q_y}{\partial T} \frac{\partial T}{\partial t} + \sum_{\text{sources}} F_i
 \]

Towards a Time Dependent Model

- idea: set up an ODE for each cell
- simplification: no external heat sources or sinks, i.e. \(f_i = 0\)
- change of temperature per time is proportional to heat flux \(q_{ij}(t)\) into the cell (no longer 0):
 \[
 \frac{dT_i}{dt} = -c \cdot q_{ij}(t)
 \]
 \[
 \frac{c}{2} \left(-2T_i + T_{i-1,j} + T_{i+1,j} + T_{i,j+1} + T_{i,j-1}\right)
 \]
- solve a system of ODEs

A Steady-State Model

- heat sources: consider additional source term \(F_{ij}\) due to
 - external heating
 - radiation
- \(F_{ij} = f_i h_x h_y (f_i\text{ heat flux per area})\)
- equilibrium with source term requires \(q_{ij} + F_{ij} = 0:\)
 \[
 q_{ij} h_x h_y = -k_y h_y (2T_i - T_{i-1,j} - T_{i+1,j})
 \]
 \[
 -k_y h_y (2T_j - T_{j-1,i} - T_{j+1,i})
 \]
- again, Linear System of Equations

Boundary Conditions

- temperature known in boundary layer cells; for example
 \[
 q_{ij}^{\text{left}} = k_y (T_i - T_{0,j}) h_y = k_y (T_i - T(x_0)) h_y
 \]
 with \(T(x_0)\) not an unknown!
 (models a heated/cooled wall with constant temperature \(T(x_0)\) at the left boundary)
- temperature flux known in boundary layer cells; e.g. \(q_{ij}^{\text{left}} = 0:\)
 \[
 f_i h_x h_y = -k_y h_y (T_i - T_{0,j})
 \]
 \[
 -k_y h_y (2T_j - T_{j-1,i} - T_{j+1,i})
 \]
 models an isolated wall at the left boundary.

Part II: A Continuous Model – The Heat Equation

From Discrete to Continuous

Derivation of the Heat Equation

Variants of the Heat Equation

Boundary and Initial Conditions

Part II

A Continuous Model – The Heat Equation

From Discrete to Continuous (2)

- replace \(k_y\) by \(k/h_y\), \(k_x\) by \(k/h_x\), and get:
 \[
 f_i = \frac{k}{h_x} (2T_i - T_{i-1,j} - T_{i+1,j})
 \]
 \[
 \frac{k}{h_y} (2T_j - T_{j-1,i} - T_{j+1,i})
 \]
- consider arbitrarily small cells: \(h_x, h_y \to 0:\)
 \[
 f_i = -k \left(\frac{\partial^2 T}{\partial x^2} \right)_{ij} - k \left(\frac{\partial^2 T}{\partial y^2} \right)_{ij}
 \]
- leads to a partial differential equation (PDE):
 \[
 -k \left(\frac{\partial^2 T(x,y)}{\partial x^2} + \frac{\partial^2 T(x,y)}{\partial y^2} \right) = f(x,y)
 \]
Lehrstuhl Informatik V

Derivation of the Heat Equation

- finite volume model, but with arbitrary control volume D
- change of heat energy (per time) is a result of
 - transfer of heat energy across D's surface,
 - heat sources and sinks in D (external influences)
- resulting integral equation:
 \[
 \frac{\partial}{\partial t} \int_D \rho c T \, dV = \int_D q \, dV + \int_{\partial D} k \nabla T \cdot \vec{n} \, dS
 \]
- density ρ, specific heat c, and heat conductivity k are material parameters
- heat sources and sinks are modelled in term q

Derivation of the Heat Equation (2)

- according to theorem of Gauß:
 \[
 \int_{\partial D} k \nabla T \cdot \vec{n} \, dS = \int_D k \Delta T \, dV
 \]
- leads to integral equation for any domain D:
 \[
 \int_D \rho c T_1 - q - k \Delta T \, dV = 0
 \]
- hence, the integrand has to be identically 0:
 \[
 T_1 = \kappa \Delta T + \frac{q}{\rho c} \quad \kappa := \frac{k}{\rho c}
 \]
- $\kappa > 0$ is called the thermal diffusion coefficient (since the Laplace operator models a (heat) diffusion process)

Variants of the Heat Equation

Different scenarios:
- vanishing external influence, $q = 0$:
 \[
 T_1 = \kappa \Delta T
 \]
- alternative notation
 \[
 \frac{\partial T}{\partial t} = \kappa \left(\frac{\partial^2 T}{\partial x^2} + \frac{\partial^2 T}{\partial y^2} + \frac{\partial^2 T}{\partial z^2} \right)
 \]
- equilibrium solution, $T_1 = 0$:
 \[
 0 = \kappa \Delta T + \frac{q}{\rho c} \implies -\Delta T = \frac{q}{\kappa \rho c}
 \]

“Poisson’s Equation”

Boundary Conditions

Dirichlet boundary conditions:
- fix T on (part of) the boundary
 \[
 T(x, y, z) = \varphi(x, y, z)
 \]

Neumann boundary conditions:
- fix T’s normal derivative on (part of) the boundary:
 \[
 \frac{\partial T}{\partial n}(x, y, z) = \varphi(x, y, z)
 \]
- special case: insulation
 \[
 \frac{\partial T}{\partial n}(x, y, z) = 0
 \]

Part III: Discretization: Finite Difference and Finite Volume Methods

Part III

Discretization: Finite Difference and Finite Volume Methods

From Continuous Back To Discrete Models

Continuous Models:
- result from a limit process ($h \to 0$) from discrete model (wire mesh, finite volume)
- opposite route \to discretisation

Discretisation methods:
- Finite Differences:
 “replace derivative by difference quotients”
- Finite Volumes:
 compute fluxes on boundary of control volumes and examine conservation laws

The Model Problem

- 2D Poisson Equation:
 \[
 \frac{\partial^2}{\partial x^2} u(x, y) + \frac{\partial^2}{\partial y^2} u(x, y) = f(x, y)
 \]
 on the unit square $\Omega = (0, 1)^2$
- with Dirichlet boundary conditions:
 \[
 u(x, y) = g(x, y) \quad \text{on } \partial \Omega
 \]
Finite Difference Discretisation

- replace partial derivative (at each mesh point) by difference quotient:
 \[\frac{\partial^2 u}{\partial x^2}(x_i, y_j) \approx \frac{u(x_{i+1}, y_j) - 2u(x_i, y_j) + u(x_{i-1}, y_j)}{h_x^2} \]
 \[\frac{\partial^2 u}{\partial y^2}(x_i, y_j) \approx \frac{u(x_{i}, y_{j+1}) - 2u(x_i, y_j) + u(x_{i}, y_{j-1})}{h_y^2} \]

- leads to Linear System of Equations (\(h := h_x = h_y \)):
 \[\frac{1}{h_x^2}(u_{i+1,j} + u_{i,j+1} - 4u_{i,j}) + u_{i,j-1} = f(x_i, y_j) \quad x_j \in (0, 1]^2 \]
 \[u(x_i) = g(x_i) \quad x_i \in \partial \Omega \]

Resulting Linear System of Equations

- matrix-vector notation of the system:
 \[A_h x_0 = f_0 \]
- \(x_0 \) a vector of all unknowns \(u \)
- requires numbering of the unknowns
- using row-wise numbering, e.g.:
 \[x_0 = (u_1, \ldots, u_{1,n}, u_{2,1}, \ldots, u_{2,n}, \ldots, u_{n,1}, \ldots, u_{n,n}) \]

Resulting Linear System of Equations (2)

- \(A_0 \) is a sparse matrix (only 5 diagonals are non-zero)
- \(A_0 \) is block-tridiagonal:
 \[A_0 = \begin{pmatrix} B_h & I \\ \vdots & \ddots & \ddots \\ I & \vdots & B_h \end{pmatrix} \]
 \[B_h = \text{tridiag}(1, -4, 1), \text{ where } I \text{ is the unit matrix} \]

Meshes for Finite Difference Discretisation

- regular, Cartesian mesh; analogous to the wire-mesh model:

- compute approximate value of \(u \) for each mesh point:
 \[u_i \approx u(x_i) \quad u_{jk} \approx u(x_{jk}) \]

Finite Volume Method – Meshes

- domain \(\Omega \) subdivided into grid cells/elements \(\Omega_{ij} \):

- \(u \) constant in \(\Omega_{ij} \), i.e., \(u(x, y) = u_{ij} \)

Finite Volume Discretisation

- integrate over grid cells \(\Omega_{ij} \):
 \[\int_{\Omega_{ij}} \frac{\partial^2 u}{\partial x^2}(x, y) \, dx \, dy = \frac{1}{h_x^2} \left[1 \begin{array}{c} 1 \\ -2 \\ 1 \end{array} \right] \]
 \[\int_{\Omega_{ij}} \frac{\partial^2 u}{\partial y^2}(x, y) \, dx \, dy = \frac{1}{h_y^2} \left[1 \begin{array}{c} 1 \\ -4 \\ 1 \end{array} \right] \]

- integration by parts:
 \[\int_{\Omega_{ij}} \frac{\partial u}{\partial x}(x, y) \, dx \, dy = \int_{y_i,j} \left[\frac{\partial u}{\partial x}(x, y) \right]_{y_i,j}^{y_{i+1},j} \, dy \]
 \[\int_{\Omega_{ij}} \frac{\partial u}{\partial y}(x, y) \, dx \, dy = \int_{x_i,j} \left[\frac{\partial u}{\partial y}(x, y) \right]_{x_i,j}^{x_{i+1},j} \, dx \]

Finite Volume Discretisation (2)

- remember: \(u \) constant in \(\Omega_{ij} \), i.e., \(u(x, y) = u_{ij} \)
- thus approximation of derivatives on edges:
 \[\frac{\partial u}{\partial x}_{i,j} = \frac{u_{i+1,j} - u_{i,j}}{h_x} \quad \frac{\partial u}{\partial x}_{i,j} = \frac{u_{i,j} - u_{i,j-1}}{h_x} \]
 \[\frac{\partial u}{\partial y}_{i,j} = \frac{u_{i+1,j} - u_{i,j}}{h_y} \quad \frac{\partial u}{\partial y}_{i,j} = \frac{u_{i,j} - u_{i,j-1}}{h_y} \]

- again leads to Linear System of Equations:
 \[\frac{1}{h_x} (u_{i+1,j} - 2u_{i,j} + u_{i,j-1}) h_y + \frac{1}{h_y} (u_{i+1,j} - 2u_{i,j} + u_{i,j+1}) h_x = f_{ij} h_x h_y \]
Finite Volume Discretisation – More General . . .

- typical formulation for first-order PDEs:
 \[
 \iiint \frac{\partial u}{\partial t} \frac{\partial F(u(x,y))}{\partial x} + \frac{\partial G(u(x,y))}{\partial y} \, dx \, dy = \ldots
 \]

- and analogously:
 \[
 \iiint \left[\frac{\partial F(u(x,y))}{\partial x} \, dx \, dy \right] = \left[F(u(x,y)) \right]_{x_i - \frac{1}{2}}^{x_i + \frac{1}{2}}
 \]
 \[
 \ddot{\iiint} \left[\frac{\partial G(u(x,y))}{\partial y} \, dx \, dy \right] = \left[G(u(x,y)) \right]_{y_j - \frac{1}{2}}^{y_j + \frac{1}{2}}
 \]

- for Poisson Equation: \(F(u) = \frac{\partial^2 u}{\partial x^2} \), etc.