Scientific Computing II
Towards Multigrid Methods

Michael Bader

Summer term 2012
Part I: Smoothing Property of Relaxation Methods

1. Convergence of Relaxation Methods
2. The Model Problem – 1D Poisson
3. The Smoothing Property
Part II: Multigrid Methods

4. Multigrid Idea No. 1
5. Multigrid Idea No. 2
6. A Two-Grid Method
7. Correction Scheme – Components
8. The Multigrid V-Cycle
9. More Multigrid Schemes
10. Speed of Convergence
Part II: Components of Multigrid Methods

4. Multigrid Idea No. 1

5. Multigrid Idea No. 2

6. A Two-Grid Method

7. Correction Scheme – Components

8. The Multigrid V-Cycle

9. More Multigrid Schemes

10. Speed of Convergence
Part I

Smoothing Property of Relaxation Methods
Convergence of Relaxation Methods

Observation

- slow convergence
- high frequency error components are damped more efficiently
- smooth error components are reduced very slowly
Convergence Analysis

- remember iteration scheme: \(x^{(i+1)} = Mx^{(i)} + Nb \)
- derive iterative scheme for the error \(e^{(i)} := x - x^{(i)} \):
 \[
e^{(i+1)} = x - x^{(i+1)} = x - Mx^{(i)} - Nb
 \]
- for **consistent** scheme, \(x \) is a fixpoint of the iteration (\(x = Mx - Nb \))
- hence:
 \[
e^{(i+1)} = Mx + Nb - Mx^{(i)} - Nb = Me^{(i)}
 \]
 \[
e^{(i)} = M^i e^{(0)}.
 \]
Convergence Analysis (2)

- iteration equation for error: $e^{(i)} = M^i e^{(0)}$
- consider eigenvalues λ_j and eigenvectors v_j of iteration matrix M:

$$Mv_j = \lambda_j v_j \Rightarrow M \left(\sum_j \alpha_j v_j \right) = \sum_j \lambda_j \alpha_j v_j$$

$$\Rightarrow M^i e^{(0)} = M^i \left(\sum_j \alpha_j v_j \right) = \sum_j \lambda_j^i \alpha_j v_j$$

- convergence, if all $|\lambda_j| < 1$
- speed of convergence dominated by largest λ_j
The Model Problem

1D Poisson equation:

- \(-u''(x) = f(x)\) on \(\Omega = (0, 1)\)
- \(u = 0\) on \(\partial\Omega\) (hom. Dirichlet boundaries)
- discretised on a uniform grid of mesh size \(h = \frac{1}{n}\)
- compute approximate values \(u_j \approx u(x_j)\)
 at grid points \(x_j := jh,\) with \(j = 1, \ldots, (n - 1)\)
- system matrix \(A_h\) built from 3-point stencil:

\[
\frac{1}{h^2} \begin{bmatrix}
-1 & 2 & -1 \\
\end{bmatrix}
\]

- \(A_h\) a tridiagonal \((n - 1) \times (n - 1)\)-matrix
The Smoothing Property

Eigenvalues and -vectors of A_h:

- eigenvalues: $\lambda_k = \frac{4}{h^2} \sin^2 \left(\frac{k\pi}{2n} \right) = \frac{4}{h^2} \sin^2 \left(\frac{k\pi h}{2} \right)$
- eigenvectors: $v^{(k)} = \left(\sin \left(k\pi j/n \right) \right)_{j=1,\ldots,n-1}$ – both for $k = 1, \ldots, (n-1)$

For Jacobi relaxation:

- iteration matrix $M = I - D_A^{-1} A = I - \frac{h^2}{2} A$
- eigenvalues of M: $\mu_k := 1 - 2 \sin^2 \left(\frac{k\pi h}{2} \right)$
- $|\mu_k| < 1$ for all k, but $|\mu_k| \approx 1$ if $k = 1$ or $k = n-1$
- $\mu_1 \in O(1 - h^2)$: slow convergence of smooth errors
- $\mu_{n-1} \approx -1$: “sign-flip” (but slow reduction) of “zig-zag” error components
- convergence factor determined by $O(1 - h^2)$
The Smoothing Property

Eigenvalues and -vectors of A_h:

- eigenvalues: $\lambda_k = \frac{4}{h^2} \sin^2 \left(\frac{k\pi}{2n} \right) = \frac{4}{h^2} \sin^2 \left(\frac{k\pi h}{2} \right)$
- eigenvectors: $v^{(k)} = \left(\sin \left(k\pi j/n \right) \right)_{j=1,...,n-1}$
 - both for $k = 1, \ldots, (n-1)$

For weighted Jacobi relaxation:

- iteration matrix $M = I - \omega D_A^{-1} A = I - \frac{h^2}{2} \omega A$
- eigenvalues of M: $1 - 2\omega \sin^2 \left(\frac{k\pi h}{2} \right)$
- $\mu_1 \in O(1 - h^2)$: slow convergence of smooth errors
- $\mu_{n-1} \approx 0$ for $\omega = \frac{1}{2}$; $\mu_{n-1} \approx -\frac{1}{3}$ for $\omega = \frac{2}{3}$
 - thus quick reduction of high-frequency errors
- convergence determined by $O(1 - n^{-2})$
 (slower than normal Jacobi due to ω)
The Smoothing Property (2)

“Fourier mode analysis”

- decompose the error $e^{(i)}$ into eigenvectors (for 1D Poisson: $\sin(k\pi x_j)$)
- determine convergence factors for “eigenmodes”

Observation for weighted Jacobi and Gauß-Seidel:

- The *high* frequency part (with respect to the underlying grid) is reduced quite quickly.
- The *low* frequency part (w.r.t. the grid) decreases only very slowly; actually the slower, the finer the grid is.

⇒ “smoothing property”
The Smoothing Property (2)

“Fourier mode analysis”

- decompose the error $e^{(i)}$ into eigenvectors (for 1D Poisson: $\sin(k\pi x_j)$)
- determine convergence factors for “eigenmodes”

Another Observation:

- the smoothest (slowest converging) component corresponds to the smallest eigenvalue of A ($k = 1$)
- remember residual equation: $Ae = r$: if $e = v^{(1)}$, then $r = \lambda_1 v^{(1)}$

\Rightarrow “small residual, but large error”
Part II

Multigrid Methods
Multigrid Idea No. 1

- additional result from convergence analysis: “high-frequency error” is relative to mesh size
- on a sufficiently coarse grid, even very low frequencies can be “high-frequency” (if the mesh size is big)

“Multigrid”:
- use multiple grids to solve the system of equations
- on each grid, a certain range of error frequencies will be reduced efficiently
Nested Iteration

Solve the problem on a coarser grid:
- will be comparably (very) fast
- can give us a good initial guess:
- **nested iteration**/“poor man’s multigrid”

Algorithm:

1. Start on a very coarse grid with mesh size $h = h_0$; guess an initial solution x_h
2. Iterate over $A_h x_h = b_h$ using **relaxation** method ⇒ approximate solution x_h
3. **interpolate** the solution x_h to a finer grid $Ω_{h/2}$
4. proceed with step 2 (now with mesh size $h := h/2$) using interpolated $x_{h/2}$ as initial solution
Multigrid Idea No. 2

Observation for nested iteration:
- error in interpolated initial guess also includes low frequencies
- relaxation therefore still slow
- can we go “back” to a coarser grid later in the algorithm?

⇒ Idea No. 2: use the residual equation:
- solve $Ae = r$ on a coarser grid
- leads to an approximation of the error e
- add this approximation to the fine-grid solution
A Two-Grid Method

Algorithm:

1. **relaxation/smoothing** on the fine level system ⇒ solution x_h
2. compute the **residual** $r_h = b_h - A_hx_h$
3. **restriction** of r_h to the coarse grid Ω_H
4. compute a **solution** to $A_He_H = r_H$
5. **interpolate** the coarse grid solution e_H to the fine grid Ω_h
6. add the resulting **correction** to x_h
7. again, **relaxation/smoothing** on the fine grid
Correction Scheme – Components

smoother: reduce the high-frequency error components, and get a smooth error

restriction: transfer residual from fine grid to coarse grid, for example by
 - injection
 - (full) weighting

coarse grid equation: (acts as) discretisation of the PDE on the coarse grid

interpolation: transfer coarse grid solution/correction from coarse grid to fine grid
The Multigrid V-Cycle

1. smoothing on the fine level system \(\Rightarrow \) solution \(x_l \)

2. compute the residual \(r_l = b_l - A_l x_l \)

3. restriction of \(r_l \) to the coarse grid \(\Omega_{l-1} \)

4. solve coarse grid system \(A_{l-1} e_{l-1} = r_{l-1} \) by a recursive call to the V-cycle algorithm

5. interpolate the coarse grid solution \(e_{l-1} \) to the fine grid \(\Omega_l \)

6. add the resulting correction to \(x_l \)

7. post-smoothing on the fine grid
V-Cycle – Implementation

- on the coarsest grid: direct solution
- number of smoothing steps is typically very small (1 or 2)

Cost (storage and computing time):

- 1D: \(c \cdot n + c \cdot n/2 + c \cdot n/4 + \ldots \leq 2c \cdot n \)
- 2D: \(c \cdot n + c \cdot n/4 + c \cdot n/16 + \ldots \leq 4/3c \cdot n \)
- 3D: \(c \cdot n + c \cdot n/8 + c \cdot n/64 + \ldots \leq 8/7c \cdot n \)
- overall costs are dominated by the costs of the finest grid
The W-Cycle

- perform **two** coarse grid correction steps instead of one

(V-cycle and W-cycle)

- more expensive
- useful in situations where the coarse grid correction is not very accurate
The Full Multigrid V-Cycle (FMV)

Recursive algorithm:
- combines nested iteration and V-cycle
- (recursively!) perform an **FMV-cycle** on the next coarser grid to get a good initial solution
- interpolate this initial guess to the current grid
- perform a **V-cycle** to improve the solution

\[\Omega_8 \rightarrow \Omega_4 \rightarrow \Omega_2 \rightarrow \Omega_h \]

\[\Omega_8 \rightarrow \Omega_4 \rightarrow \Omega_2 \rightarrow \Omega_h \]
Speed of Convergence

- fastest method around
 (if all components are chosen carefully)
- “textbook multigrid efficiency”:

\[\| e^{(m+1)} \| \leq \gamma \| e^{(m)} \|, \]

where convergence rate \(\gamma < 1 \) (esp. \(\gamma \ll 1 \)) is independent of the number of unknowns

\(\Rightarrow \) constant number of multigrid steps to obtain a given number of digits

\(\Rightarrow \) overall computational work increases only linearly with the number of unknowns
Convergence Rates (2)

For the “Model Problem” (i.e., Poisson Problem):
- $O(n)$ to solve up to “level of truncation”
- “level of truncation”: $O(h^2)$ (discretisation error)
- $O(n)$ is achieved by FMV-Cycle (1 or 2 cycles sufficient)

For Other Problems:
- OK for strongly elliptic problems
- multigrid variants for non-linear problems, parabolic/hyperbolic, . . .
- achieving “textbook efficiency” usually a demanding task
Part III

Components of Multigrid Methods
For the Poisson problem (see tutorials):

- Gauss-Seidel
- red-black Gauss-Seidel
- damped \((\omega = \frac{2}{3}) \) Jacobi
- how about Jacobi (non-weighted) and SOR?
 \(\rightarrow \) do not work well

 (do not smooth high frequencies efficiently)
Smoothers (2) – other problems

anisotropic Poisson eq.: \(u_{xx} + \epsilon u_{yy} = f \)

- Strong dependency in \(x \)-direction, weak dependency in \(y \)-direction
- Good smoothing of the error only in \(x \)-direction
- “semi-coarsening” (coarsen only in “smooth” direction) \(\rightarrow \) see tutorials
- line smoothers: perform a column-wise Gauss-Seidel
 \(= \) solve each “column” (or row) simultaneously
 (direct, tridiagonal solver):

\[
\begin{align*}
 u_{i-1,j}^{(n+1)} - 4u_{ij}^{(n+1)} + u_{i+1,j}^{(n+1)} &= f_{ij} - u_{i,j-1}^{(n)} - u_{i,j+1}^{(n)}
\end{align*}
\]
Smoothers (3) – other problems

1D Convection-Diffusion eq.: $\epsilon u_{xx} + u_x = f$, $\epsilon \ll 1$

- “upwind discretization”:\n \[\frac{\epsilon}{h^2}(u_{n-1} - 2u_n + u_{n+1}) + \frac{1}{h}(u_n - u_{n-1}) = f_n \]

- (weighted) Jacobi and red-black Gauss-Seidel: no smoothing, basically updates one grid point per iteration

- Gauss-Seidel (relaxation from “left to right”): almost an exact solver

- in general: Gauss-Seidel smoothing in “downwind” order
 \[\rightarrow \text{difficult to do in 2D and 3D} \]
Interpolation (aka “Prolongation”)

For Poisson problem:

- (bi-)linear interpolation: in 1D: resembles homogeneous \((f = 0)\) solution
- constant (in general too small approximation order): sometimes used for cell-based coarsening (unknowns located in cell centers)
- quadratic, cubic, etc.: often too costly, more smoothing steps are cheaper and can eliminate the disadvantage of a lower order interpolation
- **but:** in FMV-cycle interpolation to finer grid (after a completed V-cycle) should be higher-order
Interpolation – Matrix Notation

For linear interpolation (1D):

\[
\begin{pmatrix}
\frac{1}{2} & 0 & 0 \\
1 & 0 & 0 \\
\frac{1}{2} & \frac{1}{2} & 0 \\
0 & 1 & 0 \\
0 & \frac{1}{2} & \frac{1}{2} \\
0 & 0 & 1 \\
0 & 0 & \frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{2}(0 + x_1) \\
\frac{1}{2}(x_1 + x_2) \\
\frac{1}{2}(x_2 + x_3) \\
\frac{1}{2}(x_3 + 0)
\end{pmatrix}
\]

Notation: \(I^h_{2h} x_{2h} = x_h \) or \(P^h_{2h} x_{2h} = x_h \)
Restriction

For Poisson problem:

- “injection”: pick values at corresp. coarse grid points
- “full weighting” = transpose of bilinear interpolation (safer, more robust convergence), see illustration below for the 1D case

![Diagram](image-url)
Restriction – Matrix Notation

For full weighting (1D):

\[
\begin{pmatrix}
\frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 & 0 & 0 \\
0 & 0 & \frac{1}{2} & 1 & \frac{1}{2} & 0 & 0 \\
0 & 0 & 0 & 0 & \frac{1}{2} & 1 & \frac{1}{2}
\end{pmatrix}
\begin{pmatrix}
x_1 \\
x_2 \\
x_3 \\
x_4 \\
x_5 \\
x_6 \\
x_7
\end{pmatrix}
=
\begin{pmatrix}
\frac{1}{2}(x_1 + 2x_2 + x_3) \\
\frac{1}{2}(x_3 + 2x_4 + x_5) \\
\frac{1}{2}(x_5 + 2x_6 + x_7)
\end{pmatrix}
\]

Notation: \(I_{2h}^h x_h = x_{2h} \) or \(R_{2h}^h x_h = x_{2h} \)
Coarse Grid Operator

Two main options:

1. discretise PDE on grid Ω_h to obtain A_h
2. “Galerkin approach”: $A_{2h} := R_{2h}^h A_h P_{2h}^h$
 \[A_{2h} x_{2h} := R_{2h}^h A_h P_{2h}^h x_{2h} \]

→ compare effect on vector x_{2h}:

→ evaluate from right to left:

- interpolate x_{2h} to $\hat{x}_h := P_{2h}^h x_{2h}$
- apply fine-grid operator A_h to interpolated \hat{x}_h
- restrict resulting matrix-vector product to Ω_{2h}

Exercise:

- Compute $A_{2h} := R_{2h}^h A_h P_{2h}^h$ for
 $A_h := \frac{1}{h^2} \text{tridiag}(-1, 2, -1)$
Literature

General:

- Golub, Ortega: *Scientific Computing and Differential Equations*.
- Dongarra, et. al.: *Numerical linear algebra for high-performance computers*.
Literature (2)

Multigrid:
- Briggs, Henson, McCormick: *A Multigrid Tutorial* (2nd ed.).

Conjugate Gradients:
- Shewchuk: *An Introduction to the Conjugate Gradient Method Without the Agonizing Pain.*