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Convergence of Relaxation Methods

Observation

slow convergence

high frequency error components are damped more
efficiently

smooth error components are reduced very slowly
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Convergence Analysis

remember iteration scheme: x (i+1) = Mx (i) + Nb

derive iterative scheme for the error e(i) := x − x (i):

e(i+1) = x − x (i+1) = x −Mx (i) − Nb

for consistent scheme, x is a fixpoint of the
iteration ( x = Mx − Nb)

hence:

e(i+1) = Mx + Nb −Mx (i) − Nb = Me(i)

e(i) = M ie(0).
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Convergence Analysis (2)

iteration equation for error: e(i) = M ie(0)

consider eigenvalues λj and eigenvectors vj of
iteration matrix M :

Mvj = λjvj ⇒ M
(∑

j

αjvj︸ ︷︷ ︸
=:e(0)

)
=
∑
j

λjαjvj

⇒ M ie(0) = M i
(∑

j

αjvj
)

=
∑
j

λijαjvj

convergence, if all |λj | < 1

speed of convergence dominated by largest λj
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The Model Problem

1D Poisson equation:

−u′′(x) = f (x) on Ω = (0, 1)

u = 0 on ∂Ω (hom. Dirichlet boundaries)

discretised on a uniform grid of mesh size h = 1
n

compute approximate values uj ≈ u(xj)
at grid points xj := jh, with j = 1, . . . , (n − 1)

system matrix Ah built from 3-point stencil:

1

h2
[−1 2 − 1]

Ah a tridiagonal (n − 1)× (n − 1)-matrix
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The Smoothing Property

Eigenvalues and -vectors of Ah:

eigenvalues: λk = 4
h2 sin2

(
kπ
2n

)
= 4

h2 sin2
(
kπh

2

)
eigenvectors: v (k) =

(
sin(kπj/n)

)
j=1,...,n−1

– both for k = 1, . . . , (n − 1)

For Jacobi relaxation:

iteration matrix M = I − D−1
A A = I − h2

2
A

eigenvalues of M : µk := 1− 2 sin2
(
kπh

2

)
|µk | < 1 for all k , but |µk | ≈ 1 if k = 1 or k = n−1

µ1 ∈ O(1− h2): slow convergence of smooth errors

µn−1 ≈ −1: “sign-flip” (but slow reduction) of
“zig-zag” error components

convergence factor determined by O(1− h2)
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The Smoothing Property

Eigenvalues and -vectors of Ah:

eigenvalues: λk = 4
h2 sin2

(
kπ
2n

)
= 4

h2 sin2
(
kπh

2

)
eigenvectors: v (k) =

(
sin(kπj/n)

)
j=1,...,n−1

– both for k = 1, . . . , (n − 1)

For weighted Jacobi relaxation:

iteration matrix M = I − ωD−1
A A = I − h2

2
ωA

eigenvalues of M : 1− 2ω sin2
(
kπh

2

)
µ1 ∈ O(1− h2): slow convergence of smooth errors

µn−1 ≈ 0 for ω = 1
2
; µn−1 ≈ −1

3
for ω = 2

3

thus quick reduction of high-frequency errors

convergence determined by O(1− n−2)
(slower than normal Jacobi due to ω)
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The Smoothing Property (2)

“Fourier mode analysis”

decompose the error e(i) into eigenvectors (for 1D
Poisson: sin(kπxj), )

determine convergence factors for “eigenmodes”

Observation for weighted Jacobi and Gauß-Seidel:

The high frequency part (with respect to the
underlying grid) is reduced quite quickly.

The low frequency part (w.r.t. the grid) decreases
only very slowly; actually the slower, the finer the
grid is.

⇒ “smoothing property”
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The Smoothing Property (2)

“Fourier mode analysis”

decompose the error e(i) into eigenvectors (for 1D
Poisson: sin(kπxj), )

determine convergence factors for “eigenmodes”

Another Observation:

the smoothest (slowest converging) component
corresponds to the smallest eigenvalue of A (k = 1)

remember residual equation: Ae = r :
if e = v (1), then r = λ1v (1)

⇒ “small residual, but large error”



Scientific
Computing II

Michael Bader

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Part II

Multigrid Methods



Scientific
Computing II

Michael Bader

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Multigrid Idea No. 1

additional result from convergence analysis:
“high-frequency error” is relative to mesh size

on a sufficiently coarse grid, even very low
frequencies can be “high-frequency”
(if the mesh size is big)

“Multigrid”:

use multiple grids to solve the system of equations

on each grid, a certain range of error frequencies
will be reduced efficiently
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Nested Iteration

Solve the problem on a coarser grid:

will be comparably (very) fast

can give us a good initial guess:

nested iteration/“poor man’s multigrid”

Algorithm:

1 Start on a very coarse grid with mesh size h = h0;
guess an initial solution xh

2 Iterate over Ahxh = bh using relaxation method
⇒ approximate solution xh

3 interpolate the solution xh to a finer grid Ωh/2

4 proceed with step 2 (now with mesh size h := h/2)
using interpolated xh/2 as initial solution
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Multigrid Idea No. 2

Observation for nested iteration:

error in interpolated initial guess also includes low
frequencies

relaxation therefore still slow

can we go “back” to a coarser grid later in the
algorithm?

⇒ Idea No. 2: use the residual equation:

solve Ae = r on a coarser grid

leads to an approximation of the error e

add this approximation to the fine-grid solution
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A Two-Grid Method

Algorithm:

1 relaxation/smoothing on the fine level system
⇒ solution xh

2 compute the residual rh = bh − Ahxh
3 restriction of rh to the coarse grid ΩH

4 compute a solution to AHeH = rH
5 interpolate the coarse grid solution eH to the fine

grid Ωh

6 add the resulting correction to xh
7 again, relaxation/smoothing on the fine grid
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Correction Scheme – Components

smoother: reduce the high-frequency error
components, and get a smooth error

restriction: transfer residual from fine grid to coarse
grid, for example by

injection
(full) weighting

coarse grid equation: (acts as) discretisation of the PDE
on the coarse grid

interpolation: transfer coarse grid solution/correction
from coarse grid to fine grid
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The Multigrid V-Cycle

1 smoothing on the fine level system
⇒ solution xl

2 compute the residual rl = bl − Alxl
3 restriction of rl to the coarse grid Ωl−1

4 solve coarse grid system Al−1el−1 = rl−1 by a
recursive call to the V-cycle algorithm

5 interpolate the coarse grid solution el−1 to the fine
grid Ωl

6 add the resulting correction to xl
7 post-smoothing on the fine grid
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V-Cycle – Implementation

on the coarsest grid: direct solution

number of smoothing steps is typically very small (1
or 2)

Cost (storage and computing time):

1D: c · n + c · n/2 + c · n/4 + . . . ≤ 2c · n
2D: c · n + c · n/4 + c · n/16 + . . . ≤ 4/3c · n
3D: c · n + c · n/8 + c · n/64 + . . . ≤ 8/7c · n
overall costs are dominated by the costs of the
finest grid
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The W-Cycle

perform two coarse grid correction steps instead of
one

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ωh Ωh

AU ��

AU ��

AU ��

Ω8h Ω8h

Ω4h Ω4h Ω4h

Ω8h Ω8h

Ω4h Ω4h Ω4h

Ω2h Ω2h Ω2h

Ωh Ωh

AU ��

AU ��

AU ��

AU �� AU �� AU ��

AU ��

(V-cycle and W-cycle)

more expensive

useful in situations where the coarse grid correction
is not very accurate
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The Full Multigrid V-Cycle (FMV)

Recursive algorithm:

combines nested iteration and V-cycle

(recursively!) perform an FMV-cycle on the next
coarser grid to get a good initial solution

interpolate this initial guess to the current grid

perform a V-cycle to improve the solution

Ω8h Ω8h

Ω4hΩ4h

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ω8h

Ω4h Ω4h

Ω2h Ω2h

Ωh Ωh

�� AU ��

�� AU ��

AU ��

�� AU ��

AU ��

AU ��
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Speed of Convergence

fastest method around
(if all components are chosen carefully)

“textbook multigrid efficiency”:∥∥e(m+1)
∥∥ ≤ γ

∥∥e(m)
∥∥ ,

where convergence rate γ < 1 (esp. γ << 1) is
independent of the number of unknowns

⇒ constant number of multigrid steps to obtain a
given number of digits

⇒ overall computational work increases only linearly
with the number of unknowns



Scientific
Computing II

Michael Bader

Multigrid Idea No.
1

Multigrid Idea No.
2

A Two-Grid
Method

Correction Scheme
– Components

The Multigrid
V-Cycle

More Multigrid
Schemes

Speed of
Convergence

Convergence Rates (2)

For the “Model Problem” (i.e., Poisson Problem):

O(n) to solve up to “level of truncation”

“level of truncation”: O(h2)
(discretisation error)

O(n) is achieved by FMV-Cycle
(1 or 2 cycles sufficient)

For Other Problems:

OK for strongly elliptic problems

multigrid variants for non-linear problems,
parabolic/hyperbolic, . . .

achieving “textbook efficiency” usually a demanding
task
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Smoothers

For the Poisson problem (see tutorials):

Gauss-Seidel

red-black Gauss-Seidel

damped (ω = 2
3
) Jacobi

how about Jacobi (non-weighted) and SOR?
→ do not work well

(do not smooth high frequencies efficiently)
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Smoothers (2) – other problems

anisotropic Poisson eq.: uxx + εuyy = f

Strong dependency in x-direction, weak dependency
in y -direction

Good smoothing of the error only in x-direction

“semi-coarsening” (coarsen only in “smooth”
direction) → see tutorials

line smoothers: perform a column-wise Gauss-Seidel
= solve each “column” (or row) simultaneously
(direct, tridiagonal solver):

u
(n+1)
i−1,j − 4u

(n+1)
ij + u

(n+1)
i+1,j = fij − u

(n)
i ,j−1 − u

(n)
i ,j+1
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Smoothers (3) – other problems

1D Convection-Diffusion eq.: εuxx + ux = f , ε� 1

“upwind discretisaton”:
ε
h2 (un−1 − 2un + un+1) + 1

h
(un − un−1) = fn

(weighted) Jacobi and red-black Gauss-Seidel:
no smoothing, basically updates one grid point per
iteration

Gauss-Seidel (relaxation from “left to right”):
almost an exact solver

in general: Gauss-Seidel smoothing in “downwind”
order
→ difficult to do in 2D and 3D
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Interpolation (aka “Prolongation”)

For Poisson problem:

(bi-)linear interpolation:
in 1D: resembles homogeneous (f = 0) solution

constant (in general too small approximation order):
sometimes used for cell-based coarsening (unknowns
located in cell centers)

quadratic, cubic, etc.:
often too costly, more smoothing steps are cheaper
and can eliminate the disadvantage of a lower order
interpolation

but: in FMV-cycle interpolation to finer grid (after
a completed V-cycle) should be higher-order
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Interpolation – Matrix Notation

For linear interpolation (1D):

1
2

0 0
1 0 0
1
2

1
2

0
0 1 0
0 1

2
1
2

0 0 1
0 0 1

2


 x1

x2

x3

 =



1
2
(0 + x1)

x1
1
2
(x1 + x2)

x2
1
2
(x2 + x3)

x3
1
2
(x3 + 0)


Notation: I h2hx2h = xh or Ph

2hx2h = xh
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Restriction

For Poisson problem:

“injection”: pick values at corresp. coarse grid
points

“full weighting” = transpose of bilinear
interpolation (safer, more robust convergence), see
illustration below for the 1D case

1/2 1/21/2 1/2

linear interpolation

11 1

linear interpolation

1/21/2

f ll i hti

1
1/2 full weighting
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Restriction – Matrix Notation

For full weighting (1D):


1
2

1 1
2

0 0 0 0

0 0 1
2

1 1
2

0 0

0 0 0 0 1
2

1 1
2




x1

x2

x3

x4

x5

x6

x7


=


1
2
(x1 + 2x2 + x3)

1
2
(x3 + 2x4 + x5)

1
2
(x5 + 2x6 + x7)



Notation: I 2h
h xh = x2h or R2h

h xh = x2h
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Coarse Grid Operator

Two main options:

1 discretise PDE on grid Ωh to obtain Ah

2 “Galerkin approach”: A2h := R2h
h AhPh

2h

→ compare effect on vector x2h:

A2hx2h := R2h
h AhPh

2hx2h

→ evaluate from right to left:

interpolate x2h to x̂h := Ph
2hx2h

apply fine-grid operator Ah to interpolated x̂h
restrict resulting matrix-vector product to Ω2h

Exercise:

Compute A2h := R2h
h AhPh

2h for
Ah := 1

h2 tridiag(−1, 2,−1)



Scientific
Computing II

Michael Bader

Smoothers

Interpolation

Restriction

Coarse Grid
Operator

Literature

General:

Gander, Hrebicek: Solving Problems in Scientific
Computing Using Maple and MATLAB.

Golub, Ortega: Scientific Computing and
Differential Equations.

Dongarra, et. al.: Numerical linear algebra for
high-performance computers.
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Literature (2)

Multigrid:

Briggs, Henson, McCormick: A Multigrid Tutorial
(2nd ed.).

Conjugate Gradients:

Shewchuk: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain.
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