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@ Convergence of Relaxation Methods
© The Model Problem — 1D Poisson
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@ Multigrid Idea No. 1
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© Muiltigrid Idea No. 2

O A Two-Grid Method

@ Correction Scheme — Components
© The Multigrid V-Cycle

© More Multigrid Schemes

@ Speed of Convergence
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O A Two-Grid Method

@ Correction Scheme — Components
© The Multigrid V-Cycle

© More Multigrid Schemes

@ Speed of Convergence
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Convergence of
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Observation
@ slow convergence

@ high frequency error components are damped more
efficiently

@ smooth error components are reduced very slowly




Scientific

Convergence Analysis Computing Il

Michael Bader

Convergence of
Relaxation
Methods

@ remember iteration scheme: x(*+1) = Mx() + Nb

@ derive iterative scheme for the error ) := x — x():
el — x — x(+D) — x — Mx(D — Np

e for consistent scheme, x is a fixpoint of the
iteration ( x = Mx — Nb)

@ hence:

D) — iy + Nb — Mx) — Nb = Me)
e(i) = I\/Iie(O).




Scientific

Convergence Analysis (2) S

Michael Bader

Convergence of

e iteration equation for error: el) = Mie® ot
ethods

@ consider eigenvalues \; and eigenvectors v; of
iteration matrix M:

My =Ny = MY aw) =) Aoy
J j

—:e(0)

= MeO® = Mi(z avj) = Z)\J’:ogvj
Jj Jj

e convergence, if all [\;| <1

@ speed of convergence dominated by largest ;
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1D Poisson equation:
—u”(x) = f(X) on Q= (07 1) gr:bll\:r%dflm
u =0 on 9dQ (hom. Dirichlet boundaries)

discretised on a uniform grid of mesh size h = %

Poisson

compute approximate values u; ~ u(x;)
at grid points x; 1= jh, with j=1,...,(n—1)
@ system matrix Ay, built from 3-point stencil:

1
Sl-1 2 -1

e A a tridiagonal (n — 1) x (n — 1)-matrix




The Smoothing Property

Eigenvalues and -vectors of A:

eigenvalues: A\, = h2 sin (é”) = ,,z sin (k;”’)

e eigenvectors: vk = (sm(km/n)) o
—both for k=1,...,(n—1) ’
For Jacobi relaxation:
iteration matrix M = | — D*A=1—EA
eigenvalues of M: 1y := 1 — 25sin® (kgh)

|| < 1 forall k, but |ux| = 1if k=1o0r k=n-1
p1 € O(1 — h?): slow convergence of smooth errors

fn_1 ~ —1: “sign-flip” (but slow reduction) of
“zig-zag" error components

convergence factor determined by O(1 — h?)
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The Smoothing Property

Eigenvalues and -vectors of A:

@ eigenvalues: A\, = hz sin (g”) = ,,z sin (k;”’)

e eigenvectors: vk = (sm(km/n))

wyn—1
— both for k=1,...,(n—1)

For weighted Jacobi relaxation:

o iteration matrix M = | —wD*A =1 — EwA

@ eigenvalues of M: 1 — 2wsin (’”2”’)

e 11 € O(1 — h?): slow convergence of smooth errors
® pp1~0forw=2=% p, 1 ~—3forw=2

thus quick reduction of high-frequency errors

e convergence determined by O(1 — n=2)
(slower than normal Jacobi due to w)
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The Smoothing Property (2)

“Fourier mode analysis”
o decompose the error e’) into eigenvectors (for 1D
Poisson: sin(kmx;), )

@ determine convergence factors for “eigenmodes”

Observation for weighted Jacobi and GauB-Seidel:

@ The high frequency part (with respect to the
underlying grid) is reduced quite quickly.

@ The low frequency part (w.r.t. the grid) decreases
only very slowly; actually the slower, the finer the
grid is.

= “smoothing property”
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The Smoothing Property (2)

“Fourier mode analysis”

o decompose the error e’) into eigenvectors (for 1D
Poisson: sin(kmx;), )

@ determine convergence factors for “eigenmodes”
Another Observation:

@ the smoothest (slowest converging) component
corresponds to the smallest eigenvalue of A (k =1)
@ remember residual equation: Ae = r:
if e=v®, then r = \vV

= “small residual, but large error”
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Multigrid Idea No.
1

@ additional result from convergence analysis:
“high-frequency error” is relative to mesh size

@ on a sufficiently coarse grid, even very low
frequencies can be “high-frequency”
(if the mesh size is big)

“Multigrid” :
@ use multiple grids to solve the system of equations

@ on each grid, a certain range of error frequencies
will be reduced efficiently
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Solve the problem on a coarser grid: Muligrid Ides No.
@ will be comparably (very) fast
@ can give us a good initial guess:

e nested iteration/"poor man’s multigrid”

Algorithm:

@ Start on a very coarse grid with mesh size h = h;
guess an initial solution xj

Iterate over A,x, = by, using relaxation method
= approximate solution xj,

(2]
© interpolate the solution xj, to a finer grid €, /»
(%]

proceed with step 2 (now with mesh size h := h/2)
using interpolated Xxj/» as initial solution
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Observation for nested iteration:

. . R . Multigrid Idea No.
@ error in interpolated initial guess also includes low 2

frequencies
@ relaxation therefore still slow

@ can we go “back” to a coarser grid later in the
algorithm?

= ldea No. 2: use the residual equation:

@ solve Ae = r on a coarser grid
@ leads to an approximation of the error e

@ add this approximation to the fine-grid solution




A Two-Grid Method

Algorithm:

0 006000

relaxation/smoothing on the fine level system
= solution x;

compute the residual r, = by, — Apxs

restriction of r, to the coarse grid Qy

compute a solution to Ayey = ry

interpolate the coarse grid solution ey to the fine
grid Qp,

add the resulting correction to x;,

again, relaxation/smoothing on the fine grid
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Correction Scheme — Components

smoother: reduce the high-frequency error
components, and get a smooth error
restriction: transfer residual from fine grid to coarse
grid, for example by
@ injection
o (full) weighting
coarse grid equation: (acts as) discretisation of the PDE
on the coarse grid
interpolation: transfer coarse grid solution/correction
from coarse grid to fine grid
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The Multigrid V-Cycle

0 0 0600 O

smoothing on the fine level system
= solution x;

compute the residual r = by — A;x;

restriction of r; to the coarse grid

solve coarse grid system A;_1€/_1 = r_1 by a
recursive call to the V-cycle algorithm
interpolate the coarse grid solution ¢,_; to the fine
grid €,

add the resulting correction to x;

post-smoothing on the fine grid
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V-Cycle — Implementation

@ on the coarsest grid: direct solution

@ number of smoothing steps is typically very small (1
or 2)

Cost (storage and computing time):

@ ID:c-n+c-nf24+c-nfd+...<2c-n

@e2D:c-n+c-nfd+c-n/l6+...<4/3c-n

@3D:c-n+c-n/8+c-n/6d+...<8/Tc-n

@ overall costs are dominated by the costs of the
finest grid
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The W-Cycle

@ perform two coarse grid correction steps instead of

one
Qy Qy Qy Qp
,,\i ,,,,,,,,,,, \‘ ,,,,,,,,,,,,,,,,,,,,,,,,
Qop f{2h Qop Qop S{2h
,,,,,,,, 64 (7 B A
Qup Qap Qun Qap Qan Qan Qan Qan

(V-cycle and W-cycle)

@ more expensive

@ useful in situations where the coarse grid correction
is not very accurate
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Recursive algorithm:
@ combines nested iteration and V-cycle

@ (recursively!) perform an FMV-cycle on the next
coarser grid to get a good initial solution

@ interpolate this initial guess to the current grid

@ perform a V-cycle to improve the solution

More Multigrid
Schemes

Qy
Cd \‘Q\s{
O B B B
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Speed of Convergence

o fastest method around
(if all components are chosen carefully)

o “textbook multigrid efficiency”:
e D < [l

where convergence rate v < 1 (esp. v << 1) is
independent of the number of unknowns
= constant number of multigrid steps to obtain a
given number of digits
= overall computational work increases only linearly
with the number of unknowns
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Convergence Rates (2)

For the “Model Problem” (i.e., Poisson Problem):
@ O(n) to solve up to “level of truncation”
o “level of truncation”: O(h?)
(discretisation error)
@ O(n) is achieved by FMV-Cycle
(1 or 2 cycles sufficient)
For Other Problems:
@ OK for strongly elliptic problems
@ multigrid variants for non-linear problems,
parabolic/hyperbolic, . ..
@ achieving “textbook efficiency” usually a demanding
task
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Smoothers

For the Poisson problem (see tutorials):
o Gauss-Seidel
@ red-black Gauss-Seidel
e damped (w = %) Jacobi
@ how about Jacobi (non-weighted) and SOR?

— do not work well
(do not smooth high frequencies efficiently)
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Smoothers

anisotropic Poisson eq.: uy, + euy, = f
@ Strong dependency in x-direction, weak dependency
in y-direction
@ Good smoothing of the error only in x-direction

@ “semi-coarsening” (coarsen only in “smooth”
direction) — see tutorials

@ line smoothers: perform a column-wise Gauss-Seidel
= solve each “column” (or row) simultaneously
(direct, tridiagonal solver):

(n) (n)

(n+1) (n+1) (n+1)
u; ; _4u," +u ij—1 UI,J+1

I+1,j - f’J — U
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Smoothers

1D Convection-Diffusion eq.: €ty +u, =f, e < 1

@ “upwind discretisaton”:
%(unfl - 2Un + Un+1) + %(un - Unfl) = fn

o (weighted) Jacobi and red-black Gauss-Seidel:
no smoothing, basically updates one grid point per
iteration

@ Gauss-Seidel (relaxation from “left to right”):
almost an exact solver

@ in general: Gauss-Seidel smoothing in “downwind”

order
— difficult to do in 2D and 3D




. m . 1" Scientific
Interpolation (aka “Prolongation” ) Computing I

Michael Bader

For Poisson problem:

Interpolation

@ (bi-)linear interpolation:
in 1D: resembles homogeneous (f = 0) solution

@ constant (in general too small approximation order):
sometimes used for cell-based coarsening (unknowns
located in cell centers)

@ quadratic, cubic, etc.:
often too costly, more smoothing steps are cheaper
and can eliminate the disadvantage of a lower order
interpolation

@ but: in FMV-cycle interpolation to finer grid (after
a completed V-cycle) should be higher-order
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Interpolation

For linear interpolation (1D):

1 oo 3(0+x)
1 00 X1
% % O X1 %(Xl —+ X2)
010 Xo = X2
0 % % X3 %(XQ + X3)
0 01 X3
00 1 306 +0)

Notation: I3, X, = Xp or PJ,xon = X
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For Poisson problem:

@ ‘“injection”: pick values at corresp. coarse grid
p0| ntS Restriction

e “full weighting” = transpose of bilinear
interpolation (safer, more robust convergence), see
illustration below for the 1D case

1/2  1/2 1/2 1/2
. 2

| , | \ | linear interpolation

12 . | , | full weighting
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For full weighting (1D):

Restriction

X1
1 1 X2 1
B 1 o) 0 00O X3 §(X1+2X2—|—X3)
002 12 00]||x|=]36+2u+x)
0 00O % 1 % X5 %(X5+2X6+X7)
X6
X7

Notation: /2fx, = xop, or R2hx;, = xop
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Two main options:
@ discretise PDE on grid €2, to obtain A

“ . ", L oh h
e Galerkln approaCh : A2h T Rh AhP2h Coarse Grid
— compare effect on vector xy: Operator

.__ p2h h
AQhXQh = Rh AhPQhXZh

— evaluate from right to left:
e interpolate xph to X, := Pg'hXQh
e apply fine-grid operator A, to interpolated Xy
e restrict resulting matrix-vector product to {25,
Exercise:

o Compute Ay, := R2"A,P}, for

Ay = %tridiag(—l,Q, -1)




Literature

General:
e Gander, Hrebicek: Solving Problems in Scientific
Computing Using Maple and MATLAB.
@ Golub, Ortega: Scientific Computing and
Differential Equations.
@ Dongarra, et. al.: Numerical linear algebra for
high-performance computers.
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Literature (2)

Multigrid:

@ Briggs, Henson, McCormick: A Multigrid Tutorial
(2nd ed.).

Conjugate Gradients:

@ Shewchuk: An Introduction to the Conjugate
Gradient Method Without the Agonizing Pain.
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