Scientific Computing II
Conjugate Gradient Methods
Michael Bader
Summer 2014
Families of Iterative Solvers

- **relaxation methods:**
 - Jacobi-, Gauss-Seidel-Relaxation, . . .
 - Over-Relaxation-Methods

- **Krylov methods:**
 - Steepest Descent, Conjugate Gradient, . . .
 - GMRES, . . .

- **Multilevel/Multigrid methods,**
 Domain Decomposition, . . .
Remember: The Residual Equation

- for $Ax = b$, we defined the residual as:
 \[r^{(i)} = b - Ax^{(i)} \]

- and the error: $e^{(i)} := x - x^{(i)}$

- leads to the residual equation:
 \[Ae^{(i)} = r^{(i)} \]

- relaxation methods: solve a modified (easier) SLE:
 \[B \hat{e}^{(i)} = r^{(i)} \quad \text{where} \quad B \sim A \]

- multigrid methods: coarse-grid correction on residual equation
 \[A_H e_H^{(i)} = r_H^{(i)} \quad \text{and} \quad x^{(i+1)} := x^{(i)} + l_H^h e_H^{(i)} \]
Part I

Quadratic Forms and Steepest Descent

Quadratic Forms
Direction of Steepest Descent
Steepest Descent
Quadratic Forms

A *quadratic form* is a scalar, quadratic function of a vector of the form:

\[f(x) = \frac{1}{2} x^T A x - b^T x + c, \quad \text{where } A = A^T \]
Quadratic Forms (2)

The *gradient* of a quadratic form is defined as

\[
f'(x) = \begin{pmatrix}
\frac{\partial}{\partial x_1} f(x) \\
\vdots \\
\frac{\partial}{\partial x_n} f(x)
\end{pmatrix}
\]

- \(f'(x) = Ax - b\)
- \(f'(x) = 0 \iff Ax - b = 0 \iff Ax = b\)

\(Ax = b\) equivalent to a *minimisation problem*

\(\Rightarrow\) proper minimum *only if* \(A\) *positive definite*
Direction of Steepest Descent

- gradient $f'(x)$: direction of “steepest ascent”
- $f'(x) = Ax - b = -r$ (with residual $r = b - Ax$)
- residual r: direction of “steepest descent”
Solving SLE via Minimum Search

- basic idea to find minimum: move into direction of steepest descent
- most simple scheme:
 \[x^{(i+1)} = x^{(i)} + \alpha r^{(i)} \]
- \(\alpha\) constant \(\Rightarrow\) Richardson iteration (often considered as a relaxation method)
- better choice of \(\alpha\): move to lowest point in that direction \(\Rightarrow\) Steepest Descent
Steepest Descent – find an optimal α

- task: *line search* along the line $x^{(1)} = x^{(0)} + \alpha r^{(0)}$
- choose α such that $f(x^{(1)})$ is minimal:
 \[
 \frac{\partial}{\partial \alpha} f(x^{(1)}) = 0
 \]
- use chain rule:
 \[
 \frac{\partial}{\partial \alpha} f(x^{(1)}) = f'(x^{(1)})^T \frac{\partial}{\partial \alpha} x^{(1)} = f'(x^{(1)})^T r^{(0)}
 \]
- remember $f'(x^{(1)}) = -r^{(1)}$, thus:
 \[
 - \left(r^{(1)} \right)^T r^{(0)} \overset{!}{=} 0
 \]
 hence, $f'(x^{(1)}) = -r^{(1)}$ should be orthogonal to $r^{(0)}$
Steepest Descent – find α (2)

\[
\begin{align*}
 \left(r^{(1)} \right)^T r^{(0)} &= \left(b - Ax^{(1)} \right)^T r^{(0)} = 0 \\
 \left(b - A(x^{(0)} + \alpha r^{(0)}) \right)^T r^{(0)} &= 0 \\
 \left(b - Ax^{(0)} \right)^T r^{(0)} - \alpha \left(Ar^{(0)} \right)^T r^{(0)} &= 0 \\
 \left(r^{(0)} \right)^T r^{(0)} - \alpha \left(r^{(0)} \right)^T Ar^{(0)} &= 0
\end{align*}
\]

Solve for α:

\[
\alpha = \frac{\left(r^{(0)} \right)^T r^{(0)}}{\left(r^{(0)} \right)^T Ar^{(0)}}
\]
Steepest Descent – Algorithm

1. \(r(i) = b - Ax(i) \)
2. \(\alpha_i = \frac{(r(i))^T r(i)}{(r(i))^T Ar(i)} \)
3. \(x(i+1) = x(i) + \alpha_i r(i) \)

Observations:
- slow convergence (sim. to Jacobi relaxation)
- \(\| e(i) \|_A \leq \left(\frac{\kappa - 1}{\kappa + 1} \right)^i \| e(0) \|_A \)
- for positive definite \(A \): \(\kappa = \lambda_{\text{max}} / \lambda_{\text{min}} \) (largest/smallest eigenvalues of \(A \))
- many steps in the same direction
Conjugate Gradients

Conjugate Directions
A-Orthogonality
Conjugate Gradients
A Miracle Occurs . . .
CG Algorithm
Conjugate Directions

• observation: Steepest Descent takes repeated steps in the same direction
• obvious idea: try to do only one step in each direction
• possible approach: choose orthogonal search directions $d^{(0)} \perp d^{(1)} \perp d^{(2)} \perp \ldots$
• notice: errors orthogonal to previous directions:

 $e^{(1)} \perp d^{(0)}$, $e^{(2)} \perp d^{(1)} \perp d^{(0)}$, \ldots
Conjugate Directions (2)

- compute α from

$$
\begin{align*}
\left(d^{(0)} \right)^T e^{(1)} &= \left(d^{(0)} \right)^T \left(e^{(0)} - \alpha d^{(0)} \right) = 0 \\
\text{requires propagation of the error } e^{(1)} &= x - x^{(1)} \\
x^{(1)} &= x^{(0)} + \alpha_i d^{(0)} \\
x - x^{(1)} &= x - x^{(0)} - \alpha_i d^{(0)} \\
e^{(1)} &= e^{(0)} - \alpha_i d^{(0)} \\
\end{align*}
$$

- formula for α:

$$
\alpha = \frac{\left(d^{(0)} \right)^T e^{(0)}}{\left(d^{(0)} \right)^T d^{(0)}}
$$

- but: we don’t know $e^{(0)}$
A-Orthogonality

- make the search directions *A-orthogonal*:
 \[
 \left(d^{(i)} \right)^T A d^{(j)} = 0
 \]
- again: errors *A*-orthogonal to previous directions:
 \[
 \left(e^{(i+1)} \right)^T A d^{(i)} = 0
 \]
- equiv. to minimisation in search direction *d*\(^{(i)}\):
 \[
 \frac{\partial}{\partial \alpha} f \left(x^{(i+1)} \right) = \left(f' \left(x^{(i+1)} \right) \right)^T \frac{\partial}{\partial \alpha} x^{(i+1)} = 0
 \]
 \[
 \Leftrightarrow - \left(r^{(i+1)} \right)^T d^{(i)} = 0
 \]
 \[
 \Leftrightarrow - \left(d^{(i)} \right)^T A e^{(i+1)} = 0
 \]
A-Conjugate Directions

- remember the formula for conjugate directions:
 \[
 \alpha = \frac{(d^{(0)})^T e^{(0)}}{(d^{(0)})^T d^{(0)}}
 \]

- same computation, but with A-orthogonality:
 \[
 \alpha_i = \frac{(d^{(i)})^T A e^{(i)}}{(d^{(i)})^T A d^{(i)}} = \frac{(d^{(i)})^T r^{(i)}}{(d^{(i)})^T A d^{(i)}}
 \]
 (for the i-th iteration)

- these α_i can be computed!

- still to do: find A-orthogonal search directions
A-Conjugate Directions (2)

classical approach to find orthogonal directions →

conjugate Gram-Schmidt process:

- from linearly independent vectors \(u^{(0)}, u^{(1)}, \ldots, u^{(i-1)} \)
- construct orthogonal directions \(d^{(0)}, d^{(1)}, \ldots, d^{(i-1)} \)

\[
d^{(i)} = u^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)}
\]

\[
\beta_{ik} = -\frac{(u^{(i)})^T A d^{(k)}}{(d^{(k)})^T A d^{(k)}}
\]

- needs to keep all old search vectors in memory
- \(\mathcal{O}(n^3) \) computational complexity ⇒ infeasible
Conjugate Gradients

- use residuals (i.e., $u^{(i)} := r^{(i)}$) to construct conjugate directions:

$$d^{(i)} = r^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)}$$

- new direction $d^{(i)}$ should be A-orthogonal to all $d^{(j)}$:

$$0 \equiv (d^{(i)})^T A d^{(j)} = (r^{(i)})^T A d^{(j)} + \sum_{k=0}^{i-1} \beta_{ik} (d^{(k)})^T A d^{(j)}$$

- all directions $d^{(k)}$ (for $k = 0, \ldots, i-1$) are already A-orthogonal (and $j < i$), hence:

$$0 = (r^{(i)})^T A d^{(j)} + \beta_{ij} (d^{(j)})^T A d^{(j)} \Rightarrow \beta_{ij} = -\frac{(r^{(i)})^T A d^{(j)}}{(d^{(j)})^T A d^{(j)}}$$
Conjugate Gradients – Status

1. conjugate directions and computation of α_i:

$$\alpha_i = \frac{(d^{(i)})^T r^{(i)}}{(d^{(i)})^T A d^{(i)}}$$

$$x^{(i+1)} = x^{(i)} + \alpha_i d^{(i)}$$

2. use residuals to compute search directions:

$$d^{(i)} = r^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)}$$

$$\beta_{ik} = -\frac{(r^{(i)})^T A d^{(k)}}{(d^{(k)})^T A d^{(k)}}$$

→ still infeasible, as we need to store all vectors $d^{(k)}$
A Miracle Occurs – Part 1

Two small contributions:

1. propagation of the error \(e^{(i)} = x - x^{(i)} \)

\[
\begin{align*}
x^{(i+1)} &= x^{(i)} + \alpha_i d^{(i)} \\
x - x^{(i+1)} &= x - x^{(i)} - \alpha_i d^{(i)} \\
e^{(i+1)} &= e^{(i)} - \alpha_i d^{(i)}
\end{align*}
\]

(we have used this once, already)

2. propagation of residuals

\[
\begin{align*}
r^{(i+1)} &= Ae^{(i+1)} = A \left(e^{(i)} - \alpha_i d^{(i)} \right) \\
\Rightarrow r^{(i+1)} &= r^{(i)} - \alpha_i Ad^{(i)}
\end{align*}
\]
A Miracle Occurs – Part 2

Orthogonality of the residuals:

- search directions are A-orthogonal
- only one step in each directions
- hence: error is A-orthogonal to previous search directions:
 \[(d^{(i)})^T A e^{(j)} = 0, \text{ for } i < j\]
- residuals are orthogonal to previous search directions:
 \[(d^{(i)})^T r^{(j)} = 0, \text{ for } i < j\]
- search directions are built from residuals:
 \[\text{span} \{d^{(0)}, \ldots, d^{(i-1)}\} = \text{span} \{r^{(0)}, \ldots, r^{(i-1)}\}\]
- hence: residuals are orthogonal
 \[\left(r^{(i)}\right)^T r^{(j)} = 0, \quad i < j\]
A Miracle Occurs – Part 3

- combine orthogonality and recurrence for residuals:

\[
(r^{(i)})^T r^{(j+1)} = (r^{(i)})^T r^{(j)} - \alpha_j (r^{(i)})^T A d^{(j)} \\
\Rightarrow \alpha_j (r^{(i)})^T A d^{(j)} = (r^{(i)})^T r^{(j)} - (r^{(i)})^T r^{(j+1)}
\]

- \((r^{(i)})^T r^{(j)} = 0\), if \(i \neq j\):

\[
(r^{(i)})^T A d^{(j)} = \begin{cases}
\frac{1}{\alpha_i} (r^{(i)})^T r^{(i)}, & i = j \\
-\frac{1}{\alpha_{i-1}} (r^{(i)})^T r^{(i)}, & i = j + 1 \\
0 & \text{otherwise.}
\end{cases}
\]
A Miracle Occurs – Part 4

- computation of β_{ik} (for $k = 0, \ldots, i - 1$):

\[
\beta_{ik} = -\frac{(r(i))^T Ad(k)}{(d(k))^T Ad(k)} = \begin{cases}
\frac{(r(i))^T r(i)}{\alpha_{i-1} (d(i-1))^T Ad(i-1)}, & \text{if } i = k + 1 \\
0, & \text{if } i > k + 1
\end{cases}
\]

- thus: search directions

\[
d^{(i)} = r^{(i)} + \sum_{k=0}^{i-1} \beta_{ik} d^{(k)} = r^{(i)} + \beta_{i,i-1} d^{(i-1)}
\]

\[
\beta_i := \beta_{i,i-1} = \frac{(r(i))^T r(i)}{\alpha_{i-1} (d(i-1))^T Ad(i-1)}
\]

\Rightarrow reduces to a simple iterative scheme for β_i
A Miracle Occurs – Part 5

• build search directions

\[d^{(i+1)} = r^{(i+1)} + \beta_i d^{(i)} \]
\[\beta_{i+1} = \frac{(r^{(i+1)})^T r^{(i+1)}}{\alpha_i (d^{(i)})^T A d^{(i)}} \]

• remember: \(\alpha_i = \frac{(d^{(i)})^T r^{(i)}}{(d^{(i)})^T A d^{(i)}} \)

• thus: \(\alpha_i (d^{(i)})^T A d^{(i)} = (d^{(i)})^T r^{(i)} \)

\[\Rightarrow \beta_{i+1} = \frac{(r^{(i+1)})^T r^{(i+1)}}{(d^{(i)})^T r^{(i)}} = \frac{(r^{(i+1)})^T r^{(i+1)}}{(r^{(i)})^T r^{(i)}} \]

• last step:

\((d^{(i)})^T r^{(i)} = (r^{(i)} + \beta_{i-1} d^{(i-1)})^T r^{(i)} = (r^{(i)})^T r^{(i)} + \beta_{i-1} (d^{(i-1)})^T r^{(i)} = (r^{(i)})^T r^{(i)} \)
(residual \(r^{(i)} \) orthogonal to previous search direction \(d^{(i-1)} \))
Conjugate Gradients – Algorithm

Start with $d^{(0)} = r^{(0)} = b - Ax^{(0)}$

While $r^{(i)} > \epsilon$ iterate over:

1. $\alpha_i = \frac{(r^{(i)})^T r^{(i)}}{(d^{(i)})^T A d^{(i)}}$

2. $x^{(i+1)} = x^{(i)} + \alpha_i d^{(i)}$

3. $r^{(i+1)} = r^{(i)} - \alpha_i A d^{(i)}$

4. $\beta_{i+1} = \frac{(r^{(i+1)})^T r^{(i+1)}}{(r^{(i)})^T r^{(i)}}$

5. $d^{(i+1)} = r^{(i+1)} + \beta_{i+1} d^{(i)}$
Part III

Preconditioning

CG Convergence
Preconditioning
CG with “Change-of-Basis” Preconditioning
CG with Matrix Preconditioner
Preconditioners – Examples
ILU and Incomplete Cholesky
Conjugate Gradients – Convergence

Convergence Analysis:

- uses Krylow subspace:
 \[
 \text{span}\left\{ r^{(0)}, Ar^{(0)}, A^2 r^{(0)}, \ldots, A^{i-1} r^{(0)} \right\}
 \]

- “Krylow subspace method”

Convergence Results:

- in principle: direct method \((n \text{ steps})\)
 \((\text{however: orthogonality lost due to round-off errors } \rightarrow \text{ exact solution not found})\)

- in practice: iterative scheme

\[
\|e^{(i)}\|_A \leq 2 \left(\frac{\sqrt{\kappa} - 1}{\sqrt{\kappa} + 1} \right)^i \|e^{(0)}\|_A, \quad \kappa = \lambda_{\text{max}}/\lambda_{\text{min}}
\]
Preconditioning

• convergence depends on matrix A
• idea: modify linear system

$$Ax = b \quad \leadsto \quad M^{-1}Ax = M^{-1}b,$$

then: convergence depends on matrix $M^{-1}A$
• optimal preconditioner: $M^{-1} = A^{-1}$:

$$A^{-1}Ax = A^{-1}b \iff x = A^{-1}b.$$

• in practice:
 • avoid explicit computation of $M^{-1}A$
 • find an M similar to A, compute effect of M^{-1}
 (i.e., approximate solution of SLE)
 • or: find an M^{-1} similar to A^{-1}
CG and Preconditioning

• just replace A by $M^{-1}A$ in the algorithm??
• problem: $M^{-1}A$ not necessarily symmetric (even if M and A both are)
• we will try an alternative first: symmetric preconditioning

$$Ax = b \quad \leadsto \quad L^T AL\hat{x} = L^T b, \quad x = L\hat{x}$$

• Remember: for Finite Element discretization, this corresponds to a change of basis functions!
• requires some re-computations in the CG algorithm (see following slides)
“Change-of-Basis” Preconditioning

- **preconditioned system of equations:**
 \[Ax = b \iff (L^TAL)\hat{x} = L^Tb, \quad x = L\hat{x} \]

- **computation of residual:**
 \[\hat{r} = \hat{b} - \hat{A}\hat{x} = L^Tb - L^TAL\hat{x} = L^T(b - Ax) = L^Tr \]

- **computation of \(\alpha \) for new system:**
 \[
 \alpha_i := \frac{(\hat{r}(i))^T\hat{r}(i)}{(\hat{d}(i))^T\hat{A}\hat{d}(i)} = \frac{(\hat{r}(i))^T\hat{r}(i)}{(\hat{d}(i))^T L^TAL \hat{d}(i)} = \frac{(\hat{r}(i))^T\hat{r}(i)}{(\tilde{d}(i))^T A \tilde{d}(i)}
 \]
 where we defined \(L\hat{d}(i) =: \tilde{d}(i) \)

- **update of solution:**
 \[\hat{x}^{(i+1)} = \hat{x}^{(i)} + \alpha_i\hat{d}^{(i)} \]
 \[x^{(i+1)} = L\hat{x}^{(i+1)} = L\hat{x}^{(i)} + L\alpha_i\hat{d}^{(i)} = x^{(i)} + \alpha_i\tilde{d}^{(i)} \]
“Change-of-Basis” Preconditioning (2)

- update residuals \hat{r}:

 \[
 \hat{r}^{(i+1)} = \hat{r}^{(i)} - \alpha_i \hat{A} \hat{d}^{(i)} = \hat{r}^{(i)} - \alpha_i L^T A \hat{d}^{(i)}
 \]

- computation of β_i:

 \[
 \beta_{i+1} = \frac{(\hat{r}^{(i+1)})^T \hat{r}^{(i+1)}}{(\hat{r}^{(i)})^T \hat{r}^{(i)}}
 \]

- update of search directions:

 \[
 \hat{d}^{(i+1)} = \hat{r}^{(i+1)} + \beta_i \hat{d}^{(i)}
 \Rightarrow \tilde{d}^{(i+1)} = L \hat{d}^{(i+1)} = L \hat{r}^{(i+1)} + L \beta_i \hat{d}^{(i)}
 \]
CG with “Change-of-Basis” Preconditioning

Start with $\hat{r}^{(0)} = L^T(b - Ax^{(0)})$ and $\tilde{d}^{(0)} = L\hat{r}^{(0)}$;

While $\hat{r}^{(i)} > \epsilon$ iterate over:

1. $\alpha_i = \frac{(\hat{r}^{(i)})^T \hat{r}^{(i)}}{(\tilde{d}^{(i)})^T A \tilde{d}^{(i)}}$

2. $x^{(i+1)} = x^{(i)} + \alpha_i \tilde{d}^{(i)}$

3. $\hat{r}^{(i+1)} = \hat{r}^{(i)} - \alpha_i L^T A \tilde{d}^{(i)}$

4. $\beta_{i+1} = \frac{(\hat{r}^{(i+1)})^T \hat{r}^{(i+1)}}{(\hat{r}^{(i)})^T \hat{r}^{(i)}}$

5. $\tilde{d}^{(i+1)} = L \hat{r}^{(i+1)} + \beta_i \tilde{d}^{(i)}$
Hierarchical Basis Preconditioning

Some specifics for the CG implementation:

- L transforms coefficient vector from hierarchical basis to nodal basis, for example $\hat{x} = L x$ or $\tilde{d} = L \hat{d}$
- L^T transforms the vector of basis functions from nodal basis to hierarchical basis (cmp. FEM), thus $\hat{r} = L^T r$
- effect of L and L^T can be computed in $\mathcal{O}(N)$ operations

HB-CG for the Poisson problem:

- in 1D: convergence after a log N iterations! (in this case: $L^T A L$ diagonal matrix with log N different eigenvalues)
- in 2D and 3D very fast convergence!
- further improved by additional diagonal preconditioning
- so-called *hierarchical generating systems* (change to a multigrid basis) achieve multigrid-like performance
CG with Hierarchical Generating Systems

Recall: system of linear equations \(A^{GS} v^{GS} = b^{GS} \) given as

\[
\begin{pmatrix}
A_h & A_h P_{2h}^h & A_h P_{4h}^h \\
R_{2h}^h A_h & A_{2h} & A_{2h} P_{2h}^2 \\
R_{4h}^h A_h & R_{2h}^h A_{2h} & A_{4h}
\end{pmatrix}
\begin{pmatrix}
v_h \\
v_{2h} \\
v_{4h}
\end{pmatrix}
= \begin{pmatrix}
b_h \\
R_{2h}^h b_h \\
R_{4h}^h b_h
\end{pmatrix}
\]

Preconditioning for CG?

- system \(A^{GS} v^{GS} = b^{GS} \) is singular
 \(\rightarrow \) subspace of solutions \(v^{GS} \) (minima of the quadratic form!)
- however: any of the solutions will do!
- convergence result:

\[
\| e^{(i)} \|_A \leq 2 \left(\frac{\sqrt{\hat{\kappa}^{GS}} - 1}{\sqrt{\hat{\kappa}^{GS}} + 1} \right)^i \| e^{(0)} \|_A,
\]

\(\hat{\kappa}^{GS} = \lambda_{\text{max}} / \lambda_{\text{min}} \)

where \(\hat{\kappa}^{GS} \) is the ratio of largest vs. smallest non-zero eigenvalue
- for Poisson eq.: \(\hat{\kappa}^{GS} \) independent of \(h \leadsto \) multigrid convergence
CG and Preconditioning (revisited)

- preconditioning: replace A by $M^{-1}A$
- problem: $M^{-1}A$ not necessarily symmetric
- compare symmetric preconditioning

\[Ax = b \quad \sim \quad L^T AL\hat{x} = Lb, \quad x = L\hat{x} \]

- workaround: find $E^T E = M$ (Cholesky fact.), then

\[Ax = b \quad \sim \quad E^{-T} AE^{-1} \hat{x} = E^{-T} b, \quad \hat{x} = Ex \]

- what if E cannot be computed (efficiently)? (neither M nor M^{-1} might be known explicitly!)
- E, E^{-T}, E^{-1} can be eliminated from algorithm (again requires some re-computations):

 set $\hat{d} = Ed$ and use $\hat{r} = E^{-T} r$, $\hat{x} = Ex$, $E^{-1} E^{-T} = M^{-1}$
CG with Preconditioner

Start: \(r^{(0)} = b - Ax^{(0)}; \ d^{(0)} = M^{-1} r^{(0)} \)

1. \(\alpha_i = \frac{(r^{(i)})^T M^{-1} r^{(i)}}{(d^{(i)})^T Ad^{(i)}} \)

2. \(x^{(i+1)} = x^{(i)} + \alpha_i d^{(i)} \)

3. \(r^{(i+1)} = r^{(i)} - \alpha_i Ad^{(i)} \)

4. \(\beta_{i+1} = \frac{(r^{(i+1)})^T M^{-1} r^{(i+1)}}{(r^{(i)})^T M^{-1} r^{(i)}} \)

5. \(d^{(i+1)} = M^{-1} r^{(i+1)} + \beta_{i+1} d^{(i)} \)

(for detailed derivation, see Shewchuck)
Implementation

Preconditioning steps: $M^{-1}r^{(i)}$, $M^{-1}r^{(i+1)}$

- M^{-1} known then multiply $M^{-1}r^{(i)}$
- M known? Then solve $My = r^{(i)}$ to obtain $y = M^{-1}r^{(i)}$
- neither M, nor M^{-1} are known explicitly:
 - algorithm to solve $My = r^{(i)}$ is sufficient!
 \rightarrow any approximate solver for $Ae = r^{(i)}$
 - algorithm to compute M^{-1} is sufficient!
 \rightarrow compute (sparse) approximate inverse (SPAI)
- Examples: Multigrid, Jacobi, ILU, SPAI, …
Preconditioners for CG – Examples

- find $M \approx A$ and compute effect of M^{-1}:
 - Jacobi preconditioning: $M := D_A$
 - (Symmetric) Gauss-Seidel preconditioning: $M := L_A$ or $M = (D_A + L'_A) D_A^{-1} (D_A + (L'_A)^T)$, etc.
- just compute effect of M^{-1}:
 - any approximate solver might do
 → incl. multigrid methods
 - incomplete LU-decomposition (ILU) should be symmetric → incomplete Cholesky factorization
 - use a multigrid method as preconditioner(?)
 → worthwhile (only) in situations where multigrid does not work (well) as stand-alone solver
- find an M^{-1} similar to A^{-1}
 - “sparse approximate inverse” (SPAI)
 - tries to minimise $\| I - MA \|_F$, where M is a matrix with (given) sparse non-zero pattern
Preconditioners – ILU and Incomplete Cholesky

Recall LU decomposition and Cholesky factorization:

- **LU decomposition:** given A, find lower/upper triangular matrices L and U such that $A = LU$
- **Cholesky factorization:** given $A = A^T$, find lower triangular matrix L such that $A = LL^T \rightarrow$ symmetric preconditioning!
- **variants with explicit diagonal matrix D:**

\[
A = LD^{-1}U \quad \text{or} \quad A = LD^{-1}L^T,
\]

where $L = D + L'$ and $R = D + R'$ with *strict* lower/upper triangular L', R'

- **but:** for sparse A, L and U may be non-sparse

Idea: disregard all fill-in during factorization
Cholesky Factorization

\[
\begin{pmatrix}
L_{11} & L_{21} & L_{31} \\
L_{21} & L_{22} & L_{32} \\
L_{31} & L_{32} & L_{33}
\end{pmatrix}
\begin{pmatrix}
D_{11}^{-1} \\
D_{22}^{-1} \\
D_{33}^{-1}
\end{pmatrix}
\begin{pmatrix}
L_{11}^T & L_{21}^T & L_{31}^T \\
L_{22}^T & L_{22}^T & L_{32}^T \\
L_{33}^T & L_{33}^T
\end{pmatrix}
=
\begin{pmatrix}
A_{11} & A_{21}^T & A_{31}^T \\
A_{21} & A_{22}^T & A_{32}^T \\
A_{31} & A_{32} & A_{33}
\end{pmatrix}
\]

Derive the factorization algorithm:

- assume that \(A_{11} = L_{11}D_{11}^{-1}L_{11}^T \) is already factorized
- let \(L_{21} \) be a \(1 \times k \) submatrix, i.e., to compute next row of \(L \):

\[
L_{21}D_{11}^{-1}L_{11}^T = A_{21}
\]

\(D_{11}^{-1}L_{11}^T \) upper triangular matrix → solve triangular system for \(L_{21} \)

- by convention \(L_{22} = D_{22} \), which is computed from:

\[
L_{21}D_{11}^{-1}L_{21}^T + L_{22}D_{22}^{-1}L_{22}^{-T} = A_{22} \quad \Rightarrow \quad L_{22} = D_{22} = A_{22} - L_{21}D_{11}^{-1}L_{21}^T
\]
Incomplete Cholesky Factorization

Algorithm: \((A \rightarrow LD^{-1}L^T) \)

- initialize \(D := 0, L := 0 \)
- for \(i = 1, \ldots, n \):
 1. for \(k = 1, \ldots, i - 1 \):
 - if \((i, k) \in S \) then set \(L_{ik} := A_{ik} - \sum'_{j < k} L_{ij}D_{jj}^{-1}L_{kj} \)
 2. set \(L_{ii} = D_{ii} := A_{ii} - \sum'_{j < i} L_{ij}D_{jj}^{-1}L_{ij} \)

- note: sums \(\sum'_{j < k} \) and \(\sum'_{j < i} \) only consider non-zero elements \(\in S \)
- uses given pattern \(S \) of non-zero elements in the factorization (frequent choice: use non-zeros of \(A \) for \(S \))
- Cholesky factorization computed in \(\mathcal{O}(n) \) operations for sparse matrices (with \(c \cdot n \) non-zeros)
- frequently used for preconditioning
Literature/References

Conjugate Gradients:

- Shewchuk: *An Introduction to the Conjugate Gradient Method Without the Agonizing Pain*.