Scientific Computing II

Molecular Dynamics – Numerics

Michael Bader – SCCS
Technical University of Munich
Summer 2017
Recall: Molecular Dynamics – System of ODEs

- resulting force acting on a molecule: \(\vec{F}_i = \sum_{j \neq i} \vec{F}_{ij} \)
- acceleration of a molecule (Newton’s 2nd law):
 \[
 \ddot{\vec{r}}_i = \frac{\vec{F}_i}{m_i} = \sum_{j \neq i} \frac{\vec{F}_{ij}}{m_i} = -\sum_{j \neq i} \frac{\partial U(\vec{r}_i, \vec{r}_j)}{\partial |\vec{r}_{ij}|} m_i
 \]
- or, with acceleration \(\vec{a}_i := \frac{1}{m_i} \vec{F}_i \): \(\ddot{\vec{r}}_i = \vec{a}_i \),
 where \(\vec{F}_i \) and \(\vec{a}_i \) depend on all positions \(\vec{r}_i \)
- transfer to \(2dN \) coupled ordinary differential equations of 1st order:
 \[
 m_i \dot{\vec{r}}_i = \vec{p}_i \quad \text{or} \quad \dot{\vec{r}}_i = \vec{v}_i
 \]
 \[
 \dot{\vec{p}}_i = \vec{F}_i \quad \text{or} \quad \vec{v}_i = \frac{\vec{F}_i}{m_i} = \vec{a}_i
 \]
Euler Time Stepping for MD

Explicit Euler Method:

- Taylor series expansion of the positions in time:

\[
\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \dot{\vec{r}}(t) + \frac{1}{2} \Delta t^2 \ddot{\vec{r}}(t) + \frac{\Delta t^i}{i!} \vec{r}^{(i)}(t) + \ldots
\]

(1)

(\dot{r}, \ddot{r}, r^{(i)}: derivatives)

- neglecting terms of higher order of \(\Delta t \), and analogous formulation of \(\vec{v}(t) := \dot{\vec{r}}(t) \) with \(\vec{a}(t) := \dot{\vec{v}}(t) = \ddots \vec{r}(t) = \frac{\vec{F}(t)}{m} \) leads to the explicit Euler method:

\[
\vec{v}(t + \Delta t) \triangleq \vec{v}(t) + \Delta t \vec{a}(t) \\
\vec{r}(t + \Delta t) \triangleq \vec{r}(t) + \Delta t \vec{v}(t)
\]
Euler Time Stepping for MD (cont.)

- explicit Euler method:

\[\vec{v}(t + \Delta t) = \vec{v}(t) + \Delta t \vec{a}(t) \] \hspace{1cm} (2a)
\[\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t) \] \hspace{1cm} (2b)

- similar for implicit Euler method
 → derivatives at the time step end:

\[\vec{v}(t + \Delta t) = \vec{v}(t) + \Delta t \vec{a}(t + \Delta t) \] \hspace{1cm} (3a)
\[\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t + \Delta t) \] \hspace{1cm} (3b)

- disadvantage for both schemes: do not conserve critical properties; lead to wrong long-term solutions (compare tutorial on circular motion); plus: low accuracy
Classical Störmer Verlet Method

• the Taylor series expansion in (1) can also be performed for $-\Delta t$:

$$\vec{r}(t - \Delta t) = \vec{r}(t) - \Delta t \dot{\vec{r}}(t) + \frac{1}{2} \Delta t^2 \ddot{\vec{r}}(t) + \frac{(-\Delta t)^i}{i!} \vec{r}^{(i)}(t) + \ldots$$ (4)

• from (1) and (4) the classical Verlet algorithm can be derived:

$$\vec{r}(t + \Delta t) = 2\vec{r}(t) - \vec{r}(t - \Delta t) + \Delta t^2 \ddot{\vec{r}}(t) + O(\Delta t^4)$$

$$\approx 2\vec{r}(t) - \vec{r}(t - \Delta t) + \Delta t^2 \vec{a}(t)$$ (5)

note: direct calculation of $\vec{r}(t + \Delta t)$ from $\vec{r}(t)$ and $\vec{F}(t)$

• velocity can be estimated via

$$\vec{v}(t) = \dot{\vec{r}}(t) \approx \frac{\vec{r}(t + \Delta t) - \vec{r}(t - \Delta t)}{2\Delta t}$$ (6)

• disadvantage: needs to store two previous time steps
Crank Nicolson Method

• explicit approximation (7a) for half step $[t, t + \frac{\Delta t}{2}]$ inserted into implicit approximation (7b) for half step $[t + \frac{\Delta t}{2}, t + \Delta t]$

$$\vec{v}(t + \frac{\Delta t}{2}) = \vec{v}(t) + \frac{\Delta t}{2} \vec{a}(t) \quad (7a)$$

$$\vec{v}(t + \Delta t) = \vec{v}(t + \frac{\Delta t}{2}) + \frac{\Delta t}{2} \vec{a}(t + \Delta t) \quad (7b)$$

• leads to Crank-Nicolson scheme for ν:

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{\Delta t}{2} (\vec{a}(t) + \vec{a}(t + \Delta t)) \quad (8)$$

• key disadvantage: implicit scheme, as $\vec{a}(t + \Delta t)$ depends on $\vec{r}(t + \Delta t)$; needs to solve non-linear system of equations
Velocity Störmer Verlet Method

The Velocity Störmer Verlet method is a composition of a
- Taylor series expansion of 2nd order for the positions, as in Eq. (1)
- and a Crank Nicolson method for the velocities, as in Eq. (8)

\[
\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t) + \frac{\Delta t^2}{2} \vec{a}(t) \tag{9a}
\]
\[
\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{\Delta t}{2} (\vec{a}(t) + \vec{a}(t + \Delta t)) \tag{9b}
\]

Memory requirement: \((3 + 1) \cdot 3N\) (3+1 vector fields)

update of \(\vec{v}(t + \Delta t)\) requires \(\vec{v}(t), \vec{r}(t + \Delta t)\) and \(F(t + \Delta t)\), but also \(F(t)\)
Velocity Störmer Verlet – Implementation

- reformulate equation for positions \vec{r}:

$$\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t) + \frac{\Delta t^2}{2} \ddot{a}(t)$$

$$= \vec{r}(t) + \Delta t \left(\vec{v}(t) + \frac{\Delta t}{2} \ddot{a}(t) \right)$$

contains half an Euler time step for \vec{v}

- similar for the velocities \vec{v}:

$$\vec{v}(t + \Delta t) = \vec{v}(t) + \frac{\Delta t}{2} \left(\ddot{a}(t) + \ddot{a}(t + \Delta t) \right)$$

$$= \left(\vec{v}(t) + \frac{\Delta t}{2} \ddot{a}(t) \right) + \frac{\Delta t}{2} \ddot{a}(t + \Delta t)$$

reuses the result of the half Euler time step for \vec{v}
Velocity Störmer Verlet – Implementation (2)

1. compute half an Euler time step for \vec{v}

$$\vec{v}(t + \frac{\Delta t}{2}) = \vec{v}(t) + \frac{\Delta t}{2} \vec{a}(t)$$

2. update positions \vec{r}:

$$\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t + \frac{\Delta t}{2})$$

3. calculate forces $\vec{a}(t + \Delta t)$ from positions $\vec{r}(t + \Delta t)$

4. update the velocities \vec{v}:

$$\vec{v}(t + \Delta t) = \vec{v}(t + \frac{\Delta t}{2}) + \frac{\Delta t}{2} \vec{a}(t + \Delta t)$$

Note: memory requirements: $3 \cdot 3N$ (3 vector fields)

Vectors \vec{v} and \vec{r}, as well as forces/accelerations \vec{a} may be updated in-place in each time step.
Leapfrog Method

- combine steps 4 (from previous time step) and 1 to a single step
- velocity calculation thus shifted by a half time step:

\[
\vec{v}(t + \frac{\Delta t}{2}) = \vec{v}(t - \frac{\Delta t}{2}) + \Delta t \vec{a}(t) \quad (10a)
\]
\[
\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t + \frac{\Delta t}{2}) \quad (10b)
\]

- exact arithmetic: Störmer Verlet, Velocity Störmer Verlet and Leapfrog Scheme are equivalent
- the latter two are more robust w.r.t. roundoff errors
Dimensionless Velocity Störmer Verlet

- remember dimensionless formulation:
 \(\vec{r} := \sigma \vec{r}^*, \quad \vec{v} := \frac{\sigma}{\Delta t} \vec{v}^*, \quad \Delta t^2 := \frac{\sigma^2 m}{\epsilon} \Delta t^*^2, \quad \ddot{\vec{r}} = \frac{1}{m} \vec{F} = \frac{1}{m \sigma} \vec{F}^* \)

- insert into Velocity Störmer Verlet Method to get:

\[
\begin{align*}
\vec{r}^*(t + \Delta t) &= \vec{r}^*(t) + \vec{v}^*(t) + \frac{\Delta t^*^2}{2} \vec{F}^*(t) \\
\vec{v}^*(t + \Delta t) &= \vec{v}^*(t) + \frac{\Delta t^*^2}{2} \vec{F}^*(t) + \frac{\Delta t^*^2}{2} \vec{F}^*(t + \Delta t)
\end{align*}
\] (11a) (11b)
Dimensionless Velocity Störmer Verlet (2)

Procedure:

1. calculate new positions (11a),
 partial velocity update: $+\frac{\Delta t^*}{2} \vec{F}^*(t)$ in (11b)

2. calculate new forces, accelerations (computationally intensive!)

3. calculate new velocities: $+\frac{\Delta t^*}{2} \vec{F}^*(t + \Delta t)$ in (11b)

→ memory requirements: $3 \cdot 3N$
Outlook: Leapfrog Method with Thermostat

• Leapfrog method:

\[
\vec{v}(t + \frac{\Delta t}{2}) = \vec{v}(t - \frac{\Delta t}{2}) + \Delta t \vec{a}(t)
\]

\[
\vec{r}(t + \Delta t) = \vec{r}(t) + \Delta t \vec{v}(t + \frac{\Delta t}{2})
\]

• intermediate step may be introduced for the thermostat

\[
\vec{v}(t) := \frac{1}{2} \left(\vec{v}(t + \frac{\Delta t}{2}) + \vec{v}(t - \frac{\Delta t}{2}) \right)
\]

to synchronize velocity:

\[
\vec{v}_{act}(t) = \vec{v}(t - \frac{\Delta t}{2}) + \frac{\Delta t}{2} \vec{a}(t) \quad (13a)
\]

\[
\vec{v}(t + \frac{\Delta t}{2}) = (2\beta - 1)\vec{v}_{act}(t) + \frac{\Delta t}{2} \vec{a}(t) \quad (13b)
\]
Evaluation of Time Integration Methods

- accuracy (not of great importance for exact particle positions)
- stability
- conservation
 - of phase space density (symplectic)
 - of energy
 - of momentum
 (especially with PBC → Periodic Boundary Conditions)
- reversibility of time
- use of resources:
 - computational effort (number of force evaluations)
 - maximum time step size
 - memory usage
Reversibility of Time

- time reversal for a closed system means
 - a turnaround of the velocities and also momentums; positions at the inversion point stay constant
 - traverse of a trajectory back in the direction of the origin
- demand for symmetry for time integration methods
 - satisfied by Verlet method, e.g.
 - not satisfied by, e.g., Euler method, Predictor Corrector methods (also not by standard Runge-Kutta methods)
- contradiction with
 - the H-theorem (increase of entropy, irreversible processes)? (Loschmidt’s paradox)
 - the second theorem of thermodynamics?
 - reversibility in theory only for a very short time
- Lyapunov instability \Rightarrow Kolmogorov entropy
Lyapunov Instability

- Basic question: how does a model behave with slightly disturbed initial condition?
- Example of a simple system:
 - stable case: jumping ball on a plane with slightly disturbed initial horizontal velocity ⇒ linear increase of the disturbance
 - instable case: jumping ball on a sphere with slightly disturbed initial horizontal velocity ⇒ exponential increase of the disturbance (Lyapunov exponent)
- for the instable case, small disturbances result in large changes: chaotic behaviour (butterfly leading to a hurricane?)
- non-linear differential equations are often dynamically instable
Lyapunov Instability: A Numerical Experiment

- setup of 4000 fcc atoms
- for a second setup, the position of a single atom was displaced by 0.001
- this atom is traced in both setups

tracing a Molecule (with initial displacement)

Molecule 25, run1
Molecule 25, run2

colours indicate velocity
Lyapunov Instability: A Numerical Experiment

- Calculation of the trajectories → badly conditioned problem: a small change of the initial position of a molecule may result in a distance to the comparable original position, after some time, in the magnitude of the whole domain!
- Thus: do not target at simulation of individual trajectories → numerical simulation of the behaviour of the system is wanted!