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Subspace Iteration Methods in terms of Matrix Product States
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When dealing with quantum many-body systems one is faced with problems growing exponentially in the number of particles
to be considered. To overcome this curse of dimensionality one has to consider representation formats which scale only
polynomially. Physicists developed concepts like matrix product states (MPS) to represent states of interest and formulated
algorithms such as the density matrix renormalization group (DMRG) to find such states. We consider the standard Lanczos
algorithm and formulate it for vectors given in the MPS format. It turns out that a restarted version which includes a projection
onto the MPS manifold gives the same approximation quality as the well-established DMRG method. Moreover, this variant
is more flexible and provides more information about the spectrum.
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1 Introduction

In the simulation of an N -particle quantum system, the computation of the ground state, i.e. the lowest-energy state of the
system under consideration, is an important task, because such a state typically appears. From a linear algebraic point of view,
the physical system can be described by a Hermitian matrix, the so-called Hamiltonian H . Its spectrum describes the set of
possible energy levels and its eigenvectors represent the corresponding states. Therefore, the ground state is the eigenvector
related to the smallest eigenvalue ofH . As an example (compare [1]), the Ising-ZZ model for spin-1/2 particles reads

HIs =

N−1∑
k=1

I⊗(k−1) ⊗ σz ⊗ σz ⊗ I⊗(N−k−1) + λ

N∑
k=1

I⊗(k−1) ⊗ σx ⊗ I⊗(N−k) (1)

with the 2 × 2 identity I and the Pauli matrices σx =
(
0 1
1 0

)
and σz =

(
1 0
0 −1

)
. As the dimension of the underlying Hilbert

space grows exponentially in N , we have to consider data-sparse representation formats to express the vectors of interest and
to formulate algorithms acting on such formats. To compute low-lying eigenstates, physicists invented the DMRG method [2],
a variational ansatz in the MPS [3] formalism. In the following, we present the MPS format from a mathematical perspective
and modify the Lanczos algorithm for vectors given in the MPS format.

2 Matrix Product States: Formalism and Computations

In the MPS format, a 2N -dimensional vector x is considered as binary tensor of order N and represented by

x =
∑

i1,...,iN

tr
(
A

(i1)
1 A

(i2)
2 · · ·A(iN )

N

)
(ei1 ⊗ ei2 ⊗ · · · ⊗ eiN ) (2)

with Dj ×Dj+1 matrices A(0)
j and A(1)

j . For open boundary conditions (OBC) there is no connection between particles 1
andN and therefore the matrices at both ends simplify to vectors (i.e. D1 = DN+1 = 1). Such MPS correspond to the Tensor
Train format [4]. The numbers Dj define the ranks of the representation and are usually referred to as bond dimensions.

For the computation of inner products of two MPS vectors, one has to find a convenient ordering of all summations that
have to be executed. Following [5], an efficient contraction scheme requires O(ND3) for OBC. For expressing the sum of
two MPS vectors, we have to build block diagonal matrices of the original MPS matrices for each j = 2, . . . , N − 1 and at
both ends we have to concatenate the original vectors. Hence, adding MPS vectors leads to an augmentation of the ranks.
Finally we consider the application of an operator to an MPS. To this end, it will be useful to introduce the concept of matrix
product operators (MPO) [6], which is a generalization of MPS to operatorsH . The general format of an MPO is

H =
∑

i1,...,iN
k1,...,kN

tr
(
W

(i1,k1)
1 W

(i2,k2)
2 · · ·W (iN ,kN )

N

) ((
ei1e

T
k1

)
⊗
(
ei2e

T
k2

)
⊗ · · · ⊗

(
eiNe

T
kN

))
(3)

with D(H)
j ×D(H)

j+1 matricesW (ij ,kj)
j . Now, the product of the matrixH (3) with the vector x (2) is

(Hx)i1,...,iN = tr

(( 1∑
k1=0

W
(i1,k1)
1 ⊗A(k1)

1

)
· · ·
( 1∑
kN=0

W
(iN ,kN )
N ⊗A(kN )

N

))
,
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which is again an MPS, but with augmented ranks D(H)
j Dj .

3 Lanczos Algorithm for MPS Vectors

Both adding MPS vectors and applying an MPO to an MPS lead to an augmentation of the ranks. Hence, if we want to apply
the Lanczos algorithm to MPS vectors we have to introduce a compression PDmax

of MPS vectors in order to keep their ranks
limited by some prescribed Dmax. To achieve this we use successive SVD-based truncations. We start from the left, rearrange
the MPS matrices at site r into a rectangular matrix, carry out an SVD and do the truncation:(

A(0)
r

A(1)
r

)
=

(
U (0)

r

U (1)
r

)
ΣrVr

H trunc
≈

(
Ũ (0)

r

Ũ (1)
r

)
Σ̃rṼr

H
.

We replaceA(ir)
r by Ũ (ir)

r and proceed recursively with Σ̃rṼr
H
A

(ir+1)
r+1 .

As we want to avoid solving linear systems in the Hamiltonian, which is required by algorithms such as Jacobi-Davidson,
we propose to consider the Lanczos algorithm, but to modify it to a restarted version. Then, there are different variants where
the compression can be performed. In order to keep the ranks as small as possible without loss of orthogonality we propose to
introduce the compression PD for the matrix-vector product in each Lanczos iteration and for the Ritz vector obtained at the
end of each outer iteration. Algorithm 1 sketches the proposed procedure.

Algorithm 1 Restarted Lanczos with compression
1: Choose initial guess r0 6= 0
2: for iter = 1, 2, . . . do
3: Define β0 = ‖r0‖ and q0 = 0
4: for j = 1, 2, . . . ,m do
5: qj = rj−1/βj−1

6: uj = PD (Hqj)
7: αj = qj

Huj

8: rj = uj − αjqj − βj−1qj−1

9: βj = ‖rj‖
10: end for
11: Tm = tridiag(β,α,β)
12: (λ,y) = eig(Tm)
13: v = Qy = (q1, . . . , qm)y
14: r0 = PD(v)
15: end for
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Fig. 1 Application of Alg. 1 (m = 3) to the 20 spin Ising model. The in-
troduction of the compression even leads to an improvement of the eigenvalue
approximation.

We applied Algorithm 1 (subspace dimensionm = 3) to compute the lowest eigenvalue of the Ising model (1) withN = 20
particles and compared the convergence behavior for different choices of bond dimensions D with an exact Lanczos version,
where no compression is carried out, see Fig. 1. We obtain the same approximation quality as achieved by the state-of-the-art
DMRG method, but, however, DMRG requires less iteration steps. Our results show that the compression to smaller ranks
even leads to an improvement compared to the classical standard Lanczos. This gives reason to use a dynamic version, where
we start with comparably small rank D in order to obtain proper initial values for larger D.

Altogether, the restarted Lanczos algorithm introduces more flexibility (choice of D and m) and allows modifications to
obtain more information on the spectrum such as the gap between the two smallest eigenvalues.
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