Computational Science and Engineering
(Int. Master’s Program)

Technische Universitiat Miinchen

Master’s Thesis

Conjugate Heat Transfer with the
Multiphysics Coupling Library preCICE

Author: Lucia Cheung Yau
15 Examiner: Univ.-Prof. Dr. Hans-Joachim Bungartz
274 Examiner: Univ.-Prof. Dr. rer. nat. habil. Miriam Mehl

Assistant Advisor: Dipl.-Math. Benjamin Uekermann
Submission Date: December 15, 2016

@ T

Declaration

I confirm that this master’s thesis is my own work and I have documented all sources and
material used.

Date Lucia Cheung Yau

Abstract

Conjugate heat transfer refers to the coupled analysis of the thermal interactions between
fluids and solids. Earlier methods relied on an empirical constant, the heat transfer coeffi-
cient, which lumps together all the unknown information regarding the heat transfer process.
Conjugation consists in solving the temperature and heat flux distributions at the fluid-solid
interfaces as a coupled problem, without assuming a heat transfer coefficient. The purpose of
this thesis is to implement a partitioned approach to perform conjugate heat transfer analysis,
where separate fluid and solid solvers operate on their own domains, and the interface values
are exchanged and solved for in an iterative way. The coupling is done with the multiphysics
coupling library preCICE. The tasks mainly involve the implementation of the adapter codes,
which are in charge of steering the respective fluid and solid solvers, and exchanging cou-
pling data by calls to the preCICE library. The implementation is validated and applications
are presented.

Acknowledgements

I would like to express my most sincere gratitude to all those who have made this thesis
possible. Firstly, I would like to thank SimScale GmbH for giving me the opportunity to
write this thesis and for providing me with all the support and the means I have needed
to undertake this research. I would like to especially thank Babak Gholami, my supervisor
at SimScale, for his day-to-day support, for the valuable discussions, and the guidance and
encouragement provided.

I would also like to express my deepest gratitude and appreciation to my thesis advisor, Ben-
jamin Uekermann, for the guidance, support and advices provided throughout the project.
Thank you for always being ready to help and answer all my questions.

My deepest gratitude also goes to the National Secretariat of Science, Technology and Inno-
vation of Panama (SENACYT) and the German Academic Exchange Service (DAAD), who
have given me the opportunity and have provided me with the financial support to carry out
my Master’s studies in Germany.

Last but not least, I would like to thank my friends and family, especially my parents, for
their unconditional love and support.

Contents

Introduction

Conjugate Heat Transfer

21 Mechanisms of Heat Transfer
211 HeatConduction
212 HeatConvection

2.2 Material Properties and Dimensionless Quantities

2.3 Governing Equations and Boundary Conditions
2.3.1 Governing Equation for the Solid
2.3.2 Governing Equations for the Fluid
2.3.3 Boundary Conditions

24 Coupling Approaches
24.1 Coupling Boundary Conditions in a Partitioned Approach

Overview of the Coupling Library preCICE

31 EquationCoupling
32 DataMapping
3.3 Application Programming Interface of preCICE

Implementation of the Coupling Adapters

4.1 General Considerations
41.1 Structure of the coupling adapter
4.1.2 Robin or Convective Boundary Conditions
41.3 Steady-State Coupling L

42 Coupling of OpenFOAM
421 Description of the Adapter
42.2 Modifications to the Solver Code
423 Surface Mesh and Coupling Data
424 Steady-State Simulations o L Lo oL
425 Parallelization L

43 Couplingof CalculiX
43.1 Description of the Adapter
43.2 Modifications to the Solver Code
43.3 Surface Mesh and Coupling Data
434 Steady-State Simulations o o Lo L
43.5 Parallelization

11

13
13
13
14
14
15
15
15
17
18
19

21
22
25
26

10

44 Coupling of Code_ Aster
441 Description of the Adapter
442 Surface Mesh and Coupling Data
443 Steady-State Simulations
444 Parallelization,

5 Validation Cases

5.1 Forced Convection: Flow Over a Heated Flat Plate
511 CaseSetup.
512 Results e
513 FinalRemarks.
5.2 Natural Convection: Cavity with Heat-Conducting Walls
521 CaseSetup.
522 Results e

6 Demonstration Cases
6.1 Steady-State Simulation of a Shell-and-Tube Heat Exchanger

611 CaseSetup.
612 Results
6.2 Simulation of a Pin-Fin Channel Cooling System
621 CaseSetup.......................
622 Results L
6.3 Steady-State Simulation of Turbine Blade Cooling
631 CaseSetup.
632 Results o

7 Conclusions

CONTENTS

Chapter 1

Introduction

Conjugate heat transfer refers to the coupled analysis of heat transfer between fluids and
solids. Heat transfer in fluids occurs through convection, which is a combination of two
distinct mechanisms: the microscopic random motion of fluid molecules (diffusion) and the
macroscopic bulk fluid motion (advection). In solids, only diffusion is possible (although
conduction is the term used to refer to this phenomenon in solids), and it simply amounts
to the vibration and collision of particles. Different partial differential equations (PDEs) are
used to describe the different physics in the fluids and in the solids. These PDEs are coupled
at the fluid-solid interfaces, where the continuity of the temperature and the heat flux must
be satisfied.

Conjugate heat transfer is relevant in many engineering applications, where an accurate pre-
diction of the heat transfer and the thermal loading is important. This includes the design of
industrial machines and devices, where a proper thermal design has a direct impact on the
performance and the lifetime of the devices. Some example applications include:

¢ Heating, ventilation, air-conditioning (HVAC)
¢ Cooling of electronic devices

¢ Heat exchangers

¢ Gas turbines

¢ Engine cooling

The aim of this thesis is to implement a numerical solver for conjugate heat transfer prob-
lems by coupling independent fluid and solid solvers (single-physics solvers). The coupling
of single-physics solvers for treating multi-physics problems is referred to as partitioned ap-
proach. Instead of putting all the equations into one single system, the fluid and solid equa-
tions are solved separately by the single-physics solvers. The coupling is done externally,
through the exchange of boundary values at the fluid-solid interfaces. This allows to reduce
the time and effort required to build new solvers that deal with multiple physics.

Certainly, there are advantages and disadvantages of using a partitioned approach. The major
disadvantage or challenge is having to deal with stability and convergence issues. Neverthe-
less, the flexibility that this approach offers, often outweighs its downside. A partitioned

11

12 CHAPTER 1. INTRODUCTION

approach allows to freely choose and reuse the most suitable tools at hand. These include the
already mentioned single-physics solvers, as well as other tools such as meshing and post-
processing utilities, that are used together with the solvers. Furthermore, it provides more
flexibility in terms of allowing different length and time scales.

For this thesis, well-tested and well-validated open-source solvers are used. For solving the
fluid flow and the heat convection, OpenFOAM is used. CalculiX and Code_Aster are used
for solving the heat conduction in solids. The coupling is done through the coupling library
preCICE [1], developed and maintained by the Technical University of Munich and the Uni-
versity of Stuttgart.

The coupling of different solvers with preCICE involves writing some “glue” code to be
added to the solvers. This code that connects the solver with the preCICE library is called
the coupling adapter. In very general terms, the adapter has to access and manipulate mesh
and boundary data of the solver, control the time-stepping, and trigger the exchange of data
through appropriate calls to the coupling library. This thesis documents the implementation
and validation of the adapters, and demonstrates their use on relevant application scenar-
ios.

The development of the thesis is carried out at SimScale GmbH, a company that develops
cloud-based computer-aided engineering (CAE) software. The SimScale platform supports a
variety of simulation types, including structural, fluid, thermodynamic, particle and acoustic
simulations. The backend of the platform is based entirely on open-source solvers, including
the ones used in this thesis, among others. Conjugate heat transfer simulations too are al-
ready possible on the SimScale platform. These are run with OpenFOAM CHT solvers. The
intended reach of this thesis is not limited to obtaining a preCICE-coupled CHT solver, but
to serve as a foundation for future work that further integrates these open-source solvers to-
gether. The flexibility of a partitioned approach and the features that preCICE offers, together
make it an attractive way of expanding the number of analysis types that are possible on this
cloud-based CAE platform.

One last remark worth mentioning is that preCICE has often been used for mechanical fluid-
structure interaction (FSI) and acoustic coupling, but little has been done regarding thermal
coupling. Therefore, this thesis also contributes to the development of this library, through
the addition of a new multi-physics application and new adapters.

Thesis Structure

The content of this document is organized in the following way: the physics and the gov-
erning equations of conjugate heat transfer are presented in Chapter 2. Following that, an
overview of the coupling library preCICE is provided in Chapter 3. The main components
and features of the library are explained. Chapter 4 introduces the solvers used in this thesis,
and documents the implementation of the coupling adapters for these solvers. In Chapter 5,
validation cases are presented and the results are discussed and analyzed. Chapter 6 presents
various demonstration cases that show the capabilities of the coupling developed in this the-
sis. Conclusions and suggestions for future work are given in Chapter 7.

Chapter 2

Conjugate Heat Transfer

In this chapter, relevant concepts regarding conjugate heat transfer are laid out. First, an
overview of the physics of heat transfer is provided. Next, the governing equations and
boundary conditions are presented. The chapter concludes with a description of the proce-
dure for coupling the solution of the heat transfer in fluids and solids.

2.1 Mechanisms of Heat Transfer

Heat transfer is the flow of thermal energy that occurs whenever there is a temperature
gradient in a medium. The main mechanisms by which heat is transferred are conduction,
convection and radiation. This thesis deals only with the first two forms.

2.1.1 Heat Conduction

Heat conduction happens at a molecular level, where energy is transferred from more ener-
getic particles to less energetic particles. The rate of the heat transfer between two bodies is
proportional to the temperature difference between them. The rate of heat transfer per unit
area or heat flux is given by Fourier’s law of heat conduction

q=—kVT (2.1)

where
s g[W/ m?] is the heat flux density,

* k[W/(m-K)]is the material’s thermal conductivity, which may be temperature-dependent,
and

¢ VT [K/m] is the temperature gradient.

The negative sign indicates that heat is transferred in the direction of lower temperature.

13

14 CHAPTER 2. CONJUGATE HEAT TRANSFER

2.1.2 Heat Convection

Convective heat transfer happens in fluids, both because of the microscopic motion of the
constituting particles and because of the bulk fluid motion.

Depending on the main driving force of the fluid motion, one can distinguish between two
forms of convection: natural convection and forced convection. Natural convection happens
due to the thermal expansion of fluids. The density variations produce buoyancy forces that
set the fluid in motion. Most commonly, natural convection happens due to the presence
of the gravitational field, which causes warmer, less dense fluid to rise, and colder, denser
fluid to sink. However, in general, it can be caused by any body force that is proportional
to the density. On the other hand, forced convection happens when the motion of the fluid
is caused by an external source, like a fan or a blower, and buoyancy effects are negligible.
Mixed convection occurs when both natural and forced convection are present.

Newton’s law of cooling is often used to model the cooling of an object by convective heat
transfer. It states that the rate of heat loss (cooling) is proportional to the temperature differ-
ence between the body and its surrounding medium (typically a fluid). Thus, the rate of heat
loss is given by

9 _ha

il (Ts(t) — Teo) (2.2)

where Q []] is the thermal energy, T; is the temperature of the solid body, T, is the environ-
ment temperature, and A [m?] is the heat transfer surface area. The constant of proportionality
h [W/(m? - K)] is the heat transfer coefficient.

2.2 Material Properties and Dimensionless Quantities

Material properties that are relevant to heat transfer analysis include:

e Thermal conductivity k [W/(m - K)| — measures of how good a material is at conducting
heat (e.g. materials of low thermal conductivity are used as insulators)

* Specific heat capacity c, [J/ (kg - K)] — is the amount of heat required to raise the tem-
perature of 1 kg of substance by 1 K

 Thermal diffusivity a [m?/s] — is a measure of the thermal inertia of a material

The relationship between the thermal conductivity, the thermal diffusivity and the specific
heat capacity is given by

k = apcy. (2.3)

Dimensionless quantities that are important in heat transfer analysis include:

¢ The Prandtl number Pr = v/a — is the ratio of momentum to thermal diffusivity in a
fluid. The effect of the Prandtl number on the thickness of the velocity and thermal
boundary layers is shown in Figure 2.1.

2.3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 15

¢ The turbulent Prandtl number Pr; = v;/a; — is the ratio of the momentum eddy diffu-
sivity to the heat transfer eddy diffusivity. It is important when solving heat transfer in
turbulent boundary layer flows.

* The Biot number Bi — characterizes the intensity of the conjugate heat transfer [2]. It is
defined as the ratio of the thermal resistance of the solid to that of the fluid, that is

. hL
Bi= - (2.4)

where h is the convective heat transfer coefficient, L is the characteristic length and k; is
the thermal conductivity of the solid.

Ot 0 =20)
0 Ot

(a) Pr<«1 (b) Pr=1 (c) Pr>1

Figure 2.1: Effect of the Prandtl number on the thickness of the velocity and thermal boundary
layers (6 and &;, respectively)

2.3 Governing Equations and Boundary Conditions

In this section, the partial differential equations for modelling heat transfer in fluids and
solids are presented.

2.3.1 Governing Equation for the Solid

Heat transfer in solids is governed by the heat conduction equation

d
pcpa—f —V-(kVT)=Q (2.5)

where p is the density, ¢, the specific heat capacity, k the thermal conductivity and Q is a
volumetric heat source.

2.3.2 Governing Equations for the Fluid

The fluid flow is governed by the Navier-Stokes equations, which is a set of three coupled
equations: the continuity equation, the momentum equation and the energy equation, respec-
tively

2
ait) + V- (ou) =0, (2.6)

16 CHAPTER 2. CONJUGATE HEAT TRANSFER

%)

%—I—V-(puxu)—kVp—V-r:pg, (2.7)
opE
W+V~(puE)+V-(up)—V-(T-u)—V-(kVT):pr+pg-u (2.8)

where

* p is the density

u is the velocity
* pis the pressure

e T is the viscous stress tensor

g is any body acceleration (such as gravity)

E is the specific total energy

T is the absolute temperature

k is the thermal conductivity
* ris any specific heat source (e.g. per unit mass)

For incompressible flows, the density p is assumed to be constant, and the energy equation
becomes decoupled. The continuity equation and the momentum equation can be solved
tirst, and then the temperature distribution can be obtained by plugging-in the velocity and
pressure values in the energy equation. However, for compressible flows it is necessary to
solve the energy equation together with the continuity and the momentum equations.

The specific total energy E is the sum of the specific internal energy e and the specific kinetic
energy K = ||u||?/2, i.e. E = e+ K. The energy equation can also be written in terms
of the enthalpy, which is the sum of the internal energy e and the kinematic pressure h =
e+ p/p. The specific enthalpy is typically modelled as proportional to the temperature, with
the specific heat capacity ¢, as the constant of proportionality, thus providing a relationship
between energy and temperature

h=c,T. (2.9)

In order to solve for all the unknowns (velocity, pressure, density, temperature), an additional
equation is required. This is the equation of state, which defines the relation between density,
pressure and temperature. It depends on the type of fluid being modelled. For example, for
gases, the ideal gas law is typically used

p = pRT (2.10)

where R = 8.3144598]/ (mol - K) is the gas constant.

2.3. GOVERNING EQUATIONS AND BOUNDARY CONDITIONS 17

2.3.3 Boundary Conditions

The thermal boundary conditions that can be applied to both the fluid and the solid domains
are explained in this section.

A Dirichlet boundary condition, also referred to as boundary condition of the first kind,
prescribes a temperature at the boundary

T = TD on FD. (211)

A Neumann boundary condition, or boundary condition of the second kind, prescribes the

heat flux at the boundary

oT
k% = (4N On FN (2.12)

where 0T /dn denotes the normal derivative at the boundary.

A special case of this boundary condition can be used to model perfectly insulated or adiabatic
walls, by setting the surface normal temperature gradient to zero, reading

oT
i OonTIy. (2.13)

A Robin boundary condition, or boundary condition of the third kind, is a weighted combi-
nation of a Dirichlet and a Neumann boundary condition

aT + bg: =gonlk. (2.14)

In heat transfer problems, the Robin boundary condition typically appears as a convective
boundary condition, with the form

oT
k% +h(T—Ts) =0, (2.15)
or more commonly;,
q="nT - Tx), (2.16)

where g is the heat flux, & is the heat transfer coefficient and T is the sink (or environment)
temperature.

In an uncoupled heat transfer analysis, these three types of boundary conditions are com-
monly used at the fluid-solid interfaces as approximations. For example, uniform tempera-
ture or uniform heat flux may be assumed. Convective boundary conditions are also often
used, where the combined effects of the fluid flow are lumped together in the heat transfer
coefficient /1, which has to be obtained empirically. This coefficient is not a material property,

18 CHAPTER 2. CONJUGATE HEAT TRANSFER

but depends on many factors such as geometry, surface temperature distribution, flow con-
ditions, thermo-physical properties of the fluid, etc. For many applications, it might not be
practical or feasible to obtain this parameter empirically.

Conjugate Boundary Condition

In conjugate heat transfer problems, boundary conditions of the fourth kind, or interface
boundary conditions, state the continuity of the temperature and the heat flux at the fluid-
solid interface I'rg. This reads

Ts = Tf on Fps, (217)
and
oT, Ty
ksg = —kfg on FFS, (2.18)
with
Tps = Tp N Ts. (2.19)

No assumptions need to be made regarding the temperature and heat flux distributions at
the interfaces, as they are obtained as part of the solution to the conjugate problem. A heat
transfer coefficient is also no longer needed; instead, it can be obtained as a result of the
coupled analysis.

2.4 Coupling Approaches

There are two major approaches for solving the coupled problem: the monolithic approach and
the partitioned approach. In the monolithic approach, a global system of equation is obtained,
involving both fluid and solid domains. The degrees of freedom of the fluid and the solid are
solved together.

The following explanations are extracted from [1], where the coupling of one fluid solver and
one solid solver is assumed. The monolithic system A involves the unknowns from the fluid
domain yr, as well as the unknowns from the solid domain ys, which are all solved for at
once. The monolithic system reads

A(yp, ys) =0. (220)

In the partitioned approach, the equations are solved separately, and the coupling is done by
exchanging the boundary values. This can be expressed as

(2.21)

2.4. COUPLING APPROACHES 19

where F is the fluid operator, f the output boundary values obtained from solving the fluid
system, S is the solid operator and s is the output boundary values obtained from solving
the solid system. Depending on the type of decomposition used, s and f may be different
physical variables. For example, in a Dirichlet-Neumann decomposition of the problem, s
may be the temperature computed at the solid side of the interface and used as a boundary
condition for the fluid, and f the heat flux computed at the fluid side and used as a boundary
condition on the solid side, or vice-versa.

The methods for solving the coupled equations (2.21) are explained in more detail in Chapter
3, where the different coupling schemes offered by the preCICE library are explained.

24.1 Coupling Boundary Conditions in a Partitioned Approach

In a partitioned approach, the solution of the coupled problem is obtained by exchanging the
boundary values of the two sub-domains and iterating the equations (2.21). In this thesis,
Dirichlet-Neumann and Robin-Robin partitioning of the system are considered. They present
different behaviours in terms of stability and convergence, which are compared in Chapter 5,
through a validation case.

Dirichlet-Neumann

In a Dirichlet-Neumann decomposition, temperatures and heat fluxes are exchanged. One
domain has a temperature boundary condition and computes the heat flux at the conjugate
boundary, whereas the other domain uses a heat flux boundary condition and in turn com-
putes the temperature at the conjugate boundary.

The conjugate boundary conditions (2.17) and (2.18) are enforced by directly applying them
as the boundary conditions of the individual domains.

A priori there is no difference between using a Dirichlet boundary condition on the fluid side
and a Neumann boundary condition on the solid side or vice-versa. However, it is shown in
[3] that there are differences in their stability and convergence behaviour.

Robin-Robin

When using a Robin-Robin decomposition, a heat transfer coefficient # and a sink temperature
T are exchanged. Robin-Robin coupling boundary conditions are typically more robust,
although more data has to be exchanged.

The coupling procedure with Robin boundary conditions is described below. The superscript
i denotes the iteration. The subscript f and s denote fluid and solid, respectively. T; and Tw
are the interface temperature and the sink temperature, respectively. For simplification, the
heat transfer coefficients s and hy are assumed to be constant throughout the computation.
The actual computation of the coupling variables T, and & is explained in the Chapter 4, ded-
icated to implementation details. For further simplification, a Gauss-Seidel type of coupling
is assumed, where one system is solved after the other. Other schemes are possible, and are
explained in Section 3.1.

20 CHAPTER 2. CONJUGATE HEAT TRANSFER

i=0

Solve fluid with BC q; = hS(TzZ‘ — T};os‘) |

Compute sink temperatures T¢,; = Tjc + 4} /hy

Send sink temperatures T f from the fluid solver to the solid solver
Solve solid with BC g} = h f(Tii_s — T f? .

Compute sink temperatures TN = T + gL/ hs

Send sink temperatures T.f;! from the solid solver to the fluid solver
i=i+1 ’

Repeat from 2 until |[TiE! — Ti | < e

O PN U N

Listing 2.1: Coupling with Robin boundary conditions

From the first four equations in Listing 2.1, it can be shown that when the coupling converges,
ie. T — Tl — 0, then also |Ti; — Ts| — 0 and |q + q5| — 0 hold true, which means that

the conjugate boundary conditions (2.17) and (2.18) are satisfied.

According to [3], the value of the heat transfer coefficient & does not affect the final solution
but only the convergence speed of the coupling. In [4] a stability analysis is performed, and
an optimal coefficient is obtained for a model problem. The influence of the parameters 4 and
T on the convergence speed has not been studied in this thesis.

Whether Robin boundary conditions can be used for the coupling with preCICE, depends on
whether the specific solvers support Robin boundary conditions and whether the parameters
can be externally modified.

Chapter 3

Overview of the Coupling Library
preCICE

preCICE (Precise Code Interaction Coupling Environment)! is an open-source library for surface-
coupled partitioned multiphysics simulations. The philosophy behind preCICE is to make it
possible to take full advantage of existing single-physics simulation codes by reusing them for
multi-physics simulations. This requires modifications to be performed on the solver code,
in order to create a well-defined interface that allows this solver to be coupled, in a plug-
and-play fashion, with other solvers that have also been adapted with preCICE. This type
of coupling achieved with preCICE is also referred to as black-box coupling in the literature,
given that the code changes necessary to couple existing solvers require minimal knowledge
of their internal workings.

The main components of preCICE, which allow the interaction of two or more solver codes
to obtain the solution of the multi-physics problem are:

¢ Equation coupling,
¢ Data mapping, and
¢ Communication.

The code that needs to be integrated into the single-physics solvers in order for them to use
preCICE is generally referred to as the coupling adapter. In other words, the adapter connects
the solver with preCICE, which in turn handles the communication and data exchange with
other solvers. Code modifications to the original solvers should be kept to a minimum, and
should be as non-invasive as possible. The individual components of preCICE are fully con-
figured through an XML file, which is loaded at runtime. Therefore, the particular choices
for the equation coupling schemes, data-mapping and communication, do not affect the im-
plementation of the adapter.

In the rest of the document, the terms participant and solver may be used interchangeably. The
coupling of more than two participants is also possible with preCICE.

Ihttp://www.precice.org/

21

http://www.precice.org/

22 CHAPTER 3. OVERVIEW OF THE COUPLING LIBRARY PRECICE

A brief review of the components that are most relevant to this thesis, namely the equa-
tion coupling and the data mapping components, will be provided in the following sections.
Regarding the communication, preCICE provides both TCP/IP socket-based as well as MPI-
based communication methods between the solver executables. The library provides a vast
array of options for each component, such that a complete and detailed documentation ex-
ceeds the scope of this thesis. Therefore the reader is referred to the original documentation
of preCICE [1] for a much more complete description of its features and the implementation
details. To finalize this chapter, a section is also dedicated to the application programming in-
terface (API) of preCICE, which has to be introduced in the single-physics solver codes.

3.1 Equation Coupling

The equation coupling schemes determine how the solutions from the individual solvers
are combined. In this respect, preCICE offers a variety of different schemes, which can be
classified as implicit or explicit, serial or parallel. The four possible combinations are available
to use in preCICE (serial-explicit, serial-implicit, parallel-implicit and parallel-explicit).

In the case of serial coupling, each solver takes turns to solve. The first participant uses data
from the previous iteration of the second participant to compute its solution for the current
iteration. It then sends the data to the second participant, which computes its solution also
for the current iteration. In the case of parallel coupling, both solvers solve at the same time,
using data from the other solver from the previous iteration. This is represented schematically
in Figure 3.1. Note that previous iteration here refers to the previous “solve”, which can belong
to the same or to different time steps.

The kind of parallelism described here is referred to as interfield parallelism, which is different
from intrafield parallelism, where the degrees of freedom within one solver are solved in
parallel. preCICE supports interfield parallelism, and also intrafield parallelism, as long as it
is supported by the solver.

F—S—F—S

(a) Serial coupling

S S S S

F F F F
(b) Parallel coupling

Figure 3.1: Serial vs parallel coupling (image adapted from [5])

Explicit Coupling

Explicit coupling consists in solving the individual systems and exchanging the coupling data
a fixed number of times per time step, regardless of the convergence of the coupling. There are
various types of explicit coupling schemes. In preCICE, the conventional serial staggered scheme

3.1. EQUATION COUPLING 23

(CSS) and the conventional parallel staggered (CPS) schemes [6] are available. In both of these
schemes, the coupling data is exchanged only once per time step. The algorithms of the CSS
and CPS schemes are shown in Listing 3.1 and 3.2, respectively.

for n=0 to ngy:
solve F'(s") = frt!
solve Sn(fn+1) — g+l

Listing 3.1: Serial Explicit: Conventional Serial Staggered (CSS) Scheme [6]

for n=0 to ngy
solve F'(s") = frtl
solve S"(f") =s"t!

Listing 3.2: Parallel Explicit: Conventional Parallel Staggered (CPS) Scheme [6]

With an explicit coupling scheme, the monolithic system (2.20) is only approximately solved.
In the context of CHT problems, this means that the continuity of the temperature and heat
flux at the interfaces is not guaranteed. Furthermore, explicit schemes often lead to numerical
instabilities. In such cases, implicit coupling becomes necessary.

Implicit Coupling

Implicit coupling schemes try to recover the solution of the monolithic system iteratively.
Coupling iterations are performed until a prescribed convergence tolerance is reached. Per-
forming multiple coupling iterations per time step might lead to the same instabilities present
in the explicit schemes, therefore, implicit schemes are generally used together with tech-
niques that stabilize the coupling and accelerate the convergence. These are called data
post-processing techniques, since they modify the coupling data that is generated by the
solvers.

Implicit coupling schemes reformulate equations (2.21) as a fixed-point problem

SoF(s)=s, (3.1)

for which one iteration can be written as

Skt1 = S(F(sk)) = So F(s). (3.2)

Here, 511 denotes the values before post-processing, and sy 1, after post-processing.

The residual of each iteration is defined as

er1=SoF(sx) —sx =0 (3.3)

24 CHAPTER 3. OVERVIEW OF THE COUPLING LIBRARY PRECICE

and becomes zero when the fixed-point problem is solved, reading

r=8o0F(s)—s=0. (34)

For practical purposes, the norm of the residual is monitored to determine convergence.
Different convergence criteria can be defined. An absolute convergence measure reads

r5r1llr2 < €aps (3.5)

and a relative convergence measure reads

M < €rel.- (36)
I8ks1ll12

The methods for solving the fixed-point problem can be classified into two categories:

* Schwarz procedures: This group of methods simply iterate the Equations 2.21 to solve
the fixed-point problem. Equations 2.21 can be solved either sequentially or in parallel.
The serial version of the algorithm is also known as multiplicative Schwarz method, and
the parallel version, as additive Schwarz method. Relaxation is used as post-processing for
stabilizing the iterations. Relaxation consists in linearly combining the previous solution
with the current (unrelaxed) solution, written as

skr1 = (1 — wy) sk + Wik (3.7)

Available relaxation methods in preCICE include:
— Constant underrelaxation: The relaxation factor is constant, wy = w.

— Aitken-based dynamic relaxation: Convergence can be improved by using an optimal
relaxation parameter, computed using Aitken’s method, instead of using a constant
relaxation parameter. Two previous iterates are used to compute the relaxation
factor at the k-th iteration. For scalar iterations, the relaxation can be written as

Sk—1 — Sk Tk
Wi = —Wgk—1 o p = —Wk-1T— - (3.8)
(sk—1 = 3k) — (Sx — Sk41) kel — T
For vector iterations, it can be written as
T
r (T — 11)
& T+
Wy = — Wi 1———— (3.9)

7541 —ka%z.

* Newton’s method: Newton’s method is often used to solve fixed-point problems such
as (3.1). One Newton iteration reads

ske1 = sk — Jx (sk)R(sg) (3.10)

where
R(s) =SoF(s)—s (3.11)

3.2. DATA MAPPING 25

and Jgr is the Jacobian of R. The main question here is how to obtain the Jacobian,
which is not available in the black-box solvers. There are various methods which differ
in how they approximate the Jacobian. The Interface Quasi-Newton Method (IQN-
ILS) method, often used in FSI problems, uses a least-squares approximation of the
inverse of the Jacobian. The complete derivation of the IQN-ILS method falls outside
the scope of this thesis, and therefore, the reader is referred to a complete description
in [7] and [1]. preCICE implements various convergence acceleration schemes that are
based on Newton’s method. Again, for a complete description the reader is referred to
the original documentation of preCICE.

3.2 Data Mapping

In partitioned approaches, individual domains are typically discretized independently, lead-
ing to meshes that do not match at the interfaces. preCICE offers multiple data-mapping
methods, which allow transferring data between non-matching surface meshes. The mapping
methods include projection-based mapping and radial basis function interpolation.

Data mapping methods can be either consistent or conservative. Consistent mapping implies
that a constant function is mapped exactly, while conservative mapping means that the sum of
mapped values are the same on both sides. Both types of mapping are available in preCICE;
the correct choice depends on the coupling variables used. Consistent mapping is typically
used for variables such as positions, fluxes and densities, whereas conservative mapping
is used for integral values [8]. In this thesis, the coupling variables are temperature, (dis-
tributed) heat flux and heat transfer coefficient. For these variables, consistent mapping is
the appropriate choice. Variables can be transformed to use a different type of mapping, but
it must be carefully determined whether this brings any advantage. A comparison between
consistent and conservative mapping approaches can be found in [9].

The data mapping can be done without extensive knowledge about the discretization used
by the solvers or the shape functions used, as for most of the methods it is enough to provide
a cloud of points with the associated coupling data.

In the following paragraphs, the mapping methods available in preCICE are very briefly de-
scribed. The values are mapped from a source mesh to a target mesh. The explanations assume
that consistent mapping is used, as it is the type of mapping relevant to this thesis.

Projection-Based Mapping

The simplest mapping method available in preCICE is the nearest-neighbor mapping. The
node of the target mesh simply takes the value of the closest node from the source mesh. This
is a first-order accurate method.

Another projection-based method available in preCICE, which is second-order accurate, is
the nearest-projection method. To compute the mapped value, the node in the target mesh
is first orthogonally projected onto the source mesh. Then, its value is obtained by linear
interpolation from the node values on the source mesh. In order for this type of mapping to

26 CHAPTER 3. OVERVIEW OF THE COUPLING LIBRARY PRECICE

work, in addition to the location of the nodes, it is also necessary to provide their connectivity
(i.e. how the nodes are connected to make up the faces).

Radial-Basis Function Interpolation

This type of mapping constructs an interpolant with the nodes and data of the source mesh.
The interpolant is then evaluated at the nodes of the target mesh. Radial basis functions
(RBF) are used as the basis of the interpolant. An RBF is a function whose value depends
only on the distance from an arbitrary point. The RBFs are enriched with a global first-order
polynomial, in order to ensure the exact interpolation of constant and linear functions.

Several types of RBF-based mapping methods are implemented in preCICE. These include
RBFs of global support, such as: Gaussian, multiquadrics, inverse multiquadrics, thin plate
splines and volume splines; as well as RBFs of compact support: compact thin plate splines
C2, compact polynomial CO and compact polynomial Cé. For the RBFs with compact support,
a support radius must be specified, which limits the range of influence of a node. A wider
support radius gives a better approximation, but is computationally more expensive, whereas
a narrower support radius requires less computational effort but may lead to larger mapping
errors.

3.3 Application Programming Interface of preCICE

In very general terms, a numerical solver typically consists of a loop that solves a system of
partial differential equations. The loop is usually a time-stepping loop, but may also be a loop
that solves the equations iteratively. Transient solvers often consist of a double loop, with an
outer-loop for time stepping and an inner loop for solving the equations iteratively.

In order to couple the solver, the loop must be modified by introducing calls to the preCICE
library. At the very least, boundary values need to be extracted, exchanged and updated,
within the loop. For explicit coupling it is enough to expose the data locations and the data
values to preCICE. However, to support more advanced coupling schemes and features, other
changes are necessary. To support implicit coupling, control of the time stepping must be given
to preCICE, because a time step usually has to be solved multiple times with updated cou-
pling data until it converges.

There are usually two ways to allow the same time step to be solved more than once. One
way is by storing the state of the solver (i.e. writing a checkpoint) right before solving a
new time step. This way, if the coupling does not converge, the solver can be reverted to
its previous state (i.e. reading the checkpoint), and solve again the same step with different
coupling boundary data. A second way is possible if the solver uses iterations inside the
time stepping loop. The solver iterations can be fused with the coupling iterations, and
checkpointing can be avoided: each coupling iteration translates into performing more solver
iterations, with updated boundary values. The solver advances in time only after the coupling
has converged.

If sub-cycling is used, checkpointing is always necessary. Sub-cycling means that a solver
may advance several time steps between every exchange of coupling data. The adapter must

3.3. APPLICATION PROGRAMMING INTERFACE OF PRECICE 27

void setMeshVertices(int meshID, int size, double * positions, int * ids);

void setMeshTriangleWithEdges(int meshID, int firstVertexID, int secondVertexID,
int thirdVertexID);

int getMeshID (const std::string& meshName) ;

int getDataID(const std::string& dataName, int meshID);

double initialize();

void initializeData();

bool isCouplingOngoing();

double advance(double computedTimestepLength);

bool isReadDataAvailable();

bool isWriteDataRequired(double computedTimestepLength) ;

void readBlockScalarData(int dataID, int size, int * valueIndices,
double * values);

void writeBlockScalarData(int dataID, int size, int * valuelndices,
double * values);

bool isActionRequired(const std::string& action);

void fulfilledAction(const std::string& action);

Listing 3.3: Excerpt of preCICE’s API

be able to adjust the time step size used by the solvers, to make sure that the sub-steps add up
to the coupling time step size, so that they can synchronize.

Listing 3.3 shows part of the API provided by preCICE to carry out the operations explained
above. These are methods of the precice: :SolverInterface class.

Listing 3.4 shows the typical structure of an adapted solver. Before the solver loop starts, the
location of the coupling data must be provided to preCICE and the coupling must be initial-
ized, by calling the methods setMeshVertices and initialize, respectively. The control of
the solver iterations or time stepping is handed to preCICE, by using the method isCouplin-
gOngoing to determine whether more time steps or iterations need to be solved. Before solv-
ing the equations (represented by solve()), the coupling data is read with readBlockScalar-
Data and the solver’s boundary conditions are updated. After solving, the boundary values
are extracted and written to preCICE’s buffer with writeBlockScalarData. It is important
to point out here that these methods do not send or receive data. The actual exchange of
data is taken care of by the advance method. This is because additional logic and steps are
involved in the coupling (such as data mapping, convergence acceleration and convergence
measurement), beyond simply exchanging the data. When calling advance, the step size used
by the solver must be passed to the function call, so that preCICE can determine whether the
solvers have synchronized and coupling operations must be carried out. The advance method
returns the maximum time step size that the solver can use in the next step. Additionally, as
mentioned before, the state of the solver has to be stored at the beginning of a new coupling
time step, and must be reloaded before a repeated coupling iteration. To determine whether
these actions are necessary, the isActionRequired method is used. To notify preCICE that
certain actions have been carried out, the method fulfilledAction is used.

28 CHAPTER 3. OVERVIEW OF THE COUPLING LIBRARY PRECICE

for each interface:
precice.setMeshVertices(...)

precice_dt = precice.initialize()

if precice.isActionRequired("write-initial-data"):
for each interface:
extractBoundaryValues ()
precice.writeScalarBlockData(...)
precice.fulfilledAction("write-initial-data")

precice.initializeData()
while precice.isCouplingOngoing():

if precice.isActionRequired("write-iteration-checkpoint"):
writeCheckpoint ()
precice.fulfilledAction("write-iteration-checkpoint")

if precice.isReadDataAvailable():
for each interface:
precice.readBlockScalarData(...)
updateBoundaryValues ()

solver_dt
solver_dt

solver.determineStepSize ()
min(precice_dt, solver_dt)

solver.solve(solver_dt)

if precice.isWriteDataRequired(solver_dt):
for each interface:
extractBoundaryValues ()
precice.writeBlockScalarData(...)

precice_dt = advance(solver_dt)
if precice.isActionRequired("read-iteration-checkpoint"):

readCheckpoint ()
precice.fulfilledAction("read-iteration-checkpoint")

Listing 3.4: Typical structure of an adapted solver

Chapter 4

Implementation of the Coupling
Adapters

This chapter describes the implementation of the coupling adapters for conjugate heat transfer
for three different open-source numerical simulation packages: OpenFOAM for fluid simu-
lation, and CalculiX and Code_Aster for solid simulation. First, some general considerations
that are relevant to the three solvers are presented. Subsequently, the coupling of each solver
is described, providing relevant solver-specific details, which are organized in the following
way:

¢ First, an overview of the approach used to couple the solver is provided, considering
the general structure of the solver package.

* The adapter is then described, in terms of the files and functions that have been imple-
mented to couple the solver.

* Modifications to be performed to the solver code in order to integrate it with the adapter
are explained.

* The location of the coupling data is also described. The application of boundary condi-
tions and the extraction of boundary values is explained.

¢ Finally, some details regarding steady-state simulations and parallelization are pro-
vided.

4.1 General Considerations

Before presenting the solver-specific implementation details, some general considerations re-
garding all three adapters are first presented.

4.1.1 Structure of the coupling adapter
The coupling adapters developed in this thesis basically have two responsibilities:

29

30 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

1. Grouping together several (high-level) coupling functionalities offered by preCICE, to
minimize the amount of changes to the original solver; and

2. Dealing with lower level access and manipulation of the solver’s data structures (e.g.
solver-specific operations for updating boundary conditions).

The higher-level functions of the adapter are described below, where precice is an instance
of precice: :SolverInterface.

¢ configure()/setup()/constructor:

— Creates the interfaces: Configures the surface meshes by extracting the location of
the nodes and/or face centers (solver-specific) and calling precice.setMeshVer-
tices(...) toexpose the data locations to preCICE. It also configures the coupling
data and queries for the data IDs with precice.getDataID(...).

¢ initialize(): Groups various operations from preCICE:
— Calls precice.initialize() to initialize the coupling,

— Checks whether it is necessary to write the initial data for the other solver. If yes,
then it extracts the boundary data and calls precice.writeScalarBlockData(. . .)
for each interface;

— Calls precice.initializeData() to trigger the exchange of initial data.

¢ writeCheckpoint(): Makes a copy of the solution fields and stores the current simulation
time (solver-specific).

¢ readCouplingData(): Checks if there is read-data available with precice.isReadData-
Available(). If yes, then for each interface, it will perform the following operations:

- Read the coupling data from preCICE with precice.readScalarBlockData(...),
- Update the boundary values (solver-specific).

¢ adjustSolverTimeStep(): The time step size of the solver is adjusted. The minimum
between the step size determined by the solver (e.g. based on stability constraints) and
the step size determined by the coupling is taken.

¢ writeCouplingData(): After solving, if precice.isWriteDataRequired(dt) is true, these
operations are carried out for each interface:

— Extract boundary values (solver-specific),
— Write the boundary values to preCICE with precice.writeBlockScalarData(...).

¢ advance(): Calls precice.advance(). This is the most important coupling step, where
the coupling data is exchanged. It involves data communication and mapping, data
post-processing (e.g. convergence acceleration), convergence measurement.

¢ readCheckpoint(): Reloads the copies of the solution fields and resets the time (solver-
specific).

Depending on the actual implementation of the adapters, some of the features of preCICE
might or might not be available. For the intended purposes of the adapters of this thesis, it

4.1. GENERAL CONSIDERATIONS 31

is important that the adapter be able to handle an arbitrary number of interfaces. Also, the
adapter must support different boundary conditions for the coupling (Dirichlet, Neumann
and Robin), so that they can be tested and compared. Finally, transient and steady-state
simulations must be supported.

4.1.2 Robin or Convective Boundary Conditions

In the case of Dirichlet and Neumann coupling boundary conditions, the meaning of the
variables (temperature and heat flux) is clear. However, for Robin or convective boundary
conditions, further explanation is required regarding how the heat transfer coefficient # and
the sink temperature T,, are computed.

The following explanations refer to the Figure 4.1, where the coupling interface and two ad-
jacent cells, one from each domain, are depicted. T refers to the temperature at an interior
point of ()1 located at a distance Ax; from the interface, and T, the temperature at an inte-
rior point of (), located at a distance Ax, from the interface. T; is the temperature at the
interface.

A2 n
[J : : ([
0y O
T + I T2
i
Th i
\«—»L—»\ Bc

Ax1 AXZ

Figure 4.1: Sink temperature and heat transfer coefficient

To determine the value of h and T, to be used, balance of fluxes at the boundary is applied
and a first-order approximation of the derivatives is used, which reads

T, — Ts
AXZ

g1=—q~k (4.1)

where ¢, is the flux computed at the the left domain), 45 is the flux computed at the right

domain).

The boundary condition for (2; can then be rewritten in the form of (2.16), as

71 = ha(T — Tee2) 4.2)

32 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

with

= ﬁ, and
Axo (4.3)

Tor = Tp.

hy

In other words, the sink temperature T, that appears in the Robin boundary condition of ()4
is the temperature at an interior point of (), and the heat transfer coefficient / is the ratio
between the conductivity value at this point in (), and the distance Ax,. This particular way
of computing the parameter values is taken from the implementation of the chtMultiRegion-
Foam solver of OpenFOAM.

In Section 5.1 it is demonstrated through a validation case that using Robin interface con-
ditions with these specific parameter values results in a good stability and convergence be-
haviour.

As mentioned earlier, whether the coupling can be done with Robin boundary conditions
depends on whether the solver supports this type of boundary condition and whether it
can be modified by the adapter code. All three solvers used in this thesis support Robin
boundary conditions. In both CalculiX and Code_Aster it is available as a convective heat
transfer boundary condition, which allows to model the thermal interaction with a fluid
when running a standalone solid simulation.

4.1.3 Steady-State Coupling

This section describes the approach used for coupling the steady-state solvers, which is done
differently for the fluid and the solid solvers.

The steady-state OpenFOAM solvers approach the solution gradually, in pseudo time steps.
In each pseudo time step, the residual of each field is reduced by a prescribed factor. The
coupling boundary data is exchanged at the end of each pseudo time step of the fluid solver.
In the case of the solid solvers, the full steady-state solution is computed during each coupling
iteration. The computations for the solid are cheap enough to allow this, which is simpler
than having to deal with intermediate solutions that are not yet converged, as in the fluid
domain. The steady-state fluid flow equations are cheaper to solve than the transient ones,
but they are still expensive and time-consuming, and therefore it is not practical to obtain the
full steady-state solution at each coupling iteration.

In the current implementation of the steady-state coupling, only explicit coupling with Robin-
Robin boundary conditions is supported. The reason for using explicit coupling is that im-
plicit coupling did not seem to work well with the partially solved fluid fields (although
future work may attempt to make implicit coupling work, so that convergence acceleration
schemes can be used). Robin coupling boundary conditions are used, after the initial testing
showed that they are stable even with explicit coupling. Convergence of the coupling can be
monitored in terms of the convergence of the solution of the fluid flow fields.

The way the steady-state simulation is enabled, varies depending on the specific solver used.
For example, in OpenFOAM, to do steady-state simulations, a different solver must be in-

4.2. COUPLING OF OPENFOAM 33

voked, which means that a separate solver must be adapted. In CalculiX, to enable steady-
state simulation, it is enough to add a keyword in the CalculiX input configuration file, and
include minor changes in the adapter code. In Code_Aster, also minor changes in the adapter
code is required, in order to invoke the steady-state solver.

4.2 Coupling of OpenFOAM

OpenFOAM! is a free, open-source CFD toolbox based on the finite volume method (FVM).
It is developed primarily by OpenCFD Ltd. OpenFOAM is distributed with a standard set of
solvers applicable to a specific class of problems (e.g. incompressible, compressible, combus-
tion, multiphase, heat transfer, etc.), as well as utilities (e.g. pre-processing, post-processing,
etc.) that are ready to be used.

For this thesis, solvers for heat transfer and buoyancy driven flows are used, namely:

* buoyantPimpleFoam — a transient solver for buoyant, turbulent flow of compressible
fluids, which uses the PIMPLE algorithm. The PIMPLE algorithm is a combination of
the PISO (Pressure Implicit with Splitting of Operator) algorithm [10] and the SIMPLE
(Semi-Implicit Method for Pressure Linked Equations) algorithm [11];

* buoyantSimpleFoam — a steady-state solver for buoyant, turbulent flow of compressible
fluids, which uses the SIMPLE algorithm;

* buoyantBoussinesqPimpleFoam — a transient solver for buoyant, turbulent flow of in-
compressible fluids, which uses the Boussinesq approximation; and

¢ laplacianFoam — a Laplace equation solver.

OpenFOAM is not limited to the standard solvers, but can be used as a C++ library that allows
users to compile their own applications (solvers and utilities), as well as libraries. These are
called user applications and user libraries. For an overview of the principles behind the
design and implementation of OpenFOAM as an object-oriented library for computational
continuum mechanics problems, the reader is referred to [12]. The approach taken in this
thesis for coupling OpenFOAM using preCICE is to:

1. Implement and compile an adapter library that can be used by several OpenFOAM
solvers.

2. Copy existing solvers and modify them by adding calls to the adapter. Compile them
as user applications.

The solvers that are of main interest for this thesis are buoyantPimpleFoam and buoyantSim-
pleFoam. Partially adapted and tested were buoyantBoussinesqPimpleFoam and laplacian-
Foam. Solvers that could be coupled in the future include rhoPimpleFoam and sonicFoam,
for example. The idea is to create an adapter that is general enough, such that coupling new
solvers requires minimal additions or no changes to the existing implementation.

OpenFOAM also has two CHT solvers: the transient solver chtMultiRegionFoam, based on
the PIMPLE algorithm, and the steady-state solver chtMultiRegionSimpleFoam, based on the

Thttp:/ /www.openfoam.com/

34 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

SIMPLE algorithm. These solvers are later used in some of the validation and demonstration
cases in Chapter 5 and Chapter 6, respectively.

The structure of an OpenFOAM simulation case consists basically of three types of directo-
ries:

¢ The constant directory, which contains several files with the description of the mesh,
as well as the physical properties of the fluid;

¢ The system directory, which contains configuration files for the solution procedure and
the numerics; and

¢ Time directories, which contain files for each one flow fields. For example, the temper-
ature boundary and internal fields at time t = 0 would be stored in 0/T.

For the case to work correctly with the coupling, appropriate boundary conditions must be
set to the temperature in the T file, in the directory of the starting time (usually 0/T).

4.2.1 Description of the Adapter

The coupling adapter library developed for OpenFOAM consists of:

¢ The main Adapter class, which contains wrappers to the preCICE functions, takes care
of advancing the coupling, triggering the reading and writing of data from one or more
Interfaces, adjusting the time step size, and doing the checkpointing;

* The Interface class, which contains the data regarding an individual coupled surface,
such as the number of data locations, the IDs of the boundary patches, the preCICE
mesh name and ID, etc. An Interface may have multiple CouplingDataReaders and/or
CouplingDataWriters; and

* CouplingDataReader and CouplingDataWriter classes, which implement the accesses
to the boundary data. A CouplingDataReader reads the data from a buffer and sets it
as a boundary condition, whereas a CouplingDataWriter extracts the values from the
boundary and writes it into a buffer. The specific data that is accessed and the way it
is manipulated is implemented by subclasses of CouplingDataReader and Coupling-
DataWriter. The adapter does not need to know what data is exchanged or how it is
computed; for example, calling writeCouplingData() on the adapter will call write-
CouplingData() on each interface, which in turn will call write() on each of its Cou-
plingDataWriters.

During the initial setup of the coupled simulation, an Adapter must be instantiated, interfaces
must be added to it, and for each interface, CouplingDataReaders and CouplingDataWriters
have to be added. Solver-specific adapters can also be created by inheriting from the Adapter
class.

Figure 4.2 shows a simplified class diagram, with the main classes and their members, as well
as the relationships between them. This structuring of the adapter implementation should
allow to easily adapt new solvers and add new types of coupling data or boundary conditions,
allowing even for other types of multi-physics problems.

4.2. COUPLING OF OPENFOAM

Adapter
_precice Interface
—mesh
_runTime —patchIDs
preciceTimeStep _meshID
solverTimeStep -numDatalocations
interfaces —vertex|Ds

_dataBuffer

isCouplingOngoing() couplingDataWriters

adjustSolverTimeStep()
advance()
writeCouplingData()
readCouplingData()
addCheckpointField()
writeCheckpoint ()
readCheckpoint()

couplingDataReaders

_configureMesh(fvMesh & mesh)
writeCouplingData()
readCouplingData()

CouplingDataUser

_datalD
_bufferSize

CouplingDataReader

read(double * buffer)

CouplingDataWriter

write(double * buffer)

Figure 4.2: Simplified class diagram of the OpenFOAM adapter

35

36

4.2.2

CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

Modifications to the Solver Code

The solver which is the main focus of this thesis, buoyantPimpleFoam, consists of a time
stepping loop and an inner-loop which implements the PIMPLE algorithm, which solves the
equations iteratively. Listing 4.1 shows the main parts of the loop that will be modified in the
buoyantPimpleFoam solver.

while (runTime.run())

{

#include "setDeltaT.H"
runTime++;

#include "rhoEqn.H"
while (pimple.loop())

{

#include "UEqn.H"
#include "EEqn.H"
while (pimple.correct())
{

#include "pEqn.H"

3

Listing 4.1: Excerpt of the buoyantPimpleFoam solver

The changes that need to be performed in the solver loop are:

The control of the time stepping is handed to preCICE by changing the loop condition
to adapter.isCouplingOngoing().

After the solver time step is computed in setDeltaT.H (either set to a constant value
or computed based on the Courant number [13]), and before the solver time is incre-
mented by this value (runTime++), it needs to be adjusted, taking into account the max-
imum step size allowed by the coupling (i.e. if sub-cycling is used, the sub-steps must
add up to the coupling time step so that the solvers can synchronize). Therefore, the
method adapter.adjustSolverTimeStep() must be called between these two actions.
The checkpoint must also be written here, by calling adapter.writeCheckpoint ().

Before the equations are solved (i.e. before rhoEqn.H), the coupling data must be read
with adapter.readCouplingData().

After the equations are solved, the updated coupling data must be written to pre-
CICE with adapter.writeCouplingData(). The coupling is then advanced by calling
adapter.advance().

After advancing, the coupling convergence is determined, and the checkpoint is read in
the case it is necessary, with adapter.readCheckpoint ().

4.2. COUPLING OF OPENFOAM 37

One important point to mention here, is that even though in many solvers with the double
loop structure it is possible to avoid checkpointing, in the case of buoyantPimpleFoam it was
found that the coupling did not converge well when checkpointing was not used. However,
buoyantBoussinesqPimpleFoam did converge well without the checkpointing. This behaviour
is at the moment not well understood, and therefore requires further investigation.

The checkpointing for the OpenFOAM solvers consists in storing the value of the current
time, and making a copy of the relevant fields. At the beginning of the solver code, the
tields that need to be checkpointed are registered with the adapter by calling addCheck-
pointField(field).

Compared to the solid solver, where only the temperature T field is solved, the fluid solver
is more complex, involving multiple fields (e.g. density, temperature, velocity, pressure),
and the number increases if turbulence is modelled (e.g. k, €). Therefore, it is desirable to
avoid the checkpointing, which is expensive, even if this prevents using subcycling. Another
motivation to avoid checkpointing if possible, is that if the old field values are not reloaded,
the partial solutions are better “initial guesses” for the PIMPLE algorithm, which should
translate into less effort (iterations) required by the individual matrix solvers, and therefore,
a faster execution of the PIMPLE loop.

The reason why all the checkpointing related code is not moved into the adapter (e.g. the en-
tire if (adapter.isReadCheckpointRequired()) clause), is that there may be solver-specific
actions that need to be included in the checkpointing. For example, in the case of buoyant-
PimpleFoam it was found that the method correctBoundaryConditions() of the turbulent
thermal diffusivity alphat had to be called, otherwise, the convergence of the coupling would
be affected.

4.2.3 Surface Mesh and Coupling Data

Data Locations

A mesh in OpenFOAM can consist of any type of polyhedra, although in most cases it consists
of mostly hexahedral elements. All the coupling data from OpenFOAM is extracted from the
face centers.

The values at the cell faces are extrapolated from the cell interior values. Different numerical
schemes are available in OpenFOAM, and can be selected in runtime. Usually, by default,
linear interpolation is used. When computing the surface normal gradient, schemes with
non-orthogonal correction are typically used. The numerical schemes are documented in
[14].

Computation of the Thermal Conductivity

The value of the thermal conductivity is required for the computation of the heat flux and
the heat transfer coefficient. The computation of the conductivity varies depending on the
solver:

¢ laplacianFoam: it solves the Laplace equation with only one material property, the ther-
mal diffusivity a. In order to give a value to the conductivity, the solver must be mod-

38 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

while (adapter.isCouplingOngoing())
{

#include "setDeltaT.H"

adapter.adjustSolverTimeStep();
if (adapter.isWriteCheckpointRequired())

{
adapter.writeCheckpoint () ;

adapter.fulfilledWriteCheckpoint();

runTime++;
adapter.readCouplingData() ;

#include "rhoEqn.H"
while (pimple.loop())
{
#include "UEqn.H"
#include "EEqn.H"
while (pimple.correct())
{
#include "pEqn.H"

adapter.writeCouplingData();
adapter.advance() ;

if (adapter.isReadCheckpointRequired())
{

adapter.readCheckpoint () ;
if (turbulenceUsed && adapter.isCheckpointingEnabled())
{

turbulence->alphat () () .correctBoundaryConditions () ;
}
adapter.fulfilledReadCheckpoint () ;

Listing 4.2: Excerpt of the adapted buoyantPimpleFoam solver

4.2. COUPLING OF OPENFOAM 39

ified to read the density p and the specific heat capacity ¢, from the input files. The
conductivity is then computed as k = apc).

* buoyantBoussinesqPimpleFoam: the effective conductivity k. sr is computed as

v Vt
kefr = aefrocy = (& + ar)pcy = <Pr + PT’t) PCp (4.4)

where a; = v;/Pr is the turbulent thermal diffusivity. The material properties p and ¢,
also need to be added to the solver.

* buoyantPimpleFoam/buoyantSimpleFoam: The effective conductivity is the same as in
4.4, although for this solver this value can be accessed directly by calling the method
kappaEff () on the turbulence object (i.e. turbulence->kappaEff ()).

Boundary conditions

Depending on the boundary conditions used for the coupling, the appropriate boundary
condition must be assigned to the interface during the case setup? (e.g. in the 0/T file).

* A Dirichlet boundary condition is of type fixedValue. The value of the temperature
obtained from the coupling is applied directly. The class TemperatureBoundaryCondi-
tion, subclass of CouplingDataReader, takes care of setting the values.

¢ A Neumann boundary condition is of type fixedGradient. The value to be applied
is the value of the heat flux sent by the other participant, divided by the conductivity.
There are different subclasses of CouplingDataReader that encapsulate the details of
computing the conductivity (which varies depending on the solver) and the gradient.

¢ A Robin boundary condition is of type mixed, which is a combination of fixedValue
and fixedGradient, and has the form

Tfuce = fTref + (1 _f)(Tcenter + Qref * (S) (4.5)

where Ttace is the patch value, Teenser is the internal cell value, 0 < f < 1 is a weight
(called value fraction), and § is the face center to cell center distance. T, denotes a
reference value and g,.r denotes a reference gradient.

To model a convective boundary condition using the mixed type boundary condition,
appropriate values for the parameters T, grr and f must be used. To do this, the
derivative in (2.15) is linearized

Tf ace — Tcenter

S

+1(Taee — Teo) = 0, (4.6)
and an expression for Tg,, is obtained

h k/é
Tfﬂce = k/5+hTw+ k/5+thenter~

(4.7)

Zhttp://www.openfoam. com/documentation/user-guide/standard-boundaryconditions.php

http://www.openfoam.com/documentation/user-guide/standard-boundaryconditions.php

40 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

Comparing 4.5 and 4.7, the following values for the parameters of the mixed boundary
condition are obtained:

Tyef = Too, (4.8)

f _ h _ hneighbor
k/5 + h hself + hneighbor’

and 4.9)

gref =0. (410)

Recall that & is a coupling variable, which means that it is sent by the partner partic-
ipant, whereas the gradient is computed locally. For this reason, the variables have
been subscripted with “self” and “neighbor”. This implementation is based on Open-
FOAM'’s implementation found in turbulentTemperatureCoupledBaffleMixedFvPatch-
ScalarField.C?, which is used by the chtMultiRegionFoam solver. This is also explained
in [15].

Note that the closer f is to 1, the more the boundary condition resembles a Dirichlet
boundary condition. This happens if the conductivity k of the other domain (neighbor)
is very high, or if the distance ¢ at which the T is obtained is very small (meaning that
it is basically the interface temperature).

The classes SinkTemperatureBoundaryCondition and HeatTransferCoefficientBound-
aryCondition take care of updating these values in the boundary condition of type
mixed.

Boundary values

¢ Temperature: Does not require special handling, can be extracted directly from the
boundary field of the temperature variable.

¢ Heat flux: The heat flux is computed as the surface normal gradient of the temperature
field multiplied by the conductivity. The surface normal gradient is computed with the
built-in method snGrad (). The computation of the conductivity depends on the specific
OpenFOAM solver used, as explained above.

¢ Sink temperature and heat transfer coefficient: As sink temperature, the cell center
temperature is used. In order to access this value, the built-in method patchInternal-
Field() is used to access the cell value associated to a boundary patch of type fvPatch-
ScalarField. The heat transfer coefficient is the conductivity divided by a distance .
The value of § can be obtained through the method deltaCoeffs()*, which gives the
reciprocal of the cell-to-cell (or cell-to-face) distance, with orthogonality correction.

Shttps: //github. com/0penFOAM/OpenFOAM-2.1.x/blob/master/src/turbulenceModels/
compressible/turbulenceModel/derivedFvPatchFields/turbulentTemperatureCoupledBaffleMixed/
turbulentTemperatureCoupledBaffleMixedFvPatchScalarField.C

‘https://openfoamwiki.net/index.php/OpenFO0AM_guide/SurfaceInterpolation;;deltaCoeffs

https://github.com/OpenFOAM/OpenFOAM-2.1.x/blob/master/src/turbulenceModels/compressible/turbulenceModel/derivedFvPatchFields/turbulentTemperatureCoupledBaffleMixed/turbulentTemperatureCoupledBaffleMixedFvPatchScalarField.C
https://github.com/OpenFOAM/OpenFOAM-2.1.x/blob/master/src/turbulenceModels/compressible/turbulenceModel/derivedFvPatchFields/turbulentTemperatureCoupledBaffleMixed/turbulentTemperatureCoupledBaffleMixedFvPatchScalarField.C
https://github.com/OpenFOAM/OpenFOAM-2.1.x/blob/master/src/turbulenceModels/compressible/turbulenceModel/derivedFvPatchFields/turbulentTemperatureCoupledBaffleMixed/turbulentTemperatureCoupledBaffleMixedFvPatchScalarField.C
https://openfoamwiki.net/index.php/OpenFOAM_guide/SurfaceInterpolation;;deltaCoeffs

4.3. COUPLING OF CALCULIX 41

4.2.4 Steady-State Simulations

To solve steady-state problems, the coupled buoyantSimpleFoam solver must be used.

4.2,5 Parallelization

OpenFOAM supports domain decomposition®. There is no overlap between the sub-domains
and therefore no special handling is necessary. It is enough to specify the MPI rank and the
MPI size at the initialization of preCICE in order to run OpenFOAM as a parallel partici-
pant.

4.3 Coupling of CalculiX

CalculiX® is a finite element package that can solve static, dynamic and thermal problems.
The project is developed and maintained by Guido Dhont and Klaus Wittig.

The source code is mainly written in C and Fortran. Depending on the type of analysis (e.g.
static, frequency, buckling, dynamic, electromagnetic, etc.), different solvers are called. The
solvers are implemented as C functions that are called from the program’s main function. The
solver to be modified in order to do the thermal coupling is the nonlingeo function, which
handles all the non-linear problems. Since the material properties might be temperature
dependent, all heat transfer problems are treated by the non-linear solver.

The adapter was implemented in C, because the main solver code is in this language. Some
additional Fortran functions were implemented to extract some of the coupling data.

To run a CalculiX simulation, an input (*.inp) file is required, which contains keywords with
parameters and values, that describe the analysis to be performed. For heat transfer problems,
the *HEAT TRANSFER keyword must be used. The parameter DIRECT can be added, in order
to deactivate the automatic adjustment of the time step (i.e. *HEAT TRANSFER, DIRECT). Files
that describe the mesh and the boundary conditions are included from the input file. Similar
to OpenFOAM, in order for the coupling to work, the boundary condition for the interface
must be properly defined in the case setup.

4.3.1 Description of the Adapter

Two C structures were added:

* SimulationData, which gathers the CalculiX variables that need to be accessed during
the coupling. The idea is to avoid having to pass long lists of parameters in the function
calls. A list of the CalculiX variables and their meaning is provided in [16] (page 518).
Some other variables related to the coupling were also included in this structure.

Shttp:/ /cfd.direct/ openfoam /user-guide/running-applications-parallel /
®http:/ /www.calculix.de/

42 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

* PreciceInterface, which contains the data belonging to a coupled surface (such as
mesh names and IDs, vertex IDs, preCICE data IDs, etc.).

Additionally, three groups of C functions were added:

® Precice_x functions, which carry out coupling operations and are a wrapper to some
preCICE functions;

e Precicelnterface_*x functions, which handle the meshes and data of the individual
coupled surfaces;

¢ CalculiX helper functions, which are lower level functions that manipulate CalculiX’s
data.

Compared to the OpenFOAM adapter, the Precice_* functions correspond to the Adapter
class in the OpenFOAM adapter, and the PreciceInterface_* functions correspond to the
Interface class. The most relevant functions of the CalculiX adapter are listed in Table
4.1.

Precice_Setup
Precice_InitializeData
Precice_AdjustSolverTimeStep
Precice_IsCouplingOngoing
Precice_ReadCouplingData
Precice_WriteCouplingData

Precice_Advance

Precice_ReadIterationCheckpoint

Precice WriteIterationCheckpoint
Precicelnterface _Create
PreciceInterface_ConfigureFaceCentersMesh
Precicelnterface _ConfigureNodesMesh
PreciceInterface ConfigureTetraFaces

PreciceInterface_ConfigureHeatTransferData

Table 4.1: Main functions of the CalculiX adapter

The CalculiX Fortran function printoutface which is used for writing surface values to a file
during a simulation run, was copied and modified to extract coupling data:

* getflux: extracts the heat flux values at the specified surfaces

* getkdeltatemp: extracts the heat transfer coefficient and the sink temperature at the
specified surfaces

4.3. COUPLING OF CALCULIX 43

4.3.2 Modifications to the Solver Code

The algorithm for the non-linear calculations is explained in CalculiX’s user manual [16]. The
structure consists of an increment loop (or time-stepping loop) and an iteration loop, where the
solution of one time step is obtained iteratively.

Adapting CalculiX for CHT using preCICE consists in adding calls to the Precice_* functions
inside the nonlingeo.c file:

¢ First, a SimulationData structure is created and populated with the CalculiX variables
that need to be accessed during the coupling.

¢ The function Precice_Setup() must be called, which takes care of configuring and
initializing preCICE, as well as the coupling interfaces.

¢ The increment loop condition is modified (while ((1.-theta>1.e-6) | | (negpres==1))),
so that the time stepping is controlled by the adapter (Precice_IsCouplingOngoing()).

¢ At the beginning of the increment loop:
- Read the coupling data with Precice ReadCouplingData.

— Write the iteration checkpoint if necessary (store the temperature field and the
current time), with Precice_WriteIterationCheckpoint. The temperature field is
stored in an array, therefore, a copy of it is made with the C function memcpy. The
simulation time is also stored by copying the value of the theta variable, which
is the CalculiX variable for the current time, normalized with respect to the total
time.

¢ At the end of the increment loop:
— Write the coupling data with Precice_WriteCouplingData.

- Read the iteration checkpoint if necessary (reload the temperature field and the
stored time), with Precice ReadIterationCheckpoint. The reading of the check-
point is exactly the opposite procedure.

4.3.3 Surface Mesh and Coupling Data

The implementation of this thesis supports first- and second-order tetrahedral elements. Sur-
face elements therefore consist of triangles. The temperature data is located at the element
nodes, while the rest of the coupling data (heat flux, sink temperature and heat transfer co-
efficient) is located at the face centers. This means that when reading the temperature from
the CalculiX participant, nearest-projection mapping method can be used. The rest of the
coupling data can only be treated as a cloud of points, as they do not have connectivity
information.

When Dirichlet-Neumann coupling is used (i.e. when temperature data is involved), the
CalculiX participant has to define two surface meshes for preCICE: one for the nodes and
one for the face centers. When using Robin-Robin coupling, only the face centers need to be
defined.

44 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

Boundary conditions

There are two CalculiX arrays that contain the parameter values of the boundary conditions:
xboun, which contains temperature values for Dirichlet boundary conditions, and xload,
which contains heat flux, sink temperature and heat transfer coefficient values for Neumann
and Robin boundary conditions. The indexing of these arrays must be handled carefully, in
order to modify the value of the intended thermal variable, corresponding to the intended
node or face. For this purpose, the helper functions getXbounIndices and getXloadIndices
were implemented as part of the adapter.

¢ Dirichlet: The temperature boundary condition must be defined in the input file, using
the keyword *BOUNDARY’. Temperature values are applied at the nodes. The temperature
values are set with the helper function setNodeTemperatures.

e Neumann: A distributed heat flux boundary condition *DFLUX® must be used. The
values for the distributed heat flux are set in the xload array with the helper function
setFaceFluxes.

* Robin: a convective boundary condition *FILM’ is used. The values are set in the x1load
array with setFaceHeatTransferCoefficients and setFaceSinkTemperatures.

Boundary values

¢ Temperature: the temperature data is directly obtained from the solution vector at the
end of the inner solver iterations. The helper function getNodeTemperatures was im-
plemented to extract the temperature values at the interfaces.

The CalculiX function printoutface was copied and modified to extract the heat flux, the
sink temperature and the heat transfer coefficient. This function computes the variables at the
surface Gauss points. In the modified copies of the function (getflux and getkdeltatemp), if
tirst-order elements are used, the values are extracted from the only Gauss point that the face
element has. If second-order elements are used, the average value between the three Gauss
points is used. In both cases, only the face center location is exposed to preCICE.

¢ Heat flux: The function printoutface prints out the heat flux values at the Gauss
points, as well as other variables if other type of analysis is selected. This was modified
to extract only the heat flux at the face elements of the specified surfaces (i.e. the
interfaces) and store the values in an array.

¢ Sink temperature and heat transfer coefficient: The same data that is used for calcu-
lating the heat flux, is used for calculating the sink temperature and the heat transfer
coefficient. Therefore, the printoutface.f file was also used as a base to extract the vari-
ables for the Robin coupling;:

h=- 4.11
5/ ()

"http://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node163.html
8http ://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node188.html
9http ://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node203.html

http://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node163.html
http://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node188.html
http://web.mit.edu/calculix_v2.7/CalculiX/ccx_2.7/doc/ccx/node203.html

4.4. COUPLING OF CODE_ASTER 45

0
Tinterior = Tface + % (412)

4.3.4 Steady-State Simulations

In order to do a coupled steady-state simulation, it is enough to add the the option STEADY
STATE to the HEAT TRANSFER keyword card in the case input (*.inp) file, as shown in Listing 4.3.
In the second line, the value of the time step size and the final time are to be specified. These
values are not important for the coupled steady-state simulations. In the adapter function
Precice_AdjustSolverTimeStep, at every coupling iteration the current time is set to 0 and
the normalized step size (At/tgnp) is set to 1. This way, it forces the solver to obtain the full
steady-state solution in one step.

*HEAT TRANSFER, DIRECT, STEADY STATE
1,1

Listing 4.3: Configuration for the steady-state heat transfer solver in CalculiX

4.3.5 Parallelization

At the moment of writing this thesis, CalculiX only supports multithreading for solving the
system of equations. Therefore, from the point of view of preCICE, the CalculiX participant
is just a serial participant.

4.4 Coupling of Code_Aster

Code_Aster!” is a free and open-source finite element analysis package developed originally
by Electricité de France (EDF).

Code_Aster’s source code is mostly written in Fortran and Python. There are two ways one
could couple Code_Aster. The first one is to directly modify the source code by introducing
the calls to preCICE. The second option is to couple it at a higher level, adding the cou-
pling calls to the command file that controls the flow of the simulation. This file contains
Code_Aster commands!! for creating the mesh and the model, for defining boundary and
initial conditions, and calling the relevant solver. This command file can be extended with
Python scripting to add more advanced functionality.

Listing 4.4 shows the typical structure of a Code_Aster command file. First, the case is created
by defining the mesh, the model, the materials, and the boundary and initial conditions. Then
a list of time steps is created, and is provided together with the setup to the solver.

Ohttp:/ /code-aster.org

HThe documentation of all the commands can be found at http://code-aster.org/doc/vi2/en/index.php?
man=commande. Beware that the English version is based on machine translation. The original documentation is
in French.

http://code-aster.org/doc/v12/en/index.php?man=commande
http://code-aster.org/doc/v12/en/index.php?man=commande

46 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

Read the mesh
MESH = LIRE_MAILLAGE(...)

Create the model
MODEL = AFFE_MODELE(..., MAILLAGE=MESH, ...)

Define a material
MAT = DEFI_MATERIAUC(...)

Assign the material to the mesh
MATS = AFFE_MATERIAU(..., MAILLAGE=MESH,...)

Create boundary conditions
BC = AFFE_CHAR_THER(. .., MODELE=MODEL, ...)

Create initial condition
INIT_T = CREA_CHAMP(...)

Define a list of steps to solwve
STEP = DEFI_LIST_REEL(...)

Call the solwer
TEMP = THER_LINEAIRE(..., MODELE=MODEL, ...)

Listing 4.4: Sample structure of a Code_Aster command file

4.4. COUPLING OF CODE_ASTER 47

For this thesis, it was decided to couple Code_Aster through the command file, since it is
the least invasive way, as it does not require modifying the source code at all. Therefore, the
coupling of Code_Aster consisted in the implementation of a command file which contains
coupling operations and calls to the thermal solver. The linear thermal solver in Code_Aster
is THER_LINEAIRE and the non-linear thermal solver is THER_NON_LINE.

The Code_Aster adapter was implemented after testing the different boundary conditions
with the CalculiX adapter, and it was decided that only the Robin coupling boundary condi-
tion would be implemented for Code_Aster, since it performed better than the other ones.

4.4.1 Description of the Adapter

The approach taken in this thesis is to split the command file into two command files:

* The case definition command file, which is in charge of the creation of the mesh, model,
materials, and the definition of the initial and boundary conditions;

¢ The adapter command file, which wraps the solver call in a loop and triggers the cou-
pling operations. This file is the main command file. The case definition command file
is read by the adapter through the INCLUDE command, invoked at the beginning.

Besides the adapter command file, a Python module was developed, which is in charge of car-
rying out lower level accesses to the solver’s data for the coupling. Therefore, the Code_Aster
adapter consists of two files:

® adapter.comm: contains the main solver loop with the commands to run the simulation,
as well as the coupling operations;

® adapter.py: contains two classes:
— Adapter, which handles the coupling;
— Interface, which handles the coupled surface meshes and their data.

Listing 4.5 shows the general structure of the adapted Code_Aster. The solution process
takes place in the call to THER_LINEAIRE for linear problems or THER_NON_LINE for non-linear
problems. The procedure for steady-state problems is slightly different, but for simplicity, the
checking of whether it is a linear or non-linear, steady-state or transient problem, has been
omitted from the code snippet. Boundary conditions are updated before the call to the solver
by calling adapter.readCouplingData(). Similarly, updated values are written to preCICE
after solving, by calling adapter.writeCouplingData(). The time step size of the solver is
always equal to the coupling time step size (returned by the initialize or advance methods
of preCICE), which means that sub-cycling is not supported. This is, however, not a concern,
because it is typically the fluid solver that needs sub-cycling. The adapter.readCheckpoint ()
and adapter.writeCheckpoint () functions do not really perform any checkpointing, but
directly notify preCICE that the checkpoint reading/writing has been fulfilled. The solver
advances in time only if the coupling converges.

48 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

Include the case definition .comm file
INCLUDE(UNITE=91)

Reset time and set initial condition
k=0

time = 0.0

ICOND = {’CHAM_NO’: INIT_T}

while precice.isCouplingOngoing():

adapter.writeCheckpoint ()
adapter.readCouplingData()

Call the linear thermal solver

TEMP = THER_LINEAIRE (MODELE=MODEL,
CHAM_MATER=MATS,

EXCIT=LO0OADS,

ETAT_INIT=ICOND,

INCREMENT=_F (LIST_INST=STEP),
PARM_THETA=1.0

)

T = CREA_CHAMP (RESULTAT=TEMP,
NOM_CHAM="TEMP’ ,
TYPE_CHAM="NOEU_TEMP_R’,
OPERATION="EXTR’,
NUME_ORDRE=1

adapter.writeCouplingData(T)

dt = adapter.advance()

adapter.readCheckpoint ()

if adapter.isCouplingTimestepComplete():
Output 1if mecessary ...

Set current solution as initial condition of next time step

TEMP_CPY = COPIER(CONCEPT=TEMP)
ICOND = {’EVOL_THER’: TEMP_CPY}

Increment time
time = time + dt

Listing 4.5: Code_Aster adapter command file

4.4. COUPLING OF CODE_ASTER 49

4.4.2 Surface Mesh and Coupling Data

Thermal boundary conditions in Code_Aster are assigned through the AFFE CHAR THER!2
command. A convective boundary condition was used for the Robin-Robin coupling. In
Code_Aster, this corresponds to using a boundary of type ECHANGE.

The convective boundary condition is applied to the element face, therefore, the face center is
used as the data location. However, for extracting the sink temperature and the heat transfer
coefficient, it was more straightforward to do it on the element nodes. Therefore, for the
coupling of Code_Aster, two meshes are used: face centers for read-data and nodes for write-
data.

To compute the sink temperature to be sent to the coupling partner, temperatures at the
interior of the solid are sampled. To obtain the points inside the solid, the nodes of the
surface mesh are taken as starting points. The position of each node is then displaced by a
prescribed distance J in the direction opposite to the surface normal. During the coupling,
the value of the temperature at the interior point is obtained by interpolation, using the shape
functions of the element that contains the point. This interpolation is performed with the
Code_Aster operator PROJ_CHAMP'?, using the method COLLOCATION.

The configuration of the interfaces, the extraction and update of boundary values are per-
formed in the adapter.py file. It must be noted that special methods'# have to be used in
order to access the data of the Code_Aster objects. This is because Code_Aster is mostly
programmed in FORTRAN, and only the names of the objects are available at higher lev-
els (i.e. in the command file). In order to access the data itself, it must be retrieved from
Code_Aster’s memory manager “JEVEUX”. This makes the implementation of some oper-
ations not so straightforward, because the data cannot be read or written directly to the
variables.

4.4.3 Steady-State Simulations

To run a steady-state simulation, it is enough to call the solver without specifying an initial
condition (e.g. removing the parameter ETAT_INIT) from the solver call, as shown in Listing
4.6.

TEMP = THER_LINEAIRE(
MODELE=MODEL,
CHAM_MATER=MATS,
EXCIT=LOADS

Listing 4.6: Invoking the steady-state solver of Code_Aster

2http://www.code-aster.org/doc/vil/en/man_u/ué/u4.44.02.pdf
Bhttp://www.code-aster.org/doc/vil/en/man_u/ué/u4.72.05.pdf
http: //www.code-aster.org/V2/doc/v12/en/man_u/ul/ul.03.02.pdf

http://www.code-aster.org/doc/v11/en/man_u/u4/u4.44.02.pdf
http://www.code-aster.org/doc/v11/en/man_u/u4/u4.72.05.pdf
http://www.code-aster.org/V2/doc/v12/en/man_u/u1/u1.03.02.pdf

50 CHAPTER 4. IMPLEMENTATION OF THE COUPLING ADAPTERS

This is taken care of by the adapter, as it reads from the configuration whether it is a steady-
state or a transient analysis.

44.4 Parallelization

In Code_Aster, it is possible to use both shared memory (OpenMP) and distributed memory
(MPI) parallelization. This can be chosen at runtime, through the configuration of the solver'.
Additionally, the keyword PARTITION in the command AFFE_MODELE!® allows to define how
the elements will be distributed in the parallel phases of Code_Aster.

In the adapter implemented in this thesis, the Code_Aster participant only supports shared
memory parallelization. From preCICE’s point of view it would be just a serial participant.
Due to time limitations, it was not possible to find a straightforward way to do the domain
decomposition and have each process access only its own part of the mesh. This is the first
step required to support parallelism in the coupling adapter. This may be addressed in future
work.

Bhttp: //www.code-aster.org/doc/vi2/en/man_u/ué/u4.50.01.pdf
http: //www.code-aster.org/doc/vi2/en/man_u/ué/u4.41.01.pdf

http://www.code-aster.org/doc/v12/en/man_u/u4/u4.50.01.pdf
http://www.code-aster.org/doc/v12/en/man_u/u4/u4.41.01.pdf

Chapter 5

Validation Cases

The implementation of the coupling adapters is validated with two validation cases. The first
case is for forced convection, where the results are compared against what is reported in the
literature. The second case is for natural convection, and the results are compared against
a reference solution obtained with the OpenFOAM CHT solver, chtMultiRegionFoam. The
results as well as the difficulties are discussed.

5.1 Forced Convection: Flow Over a Heated Flat Plate

The numerical validation case described in this section consists of an incompressible laminar
flow over a flat plate of finite thickness, heated from below with a uniform temperature. The
work from [17] is used as reference, both for the setup and the results comparison. This
validation case serves to test the different adapters, the coupling boundary conditions, the
convergence acceleration schemes and the data mapping schemes.

5.1.1 Case Setup

The computational domain is described in Figure 5.1. A colder fluid flows over a flat plate
of length L, which is heated with a uniform temperature T; from the bottom. The case is
run for different combinations of the Reynolds number Re, the Prandtl number Pr and the
conductivity ratio k = ks/ky. The thickness of the plate also plays a role in the heat transfer,
as demonstrated in [17], but for the purposes of this thesis it has been set to a fixed value of
b=L/4.

A time step size At = 0.01 was used for both the fluid and the solid participants, and also as
the coupling time step size.

Mesh

The mesh used for this simulation is shown in Figure 5.2. Although the geometries coincide
at the interface, the nodes are located at different positions (non-conforming). For the fluid

51

52 CHAPTER 5. VALIDATION CASES

Uow =01m/s—

T =300K — fluid
BT_///’// solid \\\BT;
=0 : =0
) L=1m -

Figure 5.1: Geometry and boundary conditions of the flat plate case

domain, mesh grading was used in order to have a finer mesh near to the leading edge of
the plate and at the fluid-solid interface, in order to properly capture the boundary layer.
The fluid mesh consists of hexahedral elements and the solid mesh consists of first-order
tetrahedral elements. Nearest-neighbor mapping is used at the interface.

Figure 5.2: Meshing of the fluid and solid domains for the flat plate case

Boundary Conditions

The bottom of the plate is set to a uniform temperature of T; = 310 K and the fluid inlet is set
to a uniform temperature of T, = 300 K. Apart from these two boundaries and the conjugate
boundary, the thermal boundary condition for the rest of the faces is adiabatic.

The inlet velocity is set to a uniform value of U = 0.1. The bottom of the fluid domain is set
to slip before the leading edge of the plate, and no-slip after it.

In order to simulate a two-dimensional setup, using the three-dimensional meshes, symmetry
boundary conditions are used for the front and back faces.

Material and Flow Properties
A total of twelve cases were simulated, with different values for the three non-dimensional
parameters Re, Pr and k. These are shown in Table 5.1.

Given that the solvers work with dimensional formulations, Table 5.2 shows the actual vari-
ables and the values that were used for the flow and material properties.

5.1. FORCED CONVECTION: FLOW OVER A HEATED FLAT PLATE

Case Re Pr

1 500 0.01 1
2 500 0.01 5
3 500 0.01 20
4 10000 0.01 1
5 10000 0.01
6 10000 0.01 20
7 500 100 1
8 500 100
9 500 100 20
10 10000 100 1
11 10000 100
12 10000 100 20

Table 5.1: Values for Re, Pr and k for the flat plate case

Parameter Symbol Value
Inlet velocity Uso 0.1
Plate length L 1

Solid thermal conductivity ks 100
Solid specific heat capacity Cps 100
Solid density 0s 1

Fluid thermal conductivity kg =ks/k
Fluid density Of 1
Dynamic viscosity H = psUxL/Re
Fluid specificy heat capacity Cpf =k¢Pr/p

Table 5.2: Flow and material properties for the flat plate case

54 CHAPTER 5. VALIDATION CASES

5.1.2 Results

Temperature Profiles

The interface temperature profiles for the different combinations of Re, Pr and k are shown
in Figures 5.3a to 5.3d. The results are shown for OpenFOAM - CalculiX steady-state coupling
with Robin boundary conditions. The non-dimensional temperature 6 is plotted against the
distance x from the leading edge of the plate. The non-dimensional temperature is defined
as

T—Te

0 = .
TS_TOO

(5.1)

A good agreement was found with the results reported by Vynnycky et al. [17]. The analytical
solutions derived by [17] using boundary layer theory have also been plotted, as a reference.
Note that cases 10-12 required a finer fluid mesh near to the interface, compared to the base
mesh shown in Figure 5.2, in order to be able to reproduce the interface temperature from the
reference.

Coupling configurations that worked well, without requiring further changes to the base
setup described in the previous section, were OpenFOAM Dirichlet - CalculiX Neumann
(transient!) and OpenFOAM Robin - CalculiX Robin (transient and steady-state). Some dif-
ficulties were found in the validation of the temperature profiles for the other coupling con-
figurations. The common behaviour among the cases that did not work well was that the
temperature profile suffered from oscillations near to the leading edge of the plate, where
larger gradients and a stronger mesh grading are present. The oscillations increased as more
coupling iterations were performed, and the solvers finally diverged. In order to control or
eliminate the oscillations, one or more of these changes proved to be effective for this valida-
tion case:

¢ Using a finer solid mesh
* Using second-order elements for the solid mesh

¢ Using thin plate spline radial basis functions (RBF-TPS) for the data mapping instead
of nearest-neighbor (NN)

In the case of OpenFOAM Neumann - CalculiX Dirichlet (transient?) coupling, it was nec-
essary to use second-order elements for the solid mesh, and RBF-TPS for the mapping, in
order to eliminate the oscillations and prevent the solver from diverging. The effect of us-
ing second-order elements and RBF-TPS is shown in Figure 5.4, where the non-dimensional
temperature is plotted at t = 0.05. As can be seen, by only changing the data mapping to
RBE-TPS, the oscillations were significantly reduced, but it was still not enough to prevent
the solver from diverging.

A similar situation was found when coupling with Code_Aster as the solid solver. The inter-
face temperature was very sensitive to the mapping of the data between the surface meshes.

IDirichlet-Neumann coupling has only been implemented for the transient solvers.
2See footnote 1

5.1. FORCED CONVECTION: FLOW OVER A HEATED FLAT PLATE

Temperature 0 Temperature 0

Temperature 6

Temperature 60

55

— k=1
— k=5
— k=20
--- Vynnycky
 Analytical

— k
— k=5
— k=20
--- Vynnycky
 Analytical

— k
— k=5
— k=20
--- Vynnycky
» Analytical

— k
— k=5
— k=20
--- Vynnycky
 Analytical

(c) Interface temperature for Re=10000, Pr=0.01 (Cases 7, 8 and 9)
T T T T T : : ‘ ‘
04+ 4
_-__._'__-!--.'_-_'._-'__ N
02| R 4
0 == —

(d) Interface temperature for Re=10000, Pr=100 (Cases 10, 11 and 12)

Figure 5.3: Interface temperature for different Re, Pr and k, for the flat

plate case

56 CHAPTER 5. VALIDATION CASES

YT
0.5

—— NN + 1st order el.
—— RBF + 1st order el.

—— RBF + 2nd order el.

O | | | | | I I I I
0 061 02 03 04 05 06 07 08 09 1

X

Temperature 6

Figure 5.4: Interface temperature obtained with OpenFOAM Neumann - CalculiX Dirichlet
coupling, using different mapping schemes: nearest-neighbor (NN) and thin plate spline
radial basis functions (RBF-TPS), and elements of different order

Using the techniques mentioned above solved the problem. In Figure 5.5 the difference be-
tween using NN and RBF-TPS as mapping method is shown. The interface temperature was
measured after 50 steady-state coupling iterations. With NN mapping the interface tempera-
ture profile was not smooth, and this eventually led to the divergence of the solvers. Using
RBE-TPS for the mapping resulted in a smooth temperature profile.

0.18
% 0.16] |
Y
B2
s
g 014
&
i
— RBE-TPS
0.12 _ NN H
| | | | | | | T T
0 01 02 03 04 05 06 07 08 09 1

X

Figure 5.5: Interface temperature obtained with Code_Aster as solid solver, using different
mapping schemes: nearest-neighbor (NN) and thin plate spline radial basis functions (RBF-
TPS)

The vertical cross-sectional temperature profiles at x = 0.5 from the leading edge of the plate
are shown in Figure 5.6 for some selected cases. The influence of the different parameters can
be seen. The continuity of the temperature is evident, as there are no jumps at the interface.
The continuity of the heat flux is visible in the plot for the case where k = 1, since in this case
the gradients are equal on both sides (recall (2.18)).

Due to the large number of possibilities for the coupling configuration and the number of
cases, it is not practical to show all the results in this document. Therefore, a summary is

5.1. FORCED CONVECTION: FLOW OVER A HEATED FLAT PLATE 57

1 . T T T
—— Re=500; Pr=100; k=1
—— Re=500; Pr=100; k=5
081 —— Re=500; Pr=100; k=20 | |
—— Re=10000; Pr=100; k=20
Interface location
>
v 06 s
2
(4]
g
£
4 |
< 0
0.2 |
0 L |
0 0.1 0.2 0.3 0.4 0.5 0.6 0.7

Figure 5.6: Cross sectional temperature profile for the flat plate validation case, at x = 0.5
from the leading edge, for different Re, Pr and k

provided in Table 5.3 and Table 5.4 for transient and steady-state coupling, respectively, re-
garding some of the findings and problems that were encountered in the course of validating
the coupling using the heated flat plate case.

Solvers Coupling Comments
OpenFOAM - Fluid Dirichlet - The temperature profiles were successfully validated
CalculiX Solid Neumann using implicit coupling, and nearest-neighbor (for

the heat flux) and nearest-projection data mapping
(for the temperature).

Fluid Neumann -
Solid Dirichlet

Some cases were unstable. Using second-order ele-
ments for the solid and RBF-TPS mapping worked.

Robin - Robin

All cases were successfully validated. Worked well
with nearest-neighbor mapping. Very stable. All 12
cases could be run also with explicit coupling.

OpenFOAM - Robin - Robin
Code_Aster

Some cases were unstable. Better results were ob-
tained by using a finer solid mesh.

Table 5.3: Comments regarding the results of the transient coupling

58 CHAPTER 5. VALIDATION CASES

Solvers Coupling Comments

OpenFOAM - Robin - Robin All cases worked without problems.

CalculiX

OpenFOAM - Robin - Robin Oscillations and instabilities appeared in some cases
Code_Aster when using nearest-neighbor mapping. By using

RBF-TPS mapping in all cases, the temperature pro-
files were successfully validated.

Table 5.4: Comments regarding the results of the steady-state coupling

Coupling Iterations

Transient simulations were also run, and results were obtained for the first 100 time steps, for
OpenFOAM - CalculiX implicit coupling. The influence of the coupling boundary condition
and the convergence acceleration scheme on the number of iterations is shown in Figure 5.7.
As can be seen, the convergence rate also varies with the material and flow properties.

Among the coupling boundary conditions that have been implemented and tested, the most
robust one was the Robin-Robin coupling. It required the least average number of iterations
and for all cases it was stable even with explicit coupling. In the literature it is very common
to find Dirichlet-Neumann coupling boundary conditions for CHT problems, but it is known
that they often present numerical instabilities [4].

The results also show that using IQN-ILS? as convergence acceleration scheme reduced con-
siderably the number of coupling iterations required, compared to using Aitken underrelax-
ation.

5.1.3 Final Remarks

Even though the geometry of this validation case is very simple, the strong grading of the fluid
mesh and the larger gradients near to the leading edge of the plate, as well as the difference
in size between the fluid and the solid elements, can pose difficulties to the convergence of
the coupling.

Overall, the setting that worked best was Robin-Robin coupling, with IQN-ILS for conver-
gence acceleration. As shown in the graphs from Figure 5.7, the number of iterations are
significantly lower than with Aitken or Dirichlet-Neumann coupling. It was also found that
the convergence was good without initial under-relaxation (setting the initial under-relaxation
to 1 in the configuration of preCICE), when using Robin-Robin coupling with IQN-ILS.

From the experiments, it was found that the OpenFOAM - CalculiX coupling worked better
than OpenFOAM - Code_Aster, which was more sensitive to the mesh and the data-mapping
scheme used. This does not mean that one solid solver is superior to the other one; instead,
it should be taken as an indication that there is room for improvement for the Code_Aster
adapter, specially with regards to how and where the coupling data is computed. It is not

3Configured with max-used-iterations=100, timesteps-reused=10 and initial-relaxation=1

5.1. FORCED CONVECTION: FLOW OVER A HEATED FLAT PLATE 59

16 ;
0o Aitken _]
141 100 1QN-ILS i
12 -
c
S 101 g
= — i
g 81 _ u .
g *
4 i
1] haal -
0 I I T T T T I I I I I I
1 2 3 4 5 6 7 8 9 10 11 12
Case
(a) Fluid Dirichlet - Solid Neumann coupling
16 | | | | | | | |
0o Aitken
141 10n1QN-ILS 1
12+ =
Z
S 10 |
©
g 8 :
g *
4 i
0 I I I ’_H_‘ I I I I I_I\m I_I\m ﬂﬂ
1 2 3 4 5 6 7 8 10 11 12

Case

(b) Robin-Robin coupling

Figure 5.7: Average number of coupling iterations for the first 100 time steps, for the flat plate
case

60 CHAPTER 5. VALIDATION CASES

clear to what extent the instabilities are due to having different locations for the read- and
write-data, therefore, further investigation into this aspect is still necessary.

For this CHT solver to be usable in the SimScale platform in the future, it is important to
identify robust setups, so that the users of the platform can focus on the physics of the
problem, and not on the numerics of the coupling. This case has been useful to identify what
works well, what does not work well and how to improve it.

Given the observations and findings from this validation case, the subsequent validation
and demonstration cases are carried out with CalculiX as the solid solver, with Robin-Robin
coupling boundary conditions, unless otherwise stated.

5.2 Natural Convection: Cavity with Heat-Conducting Walls

The previous validation case consisted of forced convection over a flat plate, where the grav-
ity was not taken into account. The case that will be presented in this section takes into
account the gravity, and therefore, buoyancy forces. The validation is done by comparing
the results with OpenFOAM’s CHT solver, chtMultiRegionFoam. Natural convection inside a
conductive enclosure is simulated. Similar setups have been studied experimentally by [18],
and numerically by [19], [20] and [21]. As explained in [19], natural convection in enclosures
has many thermal engineering applications, including for example the cooling of electronic
devices and building insulation.

The main goal of this case is to validate the transient solution, therefore, the analysis will be
focused on comparing the solution fields at different times.

5.2.1 Case Setup

The geometry and the boundary conditions are shown in Figure 5.8.

JdT __
=0
l g
Tp = 303K
u():O
T, = 323 K._ T, =283K
Ly =075m
b=0.15m
oT
Nl —)
Ls = 1.05m on

Figure 5.8: Geometry and boundary conditions of the cavity case

The left wall of the enclosure has a fixed temperature of T;, = 323 K, and the right wall has a
tixed temperature of T. = 283 K. The initial temperature is set to Ty = 303 K for both the fluid

5.2. NATURAL CONVECTION: CAVITY WITH HEAT-CONDUCTING WALLS 61

and the solid domains. The fluid is initially at rest. The top, bottom, front and back faces of
the domain are adiabatic. A k — € turbulence model was used for this simulation.

The case setup is two dimensional, although the meshes are three dimensional. The fluid
mesh is purely hexahedral, with grading near to the walls. The solid mesh for the coupling via
preCICE consists of first-order tetrahedral elements, whereas the solid mesh for the reference
solution with chtMultiRegionFoam consists of hexahedral elements. The meshes are shown
in Figure 5.9.

(a) Mesh used with the coupling via preCICE (b) Mesh used with chtMultiRegionFoam

Figure 5.9: Meshes for the cavity case

The coupling step size is set to 1. Sub-cycling is used for the fluid solver, where the step size
is automatically adjusted by OpenFOAM based on the CFL condition [13] to ensure stability.
Given that the fluid starts out at rest and gradually accelerates, using an adjustable time
step allows to use larger time step sizes when the velocities are low, and thus save some
computation time. The rest of the setup for the coupling is described in Table 5.5.

It must be noted that OpenFOAM’s CHT solver only supports explicit coupling, where the
number of coupling iterations can be specified. In this case, 10 coupling iterations were
used per time step. The configuration used for the coupling with preCICE is shown in Table
5.5.

Coupling parameters

Solvers OpenFOAM and CalculiX
Coupling boundary conditions Robin-Robin
Coupling scheme Serial-implicit

Coupling convergence acceleration IQN-ILS
(max-used-iterations=100, timesteps-reused=10)

Data mapping Nearest-neighbor

Coupling time step size 1.0

Fluid time step size Automatically adjusted (<=1.0)
Solid time step size 1.0

Table 5.5: Coupling setup for the cavity case

62 CHAPTER 5. VALIDATION CASES

The material properties of the fluid and the solid are shown in Table 5.6 and 5.7, respec-
tively.

Property Symbol Value
Molecular weight [g/mol] 28.3
Specific heat capacity Cp 1157.7
Dynamic viscosity U 1.84e-05
Prandtl number Pr 0.7

Table 5.6: Thermophysical properties of the fluid for the cavity case

Property Symbol Value
Specific heat capacity Cp 446
Conductivity k 54
Density 1Y 7800

Table 5.7: Thermophysical properties of the solid for the cavity case

5.2.2 Results

Velocity

In this case with natural convection, the expected behaviour can be observed in the fluid. The
warmer fluid moves upwards, and the colder fluid moves downwards, as shown in Figure
5.10a, where the vertical component of the fluid velocity along the horizontal centerline of
the cavity is plotted. Figure 5.10b shows the distribution of the vertical component of the
velocity.

0.1 8
0 0.114 VY
2 ey
g 0l . 008
> 004
Eo
—0.1 | | | | § 004
02 04 06 08 E-o.os
X (m) -0.114-
(a) Profile at the horizontal centerline (b) Vertical velocity distribution

Figure 5.10: Vertical component of the velocity at t = 300 for the cavity case

In Figure 5.11 the velocity fields at t = 150 and t = 300 are shown. It can be observed that the
temperature difference between the left and right wall sets the fluid into a clock-wise rotating

5.2. NATURAL CONVECTION: CAVITY WITH HEAT-CONDUCTING WALLS 63

motion. The results are shown for the coupling using preCICE and for the OpenFOAM
CHT solver. The agreement of the results is satisfactory, as no significant differences can be
observed.

U Magnitude

NkaARRTIN \O\'%\ \0\0\7\5\ 11 \O']

0 0.114

(a) t=150 (preCICE) (b) t=150 (OpenFOAM) (c) t=300 (preCICE) (d) t=300 (OpenFOAM)

Figure 5.11: Velocity fields for the cavity case

Temperature

Temperature profiles along the horizontal centerline of the cavity are shown in Figure 5.12,
for t = 150 and t = 300. The temperature fields and the isotherms, also at t = 150 and
t = 300, are shown in Figure 5.13. The agreement with the OpenFOAM results is good. Even
though in Figure 5.13, for t = 150, the isotherms are slightly different, specially in the center
part of the cavity, this apparent discrepancy is not considered important: the temperature of
the whole center part is very close to 303 K, therefore, even very small deviations make the
contours look significantly different.

I I I
320 — preCICE t=150 b
. — preCICE t=300
% 310 1 - -- OpenFOAM reference | |
E
=
Q300 a
5
F
290 | h
| | | | | | | | l |

0 01 02 03 04 05 06 07 08 09 1
X

Figure 5.12: Comparison of horizontal temperature profiles for the cavity case (interfaces at
x =0.15and x = 0.9)

64 CHAPTER 5. VALIDATION CASES

T T
300 302 304 ‘3‘[‘]6

298 308

(a) t=150 (preCICE) (b) t=150 (OpenFOAM) (c) t=300 (preCICE) (d) t=300 (OpenFOAM)

Figure 5.13: Temperature distribution and isotherms in the fluid for the cavity case

Coupling iterations

The number of coupling iterations per time step varied between 1 and 3, with an average of
2.5.

Besides the good agreement between the results obtained using the preCICE coupling and
chtMultiRegionFoam, the convergence of the coupling is also good. Therefore, this validation
case is considered to have been successfully carried out.

Chapter 6

Demonstration Cases

After having validated the coupling in the previous chapter, this chapter displays some engi-
neering applications where CHT analysis is important, with the aim of demonstrating that the
solver developed in this thesis is ready to be used in relevant and complex scenarios.

6.1 Steady-State Simulation of a Shell-and-Tube Heat Exchanger

A heat exchanger is a device that transfers heat between fluids. The shell-and-tube heat
exchanger is a particular design of heat exchanger that consists of a cylindrical shell and a
bundle of tubes inside the shell. Heat transfer takes place between two fluids that are at
different temperatures, one which runs inside the tubes, and another one which runs outside
of the tubes, within the shell. Baffles are also often used in the shell-side, in order to direct
the flow across the tubes and increase the heat transfer. The fluids do not mix, as they are
separated by the solid walls of the tubes. The model used in this thesis is shown in Figure
6.1.

outer fluid inlet

U inner fluid

outlet

inner fluid
inlet

outer fluid outlet

Figure 6.1: Geometry of the simulated shell-and-tube heat exchanger

The purpose of this demonstration case is to show a typical industrial application where CHT

65

66 CHAPTER 6. DEMONSTRATION CASES

analysis is required. The setup involves a complex geometry consisting of multiple domains,
multiple interfaces and participants.

It is interesting to note that the coupled surfaces tend to be relatively large in this type of
applications, as these devices are designed to have large contact areas, in order to have a
better heat transfer efficiency.

The coupled steady-state solvers were used, given that in this type of applications, the heat
transfer and flow characteristics in steady-state are of main interest.

6.1.1 Case Setup

The general setup of the case has been provided by SimScale GmbH (geometry and boundary
conditions). It is publicly accessible on the platform!, where it has been simulated using the
solver chtMultiSimpleRegionFoam from OpenFOAM. It has been modified to do the coupling
with preCICE, where three participants were used:

1. OpenFOAM - Outer-Fluid (OF) (shell-side fluid, running at a higher temperature)
2. OpenFOAM - Inner-Fluid (IF) (tube-side fluid, running at a lower temperature)
3. CalculiX/Code_Aster — Solid (S)

The coupling dependencies are shown in Figure 6.2. Each of the fluid participants is coupled
to the solid participant, but there is no coupling between the fluid participants. Parallel
explicit coupling was used.

Figure 6.2: Coupling dependencies of the heat exchanger case

The boundary conditions are summarized in Table 6.1. For a better understanding of the
geometry of the problem, Figure 6.3 highlights the fluid-solid interfaces. The inner fluid -
solid interface, which consists mainly of the inner part of the tubes, is shown in red; and in
blue, the outer fluid - solid interface, which consists of the outer part of the tubes and the
baffles. The shell of the heat exchanger is not simulated, but assumed to be adiabatic.

Boundary Thermal Velocity
Cold inlet (tube-side) T =283K 0.002m/s
Hot inlet (shell-side) T =353 K 0.0037 m/s

Tube inner walls coupled 0 (no slip)
Tube outer walls coupled 0 (no slip)
Shell walls adiabatic 0 (no slip)

Table 6.1: Boundary conditions for the heat exchanger case

1 Available at https://www.simscale.com/projects/sjesu_rajendra/heat_exchanger-cht_simulation/.
Note that it has been simulated with a different mesh and different material properties.

https://www.simscale.com/projects/sjesu_rajendra/heat_exchanger-cht_simulation/

6.1. STEADY-STATE SIMULATION OF A SHELL-AND-TUBE HEAT EXCHANGER 67

Figure 6.3: Fluid - solid interfaces: inner fluid - solid interface in red, outer fluid - solid
interface in blue

The mesh is shown in Figure 6.4. First-order tetrahedral elements were used for the solid
mesh. The fluid mesh consists mainly of hexahedral elements, with refinement near to the
surfaces. The interfaces are non-matching, and nearest-neighbor was used to map the data
between the solid and fluid surface meshes.

Figure 6.4: Mesh for the heat exchanger case

Participant Degrees of freedom Interface size (# of vertices)
Inner-Fluid 354 444 cells 35 384

Outer-Fluid 573 782 cells 52 809

Solid 41 474 nodes, 127 221 elements 36 788 (interface with Inner-Fluid)

43 836 (interface with Outer-Fluid)

Table 6.2: Discretization of the heat exchanger case

For cases involving complex geometry as the current one, special care must be taken if RBF
interpolation is to be used for the mapping of the coupling data. Figure 6.5 shows a close-up
to the interface of the solid with the outer (shell-side) fluid, and indicates two places where
complications with RBF interpolation might arise. One can see that if the support radius of
the radial basis functions is too large, in location 1 of Figure 6.5, points from both sides of
the baffle would be used to create the interpolant; similarly, in location 2, points from two

68 CHAPTER 6. DEMONSTRATION CASES

different tubes would be used. A way to overcome this would be to define each individual
tube and baffle as a separate surface mesh in preCICE; however, this would make the setup
of the case overly complex.

Figure 6.5: Close-up to the interface of the solid with the outer (shell-side) fluid

The thermophysical properties of the fluid and the solid regions can be found in Table 6.3
and 6.4 respectively.

Property Symbol Value
Density [y 1027
Specific heat capacity Cp 4195
Dynamic viscosity U 3.645e-4
Prandtl number Pr 2.289

Table 6.3: Thermophysical properties of the fluid for the heat exchanger case

Property Symbol Value
Specific heat capacity Cp 385
Conductivity k 401
Density P 8960

Table 6.4: Thermophysical properties of the solid for the heat exchanger case

6.1.2 Results

The following results are shown for OpenFOAM - CalculiX coupling. The case was also
simulated with Code_Aster as solid solver, and also with chtMultiRegionSimpleFoam. No
significant differences were observed in the solution fields. The runtimes are compared at the
end of this section.

The converged temperature distributions are shown in Figure 6.6. As can be observed, shell-
side fluid is cooled down from 353 K to 323 K (measured at the outlet), whereas the tube-side
fluid is heated up from 283 K to 293 K.

6.1. STEADY-STATE SIMULATION OF A SHELL-AND-TUBE HEAT EXCHANGER 69

A rough check of the conservation of energy can be performed by comparing the fluxes at the
inlets and outlets and the temperature differences:

<pCPA(UAT))inner fluid = 23.78 kW

(6.1)

(pCPA(UAT))outer fluid = 22.92 kW
The difference between the energy lost by the warmer fluid and the energy gained by the
colder fluid is approximately 3.8%. Considering that the meshes are rather coarse, one could
expect that this difference could be reduced by refining the meshes.

The residual plots for the fluid solvers are shown in Figure 6.7. Given that the adapters only
support explicit coupling for steady-state simulations, there is no convergence measurement
of the coupling. However, the convergence of the fluid flow fields, as observed in Figure 6.7,
implies the convergence of the coupling.

The total runtime was 4190 seconds, for 500 steady-state iterations, with all three participants
as serial participants (only interfield parallelism, no intrafield parallelism). Table 6.5 shows
the statistics regarding the calls to initializeData and advance, where the data mapping
and data exchange occur. As expected, the percentage of time taken by advance is very
large for the solid solver, which means that it spends most of the time waiting for the fluid
solvers. It turns out, that the Inner-Fluid participant also spent a significant amount of time
waiting for the Outer-Fluid participant. Better efficiency should be achieved by assigning
more computing cores to the Outer-Fluid participant. Also interesting to note is that the
call to initializeData takes much longer than an average call to advance. This is due to
the computation of the mapping between the meshes, which is done once at the beginning,
during the first exchange of data. In any case, the time spent by the coupling operations
carried out by preCICE are negligible, and the total runtime is determined by the solution
time of the most expensive participant, which is in this case the Outer-Fluid participant. The
total runtime can be reduced by fine tuning the numerics of the fluid solver, for example, by
choosing appropriate under-relaxation factors for the SIMPLE algorithm.

Participant Event Count Total (s) Max(s) Min (s) Avg (s) %
Inner-Fluid initializeData 1 62.2 - - - 15
Inner-Fluid advance 500 1719.7 70.0 0 344 41.0
Outer-Fluid initializeData 1 101.2 - - - 24
Outer-Fluid advance 500 39.8 30.8 0 0.08 09
Solid initializeData 1 142.7 - - - 34
Solid advance 500 2041.0 19.5 0.03 4.08 487

Table 6.5: Statistics of calls to initializeData and advance, for OpenFOAM-CalculiX cou-
pling, for a total runtime of 4190 s

The case was also run using OpenFOAM - Code_Aster coupling. Unlike the flat plate valida-
tion case, using nearest-neighbor mapping and first-order elements for the solid did not cause
oscillation in the results. The obtained solution fields did not present significant differences

70 CHAPTER 6. DEMONSTRATION CASES

(a) Temperature distribution

(b) Temperature distribution with streamlines

(c) Midplane cut

Figure 6.6: Heat exchanger temperature distribution

6.1. STEADY-STATE SIMULATION OF A SHELL-AND-TUBE HEAT EXCHANGER 71

Residuals Inner-Fluid

0.001 L

Residual

0.0001 S O SO, eSS Ry

1e-05 e e

10:06 v e L T e

1e-07 [i i i i i i i i i

Iteration

Residuals Outer-Fluid

1 T T T T T T T T T
0.01 |-

Residual

0.0001 F R e]

le-07 i i i i i i i i i
0 50 100 150 200 250 300 350 400 450 500

Iteration

Figure 6.7: Residual plots of the fluid solvers in the heat exchanger simulation

with respect to those obtained using CalculiX as solid solver. The runtime for OpenFOAM -
Code_Aster coupling was also similar (4512 s), since it is determined by the fluid solver when
using a parallel coupling scheme. There is, however, a small overhead when coupling with
Code_Aster, which is the assignment of the boundary conditions during the initialization of
the adapter. This operation is carried out element by element, which is not handled effi-
ciently by Code_Aster. In the case of the heat exchanger, this initialization phase additionally
required approximately 6 minutes (8% of the total runtime), compared to CalculiX, which
basically does not require any start-up time. Future work may try to achieve a more efficient
implementation in this respect. The runtime statistics for the coupling with Code_Aster are
shown in Table 6.6.

The case was also simulated using chtMultiRegionSimpleFoam. No visible differences were
found in the solution fields. The runtimes were also comparable (4625 s with chtMultiRe-
gionSimpleFoam). Nevertheless, the runtime was expected to be significantly lower for the
coupling with preCICE, given that interfield parallelism was used, whereas in OpenFOAM,
the regions (corresponding to each participant) are solved sequentially. This means that the
total runtime should be roughly the sum of the time required to solve each fluid regions. A
possible explanation of this unexpected result, is that the case was executed on a dual-core
computer with hyperthreading (four threads), such that the interfield parallelism could not
be taken full advantage of, as it was not possible to assign a dedicated core to each partici-

72 CHAPTER 6. DEMONSTRATION CASES

Participant Event Count Total (s) Max (s) Min (s) Avg (s) Y%
Inner-Fluid initialize 1 363.0 - - - 8.0
Inner-Fluid initializeData 1 28.8 - - - 06
Inner-Fluid advance 500 1480.0 94.4 0 296 32.8
Outer-Fluid initialize 1 362.5 - - - 80
Outer-Fluid initializeData 1 56.4 - - - 12
Outer-Fluid advance 500 103.0 62.7 0 021 23
Solid initializeData 1 131.2 - - - 29
Solid advance 500 1622.7 20.9 0 324 36.0

Table 6.6: Statistics of calls to initializeData and advance, for OpenFOAM-Code_Aster
coupling, for a total runtime of 4512 s

pant. However, there is still an advantage over a serial coupling of the participants. A speed
up of 1.27 was measured when changing from serial coupling to parallel coupling.

6.2 Simulation of a Pin-Fin Channel Cooling System

Cooling fins are extensions to heat transfer surfaces that are added to enhance the heat trans-
fer rate. They are commonly found in heat sinks. They are also used in the internal cooling
channels of turbine blades, as depicted in Figure 6.8. Generally, not only the surface area
is important, but also the arrangement of the pins plays a determinant role on the over-
all efficiency of the cooling system. In this demonstration case, two different arrangements
are compared. The pin-fins have a circular cross section, and are inside a rectangular cooling
channel. The pins have the same dimensions spacing, and the heat exchange surface areas are
the same. This is a simplification of the cooling pin-fins found inside a turbine blade.

I<Eb
ol
O O O

Figure 6.8: Turbine blade with internal cooling on the left, sketch of the pin-fins on the right
(source of the image: [22])

6.2. SIMULATION OF A PIN-FIN CHANNEL COOLING SYSTEM 73

The purpose of this demonstration case is to highlight the advantage and importance of doing
a coupled analysis, given that even relatively simple geometries can give rise to complex flow
patterns that directly affect the heat transfer characteristics of the system.

6.2.1 Case Setup

The computational domain is a rectangular channel. The channel is modelled to be infinitely
wide in the spanwise direction by using symmetry boundary conditions. The pins have a
circular cross section with a diameter D = 1.25 cm. The pins have a streamwise spacing (x)
and a spanwise spacing (s) of x/D = s/D = 1.5. The channel inner height is 7.5 mm. The
thickness of the upper and lower all is 2.5 mm. The length of the simulated portion of the
channel is 10 cm. The lower wall of the solid has a constant inward flux of g, = 10 kW /m?.
The top wall of the solid is adiabatic.

(a) Top view of the fluid domain (b) Front view of the solid domain

Figure 6.9: Geometry of the staggered pin-fin channel

Boundary Thermal Velocity
Solid top wall adiabatic -
Solid bottom wall g = 10000 W /m? -
Channel inner walls coupled 0 (no slip)
Inlet T =300K 0.01 m/s

Table 6.7: Boundary conditions for the pin-fin channel

The computational mesh for the staggered arrangement is shown in Figure 6.10 to provide
the reader an idea of the element sizes. A similar mesh was used for the in-line arrangement.
In this case also first-order tetrahedral elements are used for the solid, and mostly hexahedral
elements for the fluid.

The configuration of the coupling is shown in Table 6.9.

Regarding the material properties, for the fluid, the same as Table 6.3 were used. The material
properties for the solid are shown in Table 6.10.

74 CHAPTER 6. DEMONSTRATION CASES

(a) Midplane cut of the fluid and solid meshes (b) Midplane cut of the solid mesh

Figure 6.10: Meshes of the staggered pin-fin channel

Participant Degrees of freedom Interface size (# of vertices)
Fluid (in-line) 1433 033 cells 86 334
Fluid (staggered) 1 463 789 cells 86 414

Solid (in-line) 26 442 nodes, 97 688 elements 16 326
Solid (staggered) 25 930 nodes, 96 893 elements 15 824

Table 6.8: Discretization of the pin-fin cooling case

Coupling parameters

Solvers OpenFOAM and CalculiX
Coupling boundary conditions Robin-Robin
Coupling scheme Parallel-implicit

Coupling convergence acceleration IQN-ILS
(max-used-iterations=100, timesteps-reused=10)

Data mapping Nearest-neighbor
Coupling time step size 0.01
Fluid time step size 0.01
Solid time step size 0.01

Table 6.9: Coupling setup for the pin-fin cooling case

Property Symbol Value
Specific heat capacity Cp 446
Conductivity k 54
Density 1Y 8050

Table 6.10: Thermophysical properties of the solid for the pin-fin cooling case

6.2.2 Results

Steady-State Analysis

In Figure 6.11 the temperature fields in steady-state are shown for each arrangement. It is
clear that the temperature distributions are very different for the two arrangements. Table

6.2. SIMULATION OF A PIN-FIN CHANNEL COOLING SYSTEM 75

6.11 compares the temperature values. As can be seen, the temperatures are lower for the
staggered arrangement. For this particular setup, the staggered arrangement appears to yield
a more efficient cooling.

T

302 305 308 310
| i i
300 311

(a) In-line arrangement (b) Staggered arrangement

Figure 6.11: Temperature at the midplane cut of the pin-fin channel

Temperature In-line Staggered
Average solid temperature 3073 K 30499 K
Maximum solid temperature 310.753 K 308.52 K
Average interface temperature 30716 K 304.86 K
Maximum interface temperature 310.54 K 308.165 K

Table 6.11: Pin-fin channel temperature comparison

Transient Analysis

A time step size of 0.01 was used for the transient simulation. Using Robin coupling boundary
conditions and IQN-ILS as post-processing, a good convergence was obtained. The first three
time steps took 4, 4 and 3 coupling iterations, respectively. Subsequent time steps required
only 2 coupling iterations.

Figure 6.12 shows the evolution of the temperature field for the first 6 seconds, at an interval
of 2 seconds. The pins are cooled down from left to right. At t = 4.0 it is possible to see that
the pins on the right side have increased their temperature, because of the constant heat flux
from the bottom of the channel. Att = 6.0 one can see that the temperature of these pins is
already dropping.

Runtime statistics have been collected for the first 1.5 s of simulation time, and are shown
in Table 6.12. The runtime for this period was 28 214 s (7.8 h), on a dual-core computer
with one core assigned to each participant. As in the case of the heat exchanger, the solid
participant spends a lot of time waiting for the fluid participant. In this case, the difference
of the computational costs is even larger, with the solid participant spending 96% of the time
in advance (), waiting for the fluid participant to synchronize. The total runtime is basically
determined by the fluid solver, as the total overhead of the coupling operations does not even
add up to 1%.

76

CHAPTER 6. DEMONSTRATION CASES

304 308

(@t=20

(b) t = 4.0

(0)t=6.0

Figure 6.12: Temperature at the midplane at different times, for the pin-fin cooling case

Participant Event Count Total (s) Max (s) Min (s) Avg (s) %
Fluid initializeData 1 42.3 - - - 01
Fluid advance 305 12.6 0.1 0 0.04 00
Fluid IQN-ILS-related - 15.9 - - - 041
Solid initializeData 1 42.0 - - - 01
Solid advance 305 271722 114.2 85.2 89.1 96.3

Table 6.12: Runtime statistics for the pin-fin cooling case, for a total runtime of 28 214 s

6.3. STEADY-STATE SIMULATION OF TURBINE BLADE COOLING 77
6.3 Steady-State Simulation of Turbine Blade Cooling

Modern turbine blade design aims at increasing the inlet temperature of the turbine. The
extremely high inlet temperatures (1300 - 1800 K) often surpass the melting point of the
blade materials. Therefore, cooling is essential to protect the blades from damage and thus to
increase their lifetime. One very effective cooling technique is film cooling, which consists in
injecting a coolant gas through multiple holes of the blade, such that a cooling film is formed
around the surface of the blade, protecting it from the high temperatures of the mainstream
flow. The holes can be at various locations of the blade, although they are typically located at
the leading edge, as it is directly exposed to the high temperatures of the inlet flow.

6.3.1 Case Setup

This demonstration case does not intend to fully reproduce the operating conditions of the
turbine blade or to obtain quantitatively accurate results, given that predicting the tempera-
ture distributions of such a case in the real world is a highly challenging task, and the allowed
uncertainty is very small. Therefore, the purpose is just to verify that the results obtained with
the coupling developed in this thesis are qualitatively meaningful for the given setup.

A 3D view of the geometry? used for the simulation is shown in Figure 6.13.

cooling air

periodic \

AN

inlet

coolant
inlet

hot gases

\

\ film cooling
holes

outlet periodic

film cooling

holes ‘/ internal cooling

passage

(a) Fluid domain and blade geometry
(b) Blade geometry

Figure 6.13: Geometry of the turbine blade cooling case

As can be seen in Figure 6.13b, besides the holes for film cooling, the blade also has an
internal cooling passage. The fluid and solid meshes are shown in Figure 6.14. Nearest-
neighbor mapping was used to map the data between the non-matching meshes. Due to the

’The geometry is an adaptation of the “Titanium Turbine Blade” CAD model downloaded from GrabCAD,
provided by the user Dan Jewell (https://grabcad.com/library/titanium-turbine-blade-1)

https://grabcad.com/library/titanium-turbine-blade-1

78 CHAPTER 6. DEMONSTRATION CASES

complex geometry involved, choosing an appropriate support radius for RBF interpolation is
difficult, as already explained in the heat exchanger case.

(a) Midspan cut of the fluid and solid meshes (b) Midspan cut of the fluid mesh with the full

(c) Midspan cut of the fluid mesh with the full solid mesh (3D view)

Figure 6.14: Meshes for the turbine blade cooling case

The boundary conditions are listed in Table 6.13. Periodic boundary condition was used for
the upper and lower faces of the fluid domain, in order to simulate a vertically stacked array
of blades.

The material properties of the fluid are shown in Table 6.15. For the solid, the same as Table
6.10 are used.

Steady-state coupling is used, with a parallel explicit coupling scheme. The case was run on
a dual-core computer wit hyperthreading (four threads). The fluid participant uses domain
decomposition with two MPI processes, and the solid participant is run serially. The purpose
of using this configuration is simply to test that the OpenFOAM adapter works properly
when domain decomposition is used.

6.3. STEADY-STATE SIMULATION OF TURBINE BLADE COOLING 79

Boundary Thermal Velocity
Inlet T =788 K 10 m/s
Coolant inlet Teootant = 283 K~ 20m/s
Fluid domain top and bottom walls periodic periodic
Fluid domain front and back walls symmetry symmetry
Solid domain front and back walls symmetry -

Table 6.13: Boundary conditions for the turbine blade cooling case

Participant Degrees of freedom Interface size (# of vertices)
Fluid 3 331 745 cells 131 046
Solid 50 035 nodes, 187 046 elements 71 079

Table 6.14: Discretization of the turbine blade cooling case

Property Symbol Value
Molecular weight [g/mol] 28.9
Specific heat capacity Cp 1007
Dynamic viscosity U 1.84e-05
Prandtl number Pr 0.7

Table 6.15: Thermophysical properties of the fluid for the blade cooling case

6.3.2 Results

Figure 6.15 shows the expected behaviour of the coolant flowing out from the cooling holes
and creating a protecting layer around the surface of the blade.

(a) Close up to an injection hole (b) Flow from the internal cooling passages

Figure 6.15: Cooling film around the blade

The performance of the cooling system is typically measured in terms of the overall cooling

80 CHAPTER 6. DEMONSTRATION CASES

efficiency ¢, which is basically a normalized temperature, defined as:

Too — Thlade

o — (6.2)

Too — Tcoolunt

In this simulation, ¢ varies between 0.45 and 0.7. The temperature and cooling efficiency
distribution are shown in Figure 6.16. The efficiency is highest near to the inlet of the coolant,
is intermediate at the leading edge, and is lowest at the trailing edge, at the far side from the
coolant inlet. The velocity and pressure distributions are shown in Figure 6.17.

T Cooling Efficiency
450 475 500 N 5?%5 ‘ 550 0.5 0.6‘ L
437 561 0.45 0.695

Figure 6.16: Temperature and cooling efficiency distribution on the blade

U Magnitude
— -
0 26.4 1.034e+05 1.039e+05
(a) Velocity distribution with streamlines (b) Pressure distribution

Figure 6.17: Midspan velocity and pressure distributions for the blade cooling case

6.3. STEADY-STATE SIMULATION OF TURBINE BLADE COOLING 81

A total of 1000 steady-state iterations were carried out. The total runtime was 11.7 hours.
Of this total time, the time required by preCICE was only about 10 minutes, most of which
corresponding to the initialization phase. Some statistics regarding the time spent by different
preCICE operations are shown in Table 6.16.

Participant Event Count Total (s) Max (s) Min (s) Avg (s) %
Fluid advance 1000 164.4 156.2 0 0.16 0.4
Fluid filter mesh 1 157.6 - - - 04
Fluid initialize 1 188.2 - - - 04
Fluid initializeData 1 122.7 - - - 03
Solid advance 1000 36 400.4 84.5 0 364 86.4
Solid initialize 1 13.2 - - - 00
Solid initializeData 1 529.7 - - - 13

Table 6.16: Runtime statistics of preCICE events for the turbine blade cooling case with two
processes for the fluid participant and one for the solid participant

Chapter 7

Conclusions

A conjugate heat transfer solver was developed by coupling independent fluid and solid
solvers, using the coupling library preCICE. Adapters have been developed for OpenFOAM,
CalculiX and Code_Aster, and their implementation has been documented. This required the
use of three different APIs of preCICE: the C++ API for OpenFOAM, the C API for CalculiX
and the Python API for Code_Aster. The adapters can handle different coupling boundary
conditions (Dirichlet, Neumann, Robin), multiple interfaces, and they can treat both transient
and steady-state problems. The adapters have been validated quantitatively and qualitatively
with several test cases, which involve transient and steady-state solutions. This work serves
as a basis for future efforts towards integrating preCICE with the SimScale platform, with the
aim of adding new multiphysics capabilities to this cloud-based CAE tool.

The flat plate validation case, although simple in terms of setup and geometry, was very use-
tul for identifying what works, what are typical problems and how they can be treated. In
this sense, it was found that Robin-Robin coupling results in better stability and convergence
than Dirichlet-Neumann coupling. Robin-Robin coupling was stable even with explicit cou-
pling schemes, and was therefore the choice for steady-state coupling, which in the current
implementation only supports explicit coupling. The OpenFOAM and CalculiX (transient)
adapters allow switching between the different boundary conditions for the coupling, in case
that further experiments and comparisons are to be performed. It was also found that the
convergence was significantly better when using IQN-ILS compared to Aitken as conver-
gence acceleration scheme. Using Robin-Robin coupling together with IQN-ILS resulted in
a good convergence speed, as shown in the validation and demonstration cases where this
was used. The main difficulty found in this validation case has been that for some coupling
configurations the temperature at the interface could suffer from oscillations which would
later lead to the divergence of the solvers. It was found that using a finer solid mesh, us-
ing second-order tetrahedral elements for the solid and/or changing the mapping method
from nearest-neighbor to RBF interpolation were effective ways to control the oscillations and
prevent the solvers from diverging. Identifying robust coupling configurations has been an
important step towards the goal of using preCICE on the SimScale platform, given that pro-
viding sensible defaults is necessary in order to hide the complexities of the coupling from
the users.

The second validation case, consisting of natural convection inside a cavity, was mainly used

83

84 CHAPTER 7. CONCLUSIONS

to validate the transient solution, by comparing against the results obtained with chtMultiRe-
gionFoam, the transient CHT solver of OpenFOAM. The results of both the flat plate and the
cavity validation cases were satisfactory and the adapters are considered to be successfully
validated.

In addition to the two validation cases, three demonstration cases were used to test the cou-
pled solvers in more complex scenarios from real industrial applications, which are repre-
sentative of what users of SimScale would like to simulate on their platform. These cases
involve complex geometry and potentially multiple interfaces and multiple participants. The
adapters proved to be capable of handling these cases. After having validated the adapters
with two cases, the results of the demonstration cases were only qualitatively assessed, and
they all showed the expected behaviour. In the case of the heat exchanger, it was simulated
using OpenFOAM - CalculiX coupling, OpenFOAM - Code_Aster coupling and chtMultiRe-
gionSimpleFoam (the steady-state CHT solver of OpenFOAM), and no significant differences
were found in the solution fields. The runtimes of the demonstration cases have been mea-
sured, and it was found that the overhead of the coupling operations are insignificant com-
pared to the total runtime. The runtime measurements also showed that the cases would
benefit from using intrafield parallelism for the fluid solver; however, this was not tested in
this thesis, and is to be addressed in future work. Nevertheless, there are already other stud-
ies, such as [23] and [8], that investigate the scalability of the coupling library preCICE and
show that it does not destroy the scalability of the individual solvers.

Although not discussed in the previous chapters, the use of several different tools (the solvers
and their pre-/post-processing utilities) can make the setting up of a case somewhat cumber-
some. Additional work has to be devoted to making the setup of the case as automatic as
possible, in terms of generating the appropriate configuration files, assigning proper bound-
ary conditions for the coupling, setting matching time step sizes if necessary, synchronizing
the output frequencies, and so on. For the post-processing, the results of the individual
solvers usually have to be converted into another format, so that they can be visualized to-
gether. Therefore, besides the challenges regarding stability and convergence of a partitioned
approach, there are some other minor drawbacks to running a simulation involving multi-
ple solvers. These also have to be addressed, in order for the integration with the SimScale
platform to work.

Overall, the partitioned approach proved to be a viable way of developing a new multiphysics
solver, with maximal reuse of existing tools. From the experience of this thesis it was found
that the ease of coupling a new solver depends mainly on the interface that is exposed by
the solver and whether the solver is intended to be modified and accessed externally. Even
though all three solvers are open-source, they differed in the degree of ease with which they
could be modified and adapted. Some non-technical difficulties can also slow down the
development of the adapters, such as the lack of good documentation of the solvers.

The current work contributes to the repository of the preCICE library with the addition of new
coupling adapters, as well as the setups for validation and demonstration cases. Furthermore,
the experience acquired in the development of the three coupling adapters can be reused for
other multiphysics problems using the same solvers.

Due to time constraints, there are still some limitations in the implemented solution, which
may be addressed in future work. Aspects that were not considered in this thesis include, for

85

example, the modeling of radiation heat transfer and the treatment of non-perfect contacts (i.e.
thermal contact resistance). There are also some aspects that require further experimentation
and testing. For example, a better understanding of the influence of the location of the
coupling data is necessary. It is at the moment not clear whether using different locations
for the read- and write-data (e.g. using nodes for read-data and face centers for write-data)
can cause oscillations and instabilities. Furthermore, for the solid solvers, the accuracy of
the coupling could be potentially be improved by using second-order elements, since they
provide more data points (Gauss points) at the interface. In order to take advantage of this,
the adapter must be modified to use the individual Gauss points, instead of taking an average
between them. With regards to the fluid solver, a better understanding of the checkpointing
is necessary, as explained in Section 4.2.2. Finally, more work could also be dedicated to
parallelization and scalability testing of the adapters.

Bibliography

[1] Bernhard Gatzhammer. Efficient and flexible partitioned simulation of fluid-structure interac-
tions. PhD thesis, Institut fiir Informatik, Technische Universitit Miinchen, 2014.

[2] Abram Dorfman and Zachary Renner. Conjugate problems in convective heat transfer:
Review. Mathematical Problems in Engineering, 2009, 2009.

[3] Tom Verstraete and Sebastian Scholl. Stability analysis of partitioned methods for pre-
dicting conjugate heat transfer. International Journal of Heat and Mass Transfer, 101:852-869,
2016.

[4] Marc-Paul Errera and Florent Duchaine. Comparative study of coupling coefficients in
dirichlet-robin procedure for fluid—structure aerothermal simulations. Journal of Compu-
tational Physics, 312:218-234, 2016.

[5] Hans-Joachim Bungartz, Florian Lindner, Miriam Mehl, and Benjamin Uekermann. A
plug-and-play coupling approach for parallel multi-field simulations. Computational Me-
chanics, 55(6):1119-1129, 2015.

[6] Charbel Farhat and Michael Lesoinne. Two efficient staggered algorithms for the se-
rial and parallel solution of three-dimensional nonlinear transient aeroelastic problems.
Computer methods in applied mechanics and engineering, 182(3):499-515, 2000.

[7] Joris Degroote, Klaus-Jiirgen Bathe, and Jan Vierendeels. Performance of a new parti-
tioned procedure versus a monolithic procedure in fluid—structure interaction. Computers
& Structures, 87(11):793-801, 2009.

[8] Hans-Joachim Bungartz, Florian Lindner, Miriam Mehl, Klaudius Scheufele, Alexander
Shukaev, and Benjamin Uekermann. Partitioned Fluid—Structure-Acoustics Interaction on
Distributed Data: Coupling via preCICE, pages 239-266. Springer International Publishing,
Cham, 2016.

[9] Aukje de Boer, Alexander H van Zuijlen, and Hester Bijl. Comparison of conservative
and consistent approaches for the coupling of non-matching meshes. Computer Methods
in Applied Mechanics and Engineering, 197(49):4284—4297, 2008.

[10] Raad I Issa. Solution of the implicitly discretised fluid flow equations by operator-
splitting. Journal of computational physics, 62(1):40-65, 1986.

87

88 BIBLIOGRAPHY

[11] Suhas V Patankar and D Brian Spalding. A calculation procedure for heat, mass and
momentum transfer in three-dimensional parabolic flows. International journal of heat and
mass transfer, 15(10):1787-1806, 1972.

[12] Henry G Weller, G Tabor, Hrvoje Jasak, and C Fureby. A tensorial approach to com-
putational continuum mechanics using object-oriented techniques. Computers in physics,
12(6):620-631, 1998.

[13] Richard Courant, Kurt Friedrichs, and Hans Lewy. Uber die partiellen differenzengle-
ichungen der mathematischen physik. Mathematische annalen, 100(1):32-74, 1928.

[14] OpenFOAM User Guide: 4.4 numerical schemes. http://cfd.direct/openfoam/
user-guide/fvschemes/. Accessed: 2016-11-13.

[15] R Vilums. Implementation of transient robin boundary conditions in openfoam. In
Workshop Multiphysical Modelling in OpenFOAM, pages 3940, Riga, Latvia, 2011.

[16] Guido Dhondt. Calculix crunchix user’s manual, version 2.7, 2016.

[17] M Vynnycky, S Kimura, K Kanev, and I Pop. Forced convection heat transfer from a flat
plate: the conjugate problem. International Journal of Heat and Mass Transfer, 41(1):45-59,
1998.

[18] F Ampofo and TG Karayiannis. Experimental benchmark data for turbulent natural
convection in an air filled square cavity. International Journal of Heat and Mass Transfer,
46(19):3551-3572, 2003.

[19] G Barakos, E Mitsoulis, and Do Assimacopoulos. Natural convection flow in a square
cavity revisited: laminar and turbulent models with wall functions. International Journal
for Numerical Methods in Fluids, 18(7):695-719, 1994.

[20] Mikhail A Sheremet and Igor V Miroshnichenko. Numerical study of turbulent natu-
ral convection in a cube having finite thickness heat-conducting walls. Heat and Mass
Transfer, 51(11):1559-1569, 2015.

[21] Anil Kumar Sharma, K Velusamy, and C Balaji. Turbulent natural convection of sodium
in a cylindrical enclosure with multiple internal heat sources: A conjugate heat transfer
study. International Journal of Heat and Mass Transfer, 52(11):2858-2870, 2009.

[22] Jason K Ostanek. Improving pin-fin heat transfer predictions using artificial neural net-
works. Journal of Turbomachinery, 136(5):051010, 2014.

[23] Benjamin Uekermann. Partitioned Fluid-Structure Interaction on Massively Parallel Systems.
PhD thesis, Institut fiir Informatik, Technische Universitdt Miinchen, 2016.

http://cfd.direct/openfoam/user-guide/fvschemes/
http://cfd.direct/openfoam/user-guide/fvschemes/

	Introduction
	Conjugate Heat Transfer
	Mechanisms of Heat Transfer
	Heat Conduction
	Heat Convection

	Material Properties and Dimensionless Quantities
	Governing Equations and Boundary Conditions
	Governing Equation for the Solid
	Governing Equations for the Fluid
	Boundary Conditions

	Coupling Approaches
	Coupling Boundary Conditions in a Partitioned Approach

	Overview of the Coupling Library preCICE
	Equation Coupling
	Data Mapping
	Application Programming Interface of preCICE

	Implementation of the Coupling Adapters
	General Considerations
	Structure of the coupling adapter
	Robin or Convective Boundary Conditions
	Steady-State Coupling

	Coupling of OpenFOAM
	Description of the Adapter
	Modifications to the Solver Code
	Surface Mesh and Coupling Data
	Steady-State Simulations
	Parallelization

	Coupling of CalculiX
	Description of the Adapter
	Modifications to the Solver Code
	Surface Mesh and Coupling Data
	Steady-State Simulations
	Parallelization

	Coupling of Code_Aster
	Description of the Adapter
	Surface Mesh and Coupling Data
	Steady-State Simulations
	Parallelization

	Validation Cases
	Forced Convection: Flow Over a Heated Flat Plate
	Case Setup
	Results
	Final Remarks

	Natural Convection: Cavity with Heat-Conducting Walls
	Case Setup
	Results

	Demonstration Cases
	Steady-State Simulation of a Shell-and-Tube Heat Exchanger
	Case Setup
	Results

	Simulation of a Pin-Fin Channel Cooling System
	Case Setup
	Results

	Steady-State Simulation of Turbine Blade Cooling
	Case Setup
	Results

	Conclusions

