Time stepping algorithms for partitioned multi-scale multi-physics in preCICE

Benjamin Rüth, Benjamin Uekermann, Miriam Mehl, Hans-Joachim Bungartz

Technical University of Munich
Department of Informatics
Chair of Scientific Computing

ECCM 6 / ECFD 7
Glasgow, UK
14. June 2018
Partitioned multi-physics

preCICE

A Coupling Library for Partitioned Multi-Physics Simulations

coupling schemes
communication
data mapping
time interpolation

solver
adapter
libprecice

in-house
fluid solver

OpenFOAM
SU2
foam-extend

in-house
solver

Ateles (APES)
Alya System
Carat++
FASTEST

API in:
C / C++
Fortran
Python

structure
solver

CalculiX
Code_Aster

commercial
solver

ANSYS Fluent
COMSOL
FEAP

API in:
C / C++
Fortran
Python

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Partitioned multi-physics

Example application: fluid-structure-acoustics

Fluid-structure-acoustics simulation and partitioned setup\(^1\).

<table>
<thead>
<tr>
<th>physics</th>
<th>timescale</th>
<th>solver</th>
<th>scheme</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>small</td>
<td>Ateles</td>
<td>RK</td>
<td>2 or 4</td>
</tr>
<tr>
<td>(A)</td>
<td>small</td>
<td>FASTEST</td>
<td>EE</td>
<td>1</td>
</tr>
<tr>
<td>(F)</td>
<td>medium</td>
<td>FASTEST</td>
<td>CN</td>
<td>2</td>
</tr>
<tr>
<td>(S)</td>
<td>large</td>
<td>FEAP</td>
<td>N-(\beta)</td>
<td>1 or 2</td>
</tr>
</tbody>
</table>

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Partitioned multi-physics

Example application: acoustics-acoustics

Three-field flow coupling around a 2D subsonic free jet

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Partitioned multi-physics

Time stepping requirements

Engineering:
- Use different solvers (EE + RK4)
- Use different time discretization
- No degradation of solver performance

Informatics:
- Black-box approach (nodal data)
- Parallel (Exa-Scale)

![Diagram](image-url)
Partitioned heat transport equation

A simple model problem

- introduce a model problem
- review different coupling schemes
- evaluate performance of schemes

Simple setup

\[\begin{align*}
&v^{n+1} \\
&\tau \\
&v^n
\end{align*} \quad \begin{align*}
&t^{n+1} \\
&\tau \\
&w^{n+1}
\end{align*} \]

\[\begin{align*}
&w^n
\end{align*} \]

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Partitioned heat transport equation

Monolithic setup

Heat Transport equation

\[\frac{\partial u(x, t)}{\partial t} = \alpha \frac{\partial^2 u(x, t)}{\partial x^2}, \quad x \in \Omega, \ t \in \mathbb{R}^+ \]

Dirichlet boundary conditions

\[u(x = x_L, t) = u_D^L, \quad u(x = x_R, t) = u_D^R \]

Initial condition

\[u(x, t = 0) = u_0(x) \]
Partitioned heat transport equation

Partitioned setup

Dirichlet-Neumann coupling

Get Ω_1: $v(x_C)$

Set Ω_2: $w(x_C)$

Dirichlet BC

Heat Transport on Ω_1

$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} = f_v(\ldots)$

Neumann BC

Set Ω_1: $v_x(x_C)$

Get Ω_2: $w_x(x_C)$

Heat Transport on Ω_2

$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} = f_w(\ldots)$

Partitioning

$\tau = 0.2$

t

Ω^L_h

Ω^R_h

Ω_h

$\Sigma : x_C$

X_L

X_R
Review and experiments on coupling schemes

We are interested in higher order coupling

- different coupling schemes
- use constant spatial meshwidth h
- refine temporal meshwidth τ
- compare partitioned result to monolithic solution u^n with fine τ

Monolithic setup

Partitioned setup
Review and experiments on coupling schemes

Classical coupling schemes

Dirichlet-Neumann coupling

1. **Get** Ω_1: $v(x_C)$
2. **Set** Ω_2: $w(x_C)$
3. **Heat Transport on** Ω_1:
 \[
 \frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2} = f_v(\ldots)
 \]
4. **Heat Transport on** Ω_2:
 \[
 \frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2} = f_w(\ldots)
 \]
5. **Dirichlet BC**
6. **Neumann BC**

Explicit/loose coupling

Implicit/strong coupling
Review and experiments on coupling schemes

Classical coupling schemes

\[L_2 \text{ error on } \Omega_h^L \]

![Graph comparing \(L_2 \) error for different coupling schemes, including Heun(\(\tau \)), TR(\(\tau \)) - Mono, and RK4(\(\tau \)) - Mono.

1. Heun(\(\tau \)), TR(\(\tau \)) - Mono
2. RK4(\(\tau \)) - Mono
Review and experiments on coupling schemes

Classical coupling schemes

- RK4(τ), Heun(τ), TR(τ) - IC
- Heun(τ), TR(τ) - Mono
- RK4(τ) - Mono

L_2 error on Ω_h^i
Review and experiments on coupling schemes

Customized 2nd order schemes

Heun(τ) - EC
TR(τ) - IC

Heun(τ) - Monolithic
TR(τ) - Monolithic

L_2 error on Ω_h
Review and experiments on coupling schemes

Customized 2nd order schemes

10^{-3} 10^{-2} 10^{-1}

10^{-4} 10^{-5} 10^{-6}

10^{-7} 10^{-8}

L_2 error on Ω_h

TR(τ) - IC

Heun(τ) - EC

Heun(τ) - Monolithic

TR(τ) - Monolithic

Semi E-I

\mathbf{v}^{n+1} \mathbf{v}^n \mathbf{w}^{n+1}

\mathbf{w}^n \mathbf{v}^n \mathbf{w}^{n+1}

\mathbf{v}^n \mathbf{w}^n \mathbf{v}^{n+1}

\mathbf{w}^n \mathbf{v}^{n+1}

\mathbf{v}^n \mathbf{w}^n
Review and experiments on coupling schemes

Customized 2nd order schemes

Heun(\(\tau\)) - EC
TR(\(\tau\)) - IC

Heun(\(\tau\)) - Monolithic
TR(\(\tau\)) - Monolithic
Semi E-I

\[L_2 \text{ error on } \Omega_h \]

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Review and experiments on coupling schemes

Splitting methods

Godunov splitting (= explicit coupling)

\[v^{n+1} \rightarrow \frac{1}{2} (v^n + v^{n+1}) \]

\[w^{n+1} \rightarrow \frac{1}{2} (w^n + w^{n+1}) \]

Strang splitting

\[v^{n+1} = v^n + \frac{1}{2} f_v \]

\[w^{n+1} = w^n + \frac{1}{2} f_w \]
Review and experiments on coupling schemes

Splitting methods

\begin{figure}
\begin{center}
\includegraphics[width=\textwidth]{plot.png}
\end{center}
\end{figure}

\textbf{Heun(\(\tau\)) - Strang}

\textbf{TR(\(\tau\)) - Mono}

\textbf{TR(\(\tau\)) - Strang}

\(L_2\) error on \(\Omega_h\)

\(10^{-3}\) \quad \(10^{-4}\) \quad \(10^{-5}\) \quad \(10^{-6}\)

\(\tau_i\)

\(10^{-3}\) \quad \(10^{-2}\) \quad \(10^{-1}\)
Review and experiments on coupling schemes

Splitting methods

\begin{align*}
\text{Heun}(\tau) - \text{Strang} \\
\text{RK4}(\tau) - \text{Strang} \\
\text{TR}(\tau) - \text{Mono} \\
\text{TR}(\tau) - \text{Strang}
\end{align*}

\[L_2 \text{ error on } \Omega^L_h \]
Review and experiments on coupling schemes

Splitting methods

- Heun(τ) - Strang
- RK4(τ) - Strang
- TR(τ) - Strang
- RK4(τ)/TR(τ) - Strang

L_2 error on Ω_h

t

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Review and experiments on coupling schemes

Waveform relaxation

Implicit/strong coupling

Waveform relaxation

\[\tilde{v}(t) \]

\[\tau_L, \text{BDF2} \]

\[\tau_R, \text{RK4} \]
Review and experiments on coupling schemes

Waveform relaxation

\[\tau_i \]

\[L_2 \text{ error on } \Omega_h \]

\[\text{TR}(\tau) - \text{Monolithic Waveform Relaxation} \]
Review and experiments on coupling schemes

Waveform relaxation

![Graph showing L2 error on Ω_t^j as a function of τ_i. The graph compares different coupling schemes: TR(τ) - Monolithic Waveform Relaxation, RK4(τ)/RK4(τ) - WR, and RK4(τ) - Monolithic. The x-axis represents τ_i ranging from 10^{-3} to 10^{-1}, while the y-axis represents the L2 error ranging from 10^{-15} to 10^{-2}. The graph includes data points for each scheme, showing the error level for different τ_i values.]

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Review and experiments on coupling schemes

Waveform relaxation

\[L_2 \text{ error on } \Omega_h \]

\[10^{-15} \quad 10^{-14} \quad 10^{-13} \quad 10^{-12} \quad 10^{-11} \quad 10^{-10} \quad 10^{-9} \quad 10^{-8} \quad 10^{-7} \quad 10^{-6} \quad 10^{-5} \quad 10^{-4} \quad 10^{-3} \quad 10^{-2} \quad 10^{-1} \]

\[\tau_i \]

RK4(\tau) - Monolithic

RK4(\tau)/RK4(0.1\tau) - WR

TR(\tau) - Monolithic Waveform Relaxation

RK4(\tau)/RK4(\tau) - WR

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Review and experiments on coupling schemes

Waveform relaxation

\[L_2 \text{ error on } \Omega^L_i \]

- RK4(\(\tau\))/TR(\(\tau\)) - WR
- TR(\(\tau\)) - Monolithic Waveform Relaxation
- RK4(\(\tau\))/RK4(0.1\(\tau\)) - WR
- RK4(\(\tau\))/RK4(\(\tau\)) - WR

Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Conclusion

Algorithmic requirements

- inhomogeneous setup
- subcycling
- black-box
- parallel

Partitioned Heat Transport

- model problem
- experimental study

Short discussion

- implicit/explicit
- semi explicit-implicit
- predictor
- √ Strang
- √ Waveform Relaxation

Multi-Scale

\[t^n \]

\[t^{n+0.1} \]

\[t^{n+0.9} \]

\[v^n \]

\[v^{n+1} \]

\[w^n \]

\[w^{n+0.1} \]

\[w^{n+0.9} \]

FACTEST

Ateles

\[k_1 \]

\[k_2, k_3 \]

\[k_4 \]

\[\tau_L \]

\[\tau_R \]

\[\text{EE} \]

RK4

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Further steps

Implementation

- Interpolation methods?
- Convergence of acceleration schemes
- Parallel performance

Tests

1D Tube\(^1\):

preCICE examples\(^2\):

\(^1\)figure from Degroote, J., et al. (2008). Stability of a coupling technique for partitioned solvers in FSI applications. https://doi.org/10.1016/j.compstruc.2008.05.005

\(^2\)figure from Cheung Yau, L. (2016). Conjugate Heat Transfer with the Multiphysics Coupling Library preCICE. TUM.
Thank you!¹

Website: precice.org
Source/Wiki: github.com/precice
Mailing list: precice.org/resources
My e-mail: rueth@in.tum.de

Homework:
- Follow a tutorial
- Join our mailing list
- Star on GitHub
- Send us feedback
- Ask me for stickers

¹The financial support of the managing board of ECCOMAS and of SPPEXA, the German Science Foundation Priority Programme 1648 – Software for Exascale Computing is thankfully acknowledged.

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Appendix

Semi Implicit-Explicit Coupling

<table>
<thead>
<tr>
<th></th>
<th>Update Scheme</th>
<th>Stability</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Explicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v (\mathbf{v}^n, t_n) + f_v (\mathbf{v}^{n+1}, t_{n+1}) \right]$</td>
<td>depends on τ</td>
<td>$O(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} \left[f_w (\mathbf{w}^n, t_n) + f_w (\mathbf{w}^{n+1}, t_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully Implicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v (\mathbf{v}^n, t_n) + f_v (\mathbf{v}^{n+1}, t_{n+1}) \right]$</td>
<td>depends on τ</td>
<td>$O(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} \left[f_w (\mathbf{w}^n, t_n) + f_w (\mathbf{w}^{n+1}, t_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Diagram:

- **Fully Explicit** coupling:
 - \mathbf{v}^n to \mathbf{v}^{n+1} via f_v
 - \mathbf{w}^n to \mathbf{w}^{n+1} via f_w

- **Fully Implicit** coupling:
 - \mathbf{v}^n to \mathbf{v}^{n+1} via f_v
 - \mathbf{w}^n to \mathbf{w}^{n+1} via f_w

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE
Appendix

Semi Implicit-Explicit Coupling

<table>
<thead>
<tr>
<th></th>
<th>Update Scheme</th>
<th>Stability</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Explicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} [f_v(\mathbf{v}^n, \mathbf{w}^n, t_n) + f_v(\mathbf{v}^{n+1}, \mathbf{w}^n, t_{n+1})]$</td>
<td>depends on τ</td>
<td>$O(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} [f_w(\mathbf{v}^n, \mathbf{w}^n, t_n) + f_w(\mathbf{v}^{n+1}, \mathbf{w}^n, t_{n+1})]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully Implicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} [f_v(\mathbf{v}^n, \mathbf{w}^{n+1}, t_n) + f_v(\mathbf{v}^{n+1}, \mathbf{w}^{n+1}, t_{n+1})]$</td>
<td>depends on τ</td>
<td>$O(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} [f_w(\mathbf{v}^n, \mathbf{w}^n, t_n) + f_w(\mathbf{v}^{n+1}, \mathbf{w}^{n+1}, t_{n+1})]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Semi Implicit-Explicit Coupling

<table>
<thead>
<tr>
<th>update scheme</th>
<th>stability</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>fully explicit</td>
<td>(v^{n+1} = v^n + \frac{\tau}{2} \left[f_v(v^n, w^n, t_n) + f_v(v^{n+1}, w^n, t_{n+1}) \right])</td>
<td>depends on (\tau)</td>
</tr>
<tr>
<td></td>
<td>(w^{n+1} = w^n + \frac{\tau}{2} \left[f_w(v^{n+1}, w^n, t_n) + f_w(v^{n+1}, w^{n+1}, t_{n+1}) \right])</td>
<td></td>
</tr>
<tr>
<td>fully implicit</td>
<td>(v^{n+1} = v^n + \frac{\tau}{2} \left[f_v(v^n, w^{n+1}, t_n) + f_v(v^{n+1}, w^{n+1}, t_{n+1}) \right])</td>
<td>depends on (\tau)</td>
</tr>
<tr>
<td></td>
<td>(w^{n+1} = w^n + \frac{\tau}{2} \left[f_w(v^{n+1}, w^n, t_n) + f_w(v^{n+1}, w^{n+1}, t_{n+1}) \right])</td>
<td></td>
</tr>
<tr>
<td>semi explicit-implicit</td>
<td>(v^{n+1} = v^n + \frac{\tau}{2} \left[f_v(v^n, w^n, t_n) + f_v(v^{n+1}, w^{n+1}, t_{n+1}) \right])</td>
<td>unconditionally</td>
</tr>
<tr>
<td></td>
<td>(w^{n+1} = w^n + \frac{\tau}{2} \left[f_w(v^n, w^n, t_n) + f_w(v^{n+1}, w^{n+1}, t_{n+1}) \right])</td>
<td></td>
</tr>
</tbody>
</table>
Appendix

Predictor Coupling

Heun’s method

\[
\begin{pmatrix}
 v^{n+1} \\
 w^{n+1}
\end{pmatrix}
= \begin{pmatrix}
 v^n \\
 w^n
\end{pmatrix}
+ \frac{dt}{2} \left(\begin{pmatrix}
 f_v(v^n, w^n, t_n) + f_v(\tilde{v}^{n+1}, \tilde{w}^n, t_{n+1}) \\
 f_w(v^n, w^n, t_n) + f_w(v^n, \tilde{w}^{n+1}, t_{n+1})
\end{pmatrix} \right),
\]

- \tilde{v}^{n+1}, \tilde{w}^{n+1} from explicit Euler
- only coupling at the beginning of timestep happening

With predictor

\[
\begin{pmatrix}
 v^{n+1} \\
 w^{n+1}
\end{pmatrix}
= \begin{pmatrix}
 v^n \\
 w^n
\end{pmatrix}
+ \frac{dt}{2} \left(\begin{pmatrix}
 f_v(v^n, w^n, t_n) + f_v(\hat{v}^{n+1}, \hat{w}^{n+1}, t_{n+1}) \\
 f_w(v^n, w^n, t_n) + f_w(\hat{v}^n, \hat{w}^{n+1}, t_{n+1})
\end{pmatrix} \right)
\]

- \hat{v}^{n+1}, \hat{v}^{n+1}, \hat{w}^{n+1} and \hat{w}^{n+1} from explicit Euler
- coupling also for stages of scheme
Appendix

What is Waveform Relaxation?

Algorithm

We want to solve the coupled problem

\[F_v(v, c) = 0, \quad F_w(w, c) = 0. \]

with \(v, w, c \) known for \(t < t_n \) on the window \(T_n = [t_n, t_{n+1}] \).

1. set \(k = 0 \) and extrapolate \(c^0(t) = c_n \) for \(t \in T \)
2. solve decoupled \(F_v, F_w \) using \(c^k \) to obtain \(v^{k+1}, w^{k+1} \) for \(t \in T \)
3. use \(v^{k+1}, w^{k+1} \) to obtain \(c^{k+1} \)
4. if not converged:
 a. set \(k = k + 1 \) and go to step 2,
 b. otherwise proceed to next window \(T_{n+1} \)

\(^1\)Adapted from Schöps, S., et al. (2017). Application of the Waveform Relaxation Technique to the Co-Simulation of Power Converter Controller and Electrical Circuit Models. https://doi.org/10.1109/MMAR.2017.8046937

M.Sc.(hons) Benjamin Rüth (TUM) | Time stepping algorithms for partitioned multi-scale multi-physics in preCICE