Improving Time Stepping in Partitioned Multi-Physics

Benjamin Rüth, Benjamin Uekermann

Technical University of Munich
Department of Informatics
Chair of Scientific Computing

89th GAMM Annual Meeting
Technical University of Munich
20. March 2018
Fluid-Structure-Acoustics

![Fluid-Structure-Acoustics simulation and partitioned setup](image)

Fluid-Structure-Acoustics simulation and partitioned setup\(^1\).

<table>
<thead>
<tr>
<th>physics</th>
<th>timescale</th>
<th>solver</th>
<th>scheme</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A)</td>
<td>small</td>
<td>Ateles</td>
<td>RK</td>
<td>2 or 4</td>
</tr>
<tr>
<td>(A)</td>
<td>small</td>
<td>FASTEST</td>
<td>EE</td>
<td>1</td>
</tr>
<tr>
<td>(F)</td>
<td>medium</td>
<td>FASTEST</td>
<td>CN</td>
<td>2</td>
</tr>
<tr>
<td>(S)</td>
<td>large</td>
<td>FEAP</td>
<td>N-(\beta)</td>
<td>1 or 2</td>
</tr>
</tbody>
</table>

preCICE1

\textbf{solver} \quad \textbf{adapter} \quad \textbf{libprecice}

\begin{itemize}
 \item \textbf{fluid solver}
 \begin{itemize}
 \item OpenFOAM
 \item SU2
 \item foam-extend
 \end{itemize}
 \item \textbf{in-house solver}
 \begin{itemize}
 \item Ateles (APES)
 \item Alya System
 \item Carat++
 \item FASTEST
 \end{itemize}
 \item API in:
 \begin{itemize}
 \item C / C++
 \item Fortran
 \item Python
 \end{itemize}
\end{itemize}

\textbf{structure solver}

\begin{itemize}
 \item \textbf{commercial solver}
 \begin{itemize}
 \item CalciX
 \item Code_Aster
 \end{itemize}
 \item \textbf{commercial solver}
 \begin{itemize}
 \item ANSYS Fluent
 \item COMSOL
 \item FEAP
 \end{itemize}
\end{itemize}

\begin{itemize}
 \item \textbf{coupling schemes}
 \item \textbf{communication}
 \item \textbf{data mapping}
 \item \textbf{time interpolation}
\end{itemize}

preCICE at GAMM

preCICE Coupling Library for Multi-Physics Simulation
Amin Totounferoush, University of Stuttgart S07.01 Coupled Problems
(today in the morning)

Quasi-Newton – A Universal Approach for Coupled Problems and Optimization
Miriam Mehl, University of Stuttgart S07.01 Coupled Problems
(just now)

Multi-physics simulations with OpenFOAM through preCICE
Gerasimos Chourdakis, Technical University of Munich S22.01 Scientific Computing
(Thursday morning)
Improving Time Stepping in Partitioned Multi-Physics

Requirements

Engineering:
- use different solvers
- use different discretization
- no degradation of solver performance

Informatics:
- black-box approach
- parallel

Multi-Scale Multi-Physics
Outline

Partitioned Heat Transport Equation

- introduce the partitioned heat transport equation example
- introduce classical and advanced coupling schemes
- show deficits of classical explicit and implicit coupling schemes
- show advantages of waveform relaxation coupling scheme

Simple setup

\[\begin{align*}
 v^{n+1} & \quad \text{Solver A} \\
 t^{n+1} & \quad \tau \\
 w^{n+1} & \quad \text{Solver B} \\
 v^n & \quad \text{IE} \\
 t^n & \\
 w^n & \quad \text{IE}
\end{align*} \]
Reference Solution: The Monolithic Setup

Heat Transport equation

\[\frac{\partial u(x,t)}{\partial t} = \alpha \frac{\partial^2 u(x,t)}{\partial x^2}, \quad x \in \Omega, \quad t \in \mathbb{R}^+ \]

Dirichlet boundary conditions

\[u(x = x_L, t) = u_L^D, \quad u(x = x_R, t) = u_R^D \]

Initial condition

\[u(x, t = 0) = u_0(x) \]
The Partitioned Setup

Dirichlet-Neumann coupling

Get Ω\(_L\): \(v(x_C)\)

Set Ω\(_R\): \(w(x_C)\)

Heat Transport on Ω\(_L\):
\[
\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}
\]

Heat Transport on Ω\(_R\):
\[
\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2}
\]

Partitioning

\(\tau = 0.2\)

\(\Omega_1: v(x, t)\)

\(\Omega_2: w(x, t)\)

M.Sc.(hons) Benjamin Rüth (TUM) | Improving Time Stepping in Partitioned Multi-Physics
Classical Coupling Schemes

Dirichlet-Neumann coupling

Get Ω_L: $v(x_C)$

Set Ω_R: $w(x_C)$

Dirichlet BC

Heat Transport on Ω_L

$$\frac{\partial v}{\partial t} = \frac{\partial^2 v}{\partial x^2}$$

Neumann BC

Set Ω_L: $v_x(x_C)$

Get Ω_R: $w_x(x_C)$

Heat Transport on Ω_R

$$\frac{\partial w}{\partial t} = \frac{\partial^2 w}{\partial x^2}$$

Explicit coupling

$\mathbf{v}^{n+1} \rightarrow \mathbf{w}^{n+1}$

$\mathbf{v}^n \rightarrow \mathbf{w}^n$

Implicit coupling

$\mathbf{v}^{n+1} \leftarrow \mathbf{w}^{n+1}$

$\mathbf{v}^n \leftarrow \mathbf{w}^n$
Convergence order in time

- use constant spatial meshwidth h
- refine temporal meshwidth τ
- compare to monolithic reference solution u^n with fine τ
Order Degradation: Trapezoidal rule

- order reduced to $\mathcal{O}(\tau)$
- $h = 0.2$
- stability problems for Fully implicit coupling

![Graph showing error in left domain Ω_l vs. time step τ.]
Order Degradation: Trapezoidal rule

- order reduced to $O(\tau)$

- $h = 0.01$

- stability problems for Fully implicit coupling

- stability problems for Fully explicit coupling
Semi Implicit-Explicit Coupling

<table>
<thead>
<tr>
<th></th>
<th>update scheme</th>
<th>stability</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>fully explicit</td>
<td>(\mathbf{v}^{n+1} = \mathbf{v}^{n} + \frac{\tau}{2} \left[f_v(\mathbf{v}^{n}, t_n) + f_v(\mathbf{v}^{n+1}, t_{n+1}) \right])</td>
<td>depends on (\tau) (\mathcal{O}(\tau))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\mathbf{w}^{n+1} = \mathbf{w}^{n} + \frac{\tau}{2} \left[f_w(\mathbf{w}^{n}, t_n) + f_w(\mathbf{w}^{n+1}, t_{n+1}) \right])</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fully implicit</td>
<td>(\mathbf{v}^{n+1} = \mathbf{v}^{n} + \frac{\tau}{2} \left[f_v(\mathbf{v}^{n}, t_n) + f_v(\mathbf{v}^{n+1}, t_{n+1}) \right])</td>
<td>depends on (\tau) (\mathcal{O}(\tau))</td>
<td></td>
</tr>
<tr>
<td></td>
<td>(\mathbf{w}^{n+1} = \mathbf{w}^{n} + \frac{\tau}{2} \left[f_w(\mathbf{w}^{n}, t_n) + f_w(\mathbf{w}^{n+1}, t_{n+1}) \right])</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Semi Implicit-Explicit Coupling

<table>
<thead>
<tr>
<th></th>
<th>Update Scheme</th>
<th>Stability</th>
<th>Order</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fully Explicit</td>
<td>$v^{n+1} = v^n + \frac{\tau}{2} \left[f_v(v^n, t_n, c_n) + f_v(v^{n+1}, t_{n+1}, c_n) \right]$</td>
<td>depends on τ</td>
<td>$O(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$w^{n+1} = w^n + \frac{\tau}{2} \left[f_w(w^n, t_n, c_{n+1}) + f_w(w^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fully Implicit</td>
<td>$v^{n+1} = v^n + \frac{\tau}{2} \left[f_v(v^n, t_n, c_{n+1}) + f_v(v^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td>depends on τ</td>
<td>$O(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$w^{n+1} = w^n + \frac{\tau}{2} \left[f_w(w^n, t_n, c_{n+1}) + f_w(w^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Coupling Type</td>
<td>Update Scheme</td>
<td>Stability</td>
<td>Order</td>
</tr>
<tr>
<td>-----------------------</td>
<td>---</td>
<td>------------</td>
<td>-------</td>
</tr>
<tr>
<td>fully explicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v(\mathbf{v}^n, t_n, c_n) + f_v(\mathbf{v}^{n+1}, t_{n+1}, c_n) \right]$</td>
<td>depends on τ</td>
<td>$\mathcal{O}(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} \left[f_w(\mathbf{w}^n, t_n, c_{n+1}) + f_w(\mathbf{w}^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>fully implicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v(\mathbf{v}^n, t_n, c_{n+1}) + f_v(\mathbf{v}^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td>depends on τ</td>
<td>$\mathcal{O}(\tau)$</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} \left[f_w(\mathbf{w}^n, t_n, c_{n+1}) + f_w(\mathbf{w}^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
<tr>
<td>semi explicit-implicit</td>
<td>$\mathbf{v}^{n+1} = \mathbf{v}^n + \frac{\tau}{2} \left[f_v(\mathbf{v}^n, t_n, c_n) + f_v(\mathbf{v}^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td>???</td>
<td>???</td>
</tr>
<tr>
<td></td>
<td>$\mathbf{w}^{n+1} = \mathbf{w}^n + \frac{\tau}{2} \left[f_w(\mathbf{w}^n, t_n, c_n) + f_w(\mathbf{w}^{n+1}, t_{n+1}, c_{n+1}) \right]$</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Higher Order: Semi Implicit-Explicit Coupling

- order $\mathcal{O}(\tau^2)$ maintained for semi explicit-implicit coupling
- no stability problems for semi explicit-implicit coupling

![Graph showing error in left domain Ω_L](image)

- Trapezoidal Rule - Monolithic Approach
- Trapezoidal Rule - Semi Implicit Explicit Coupling
Higher Order: Semi Implicit-Explicit Coupling

- order $\mathcal{O}(\tau^2)$ maintained for semi explicit-implicit coupling
- no stability problems for semi explicit-implicit coupling

<table>
<thead>
<tr>
<th></th>
<th>stability</th>
<th>order</th>
</tr>
</thead>
<tbody>
<tr>
<td>fully explicit</td>
<td>depends on τ</td>
<td>$\mathcal{O}(\tau)$</td>
</tr>
<tr>
<td>fully implicit</td>
<td>depends on τ</td>
<td>$\mathcal{O}(\tau)$</td>
</tr>
<tr>
<td>semi explicit-implicit</td>
<td>unconditionally</td>
<td>$\mathcal{O}(\tau^2)$</td>
</tr>
</tbody>
</table>
Intermediate Summary

<table>
<thead>
<tr>
<th>Semi-Explicit-Implicit</th>
<th>Goal</th>
</tr>
</thead>
<tbody>
<tr>
<td>identical timesteps</td>
<td>subcycling</td>
</tr>
<tr>
<td>simple schemes</td>
<td>substepping</td>
</tr>
<tr>
<td>identical solvers</td>
<td>inhomogeneous setup</td>
</tr>
<tr>
<td>$\mathcal{O}(\tau^2)$</td>
<td>Higher order</td>
</tr>
<tr>
<td>tailored schemes</td>
<td>general solution strategy</td>
</tr>
</tbody>
</table>

Multi-Scale Multi-Physics
What is Waveform Relaxation?

Background Information

Algorithm

We want to solve the coupled problem

$$F_v(v, c) = 0, \ F_w(w, c) = 0.$$

with v, w, c known for $t < t_n$ on the window $T_n = [t_n, t_{n+1}]$.

1. set $k = 0$ and extrapolate $c^0(t) = c_n$ for $t \in T$
2. solve decoupled F_v, F_w using c^k to obtain v^{k+1}, w^{k+1} for $t \in T$
3. use v^{k+1}, w^{k+1} to obtain c^{k+1}
4. if not converged:
 a. set $k = k + 1$ and go to step 2,
 b. otherwise proceed to next window T_{n+1}

Waveform Relaxation (WR) Coupling Scheme

WR with our example

- Semi-Explicit-Implicit coupling equals WR with linear interpolation of
 \[c^k(t) = \frac{c_n(t_{n+1} - t)}{\tau} + \frac{c_{n+1}(t - t_n)}{\tau}. \]

- Semi-Explicit-Implicit coupling:
 \[v^{n+1} = v^n + \frac{\tau}{2} \left[f_v(c^k(t_n)) + f_v(c^k(t_{n+1})) \right] \]
 \[w^{n+1} = w^n + \frac{\tau}{2} \left[f_w(c^k(t_n)) + f_w(c^k(t_{n+1})) \right] \]

- Other interpolation methods are spline or dense output interpolation

Multi-Scale Setup

\[\tau_1 = 0.5 \]
\[\tau_2 = 0.2 \]
High Order and Subcycling

<table>
<thead>
<tr>
<th>scheme-solvers</th>
<th>time step</th>
<th>order</th>
<th>stable</th>
</tr>
</thead>
<tbody>
<tr>
<td>M-RK4</td>
<td>$\tau_1 = \tau_2$</td>
<td>$O(\tau^4)$</td>
<td>small τ_2</td>
</tr>
<tr>
<td>Im-TR/TR</td>
<td>$\tau_1 = \tau_2$</td>
<td>$O(\tau)$</td>
<td>small τ_2</td>
</tr>
<tr>
<td>Im-RK4/RK4</td>
<td>$\tau_1 = \tau_2$</td>
<td>$O(\tau)$</td>
<td>small τ_2</td>
</tr>
<tr>
<td>WR-RK4/RK4</td>
<td>$\tau_1 > \tau_2$</td>
<td>$O(\tau^4)$</td>
<td>small τ_2</td>
</tr>
<tr>
<td>WR-RK4/TR</td>
<td>$\tau_1 = \tau_2$</td>
<td>$O(\tau^2)$</td>
<td>$\forall \tau_2$</td>
</tr>
</tbody>
</table>

Diagram:
- Error in left domain Ω_L
ylabel

τ: 10^{-15} to 10^{-4}

τ: 10^{-12} to 10^{-9}

τ: 10^{-6} to 10^{-3}

τ: 10^{-3} to 10^0

τ: Δx
Conclusion

Partitioned Heat Transport

✓ introduce the partitioned heat transport equation example
✓ introduce classical and advanced coupling schemes
✓ deficits of classical explicit and implicit coupling schemes
 • order and stability degradation
✓ advantages of waveform relaxation coupling scheme
 • order and stability maintained
 • inhomogeneous setup
 • subcycling

Multi-Scale

\[
\begin{align*}
\tau_1 & \quad \text{EE} \\
\tau_2 & \quad \text{RK4}
\end{align*}
\]

\[
\begin{align*}
\tau_1 & \quad \text{EE} \\
\tau_2 & \quad \text{RK4}
\end{align*}
\]

\[
\begin{align*}
v^{n+1} & \quad t^{n+1} \\
v^n & \quad t^n
\end{align*}
\]

\[
\begin{align*}
w^{n+1} & \quad \tau_2 \\
w^{n+0.9} & \quad \text{RK4} \\
w^{n+0.1} & \quad \tau_2 \\
w^n & \quad \text{RK4}
\end{align*}
\]

M.Sc.(hons) Benjamin Rüth (TUM) | Improving Time Stepping in Partitioned Multi-Physics
Outlook

Implementation

- Interpolation methods?
- Convergence of acceleration schemes
- Parallel performance

Further Tests

1D Tube\(^1\):

preCICE examples\(^2\):

\(^2\)figure from Cheung Yau, L. (2016). Conjugate Heat Transfer with the Multiphysics Coupling Library preCICE. TUM.