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Abstract

In this bachelor thesis a reduction of sparse grids is presented, to deal with
the large number of dimensions of images. The reduction is based on the
geometric structure of image data. The information of neighboring pixels is
weighted more than pixels at different sides of the image. Additionally the use
of Sparse Grid Density Estimation and Modified Linear Basis functions helps
reaching the high dimensionality. An efficient evaluation of the modified grid
is presented. The method is applied to different image datasets. Reaching
promising results on selected digits of the MNIST dataset.
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1 Introduction

With more sensors capturing more data the use of machine learning tech-
niques have gained an increasing importance. Pictures make up a large part
of that data. Every day many pictures are taken by security cameras, media,
private smartphones, medical imaging and more. To deal with all this data
image classification methods are needed.

So far sparse grids have been only used in machine learning application
of up to 166 dimensions. This was in 2010 when Pfliiger successfully applied
a regression on the Musk-1 dataset [Pfl10]. Image data easily overshoots this
number of dimensions.

In this thesis I will present a Sparse Grid approach for image classifi-
cation. It is a further simplification from a regular Sparse Grid, by only
including a detailed resolution only on neighboring dimensions. The goal is
to use these simplifications to reach the high dimensionality of image data.
Additionally Krenz and Khakhutskyy already achieved first results using this
type of reduction [Krel6][Khal6].

In Section [2| I will give a brief introduction to sparse grids and classifica-
tion methods using them. Then in Section [3| the geometrically aware grids
are introduced with several possibilities of constructing them. Furthermore
a brief discussion is held on the type of classification and basis functions.
The implementation will follow in Section |4] where an efficient method for
evaluating the geometrically aware grid is presented. Finally we will have a
look at the performance of the method in section



2 Foundation

This section gives a brief introduction to sparse grids and classification meth-
ods. For a more detailed explanation I refer to [BG04] for sparse grids, [P110]
and [PPB14] for classification methods.

2.1 Sparse Grids

Sparse Grids are a efficient method for interpolating high dimensional func-
tions. Sparse Grids have an advantage over full grids that the number of grid
points grows significantly slower with increasing dimensions. If the function
that is being approximated is smooth enough, error to cost ratio is greatly
increased, making sparse grids computationally feasible.

2.1.1 Hierarchical Function Space

Let us assume we have a one dimensional function space V; with a certain
level I € N that defines the resolution of the function space. The hierarchical
increment W, is defined as the space that extends the lower lever space V;_;
to the current level V; [BGO4].

Vi=ViaeWw, (2.1)

With the trivial choice of V; = W;, we can split V; into several hierarchical
subspaces [BG04].
Vi=PWw (2:2)
i<k
When moving to higher dimensions we construct the d dimensional subspace
Wi with the tensor product.

d
W= @ 23)
=1

Whereas the level vector | € N¢ defines the level in each dimension and I/Vl(d)
is the function subspace in dimension d. These subspaces can be combined to
the d dimensional function space V; by including all possible tensor products
that can be constructed from one dimensional subspaces up to level I [BG04].

V= @ W (2.4)

JENIA|jloo<l
The construction of V, for the two dimensional case is shown in figure 2.1]
The next section will focus on certain choices for V' and W.
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Figure 2.1: Hierarchical subspaces for dimension two. The two dimensional
subspaces are created by the tensor product of the one dimensional hierarchi-
cal subspaces. By combining all subspaces in a square pattern we maintain
the function space V.



2.1.2 Basis Functions

In this section I will introduce linear basis functions with and without bound-
ary conditions and a modified version of the linear basis. Other basis func-
tions, including non linear ones, are possible. However for computational
reasons this thesis will only cover the most basic basis functions. Before the
basis functions are introduced I will cover some assumptions that apply to
the basis functions.

General assumptions For a more simple notation the domain is reduced
to 2 = [0, 1]. However every finite domain can be affinely transformed to the
reduced domain.

The function space V; will be constructed by several underlying basis
functions ¢y ;.

V, = span{¢i(x)} (2.5)
The basis functions of the multidimensional space constructed with the ten-
sor product are obtained by multiplying the basis functions in each dimen-
sion [BGO4].
d
oA @) = [ [ o, () (2.6)
j=1

The following paragraphs will explicitly describe the basis functions ¢ ;.
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Figure 2.2: Piecewise linear interpolation of sin®(%")
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Figure 2.3: Nodal and Hierarchical Linear Basis Functions for levels 1 to 3.
Linear Basis I will start with a one dimensional piecewise linear interpo-
lation problem. This can be easily accomplished with ”hat” functions as seen

in Figure [2.2l The basis functions can be derived from what Bungartz called
the mother of all hat functions [BG04]:

¢(r) = max {1 — |z],0} (2.7)

For the linear basis supporting points are chosen at multiples of 2~ with
level I € N. This results in the basis functions shown in figure 2.3al The
mother function (2.7) can be modified to fit V;:

pri(z) = ¢(2" - x +14) (2.8)
Hence the function space can be denoted as:

Vi = span{gr(z)]1 <@ <2 — 1} (2.9)

5
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Figure 2.4: The hierarchical basis functions up to level 3.

To move from the nodal space V; to a hierarchical space we can have
a look at where information is gained by choosing a higher level. V; only
contains the supporting point z; = 0.5 whereas V5 contains the three points
T = 0.25, T = 0.5 and Z3 = 0.75. Since the point 7, is already in V)
the use of V; & V5 contains redundant information. Instead only the ansatz
functions at the new supporting points can be added. To obtain the new
ansatz functions one has to only take the functions with odd indices. This
gives us the hierarchical subspace W}.

W, = span{¢y;(z)|1 <i<2' —1Aidis Odd} (2.10)

To receive the full hierarchical function space all W; up to the desired level
have to be combined (see Figure . By construction and from Figure
it can be easily seen that the hierarchical and nodal space are identical since
a piecewise linear interpolation is done at the same supporting points.

The two dimensional case can be seen in Figure . The red mesh Wy 1)
is obtained by multiplying the the functions of Wj for z and W for y together.
Equivalently the blue mesh is W, 1) and W 3) while the green one is W, 5.

By combining all subspaces in every dimension up level [ a full grid of
level [ is obtained. The grid in Figure is of level 2.

Boundary conditions With the linear basis we assume that the values at
the boarder are 0. This however is not always the case. To extend the linear
basis functions by boundary we can add two basis function to the subspace
Wi. With

Wi = span{¢oo(), o1 (), d11(2)} (2.11)

6
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Figure 2.5: 2D Linear Basis

the basis functions in Figure are created [Pfl10]. What is a small ad-
justment in the one dimensional case, greatly increases the number of basis
functions for higher dimensional applications. Wi already contains 3¢ ba-
sis functions. And all subspaces W} with | containing k instances of level
1, have 3% times the number of basis functions the regular linear basis has.
Effectively this is an increase of O(3%).

Modified linear basis The standard linear basis can be modified to con-
tain boundary information without adding new basis functions. The follow-
ing modification will give us the modified linear basis [PA10].

(

1 ifl=1Ani=1
9 _9l. : —l+1
v izel0, 2] ifl>1Ai=1
s 0 else (2.12)
Li = -
’ 2L 1—4 if 1—271 1
r+l-i ifoel O DY S
0 else
\¢(21 T — 1) else

The basis functions are shown in 2.7 Aside from the added boundary in-
formation the modified linear basis has a further feature worth mentioning.
The level 1 basis function always evaluates to 1. Thus we do not have to

7
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Figure 2.6: The hierarchical linear basis functions with boundaries up to
level 3.

look at x for the evaluation. The 2 dimensional tensor product construction
is shown in Figure 2.8

2.1.3 From Full to Sparse Grid

Since the basis functions in V; are organized in a grid fashion it is called a full
grid. The number of grid points in the full grid grows exponentially with the
number of dimensions. With the linear basis functions we have a gridsize of
(2! —1)4. With increasing dimensions this method is to complex to compute.

A reduced form of the full grid space is the sparse grid space Vl(l). The
sparse grid however only includes the subspaces up to a diagonal instead of
a square. We can formulate this as [BG04]:

vii= P w (2.13)

|7l1<l—d+1

For a two dimensional sparse grid of level 2 the red and blue subspaces of
Figures [2.5 and [2.§ have to be included. To reach level 3 the blue subspace
and W, 3 and W3 ; would need to be included as well. The comparison to the
full grid for two dimensions can be seen in Figure [2.9]

However we cannot simply remove grid points and expect the same ac-
curacy. According to Pfliiger the grid point to error ratio of the full grid is
in O(N?t) and for the sparse grid it is only O(N?) for sufficiently smooth
functions [Pfl10]. Whereas N is the number of grid points for the one dimen-
sional grid. This makes sparse grid a more efficient method than full grids.
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Figure 2.9: Gridpoints of the two dimensional sparse grid (left) and the full
grid (right). Both are of level 3. The level 1 and 2 grids are shown in red
and blue.

2.1.4 Adaptivity

Instead of increasing the level of the sparse grid to reach a lower error, it
would be more efficient to only include new basis functions in critical areas.
This can be done by refining a grid point. To refine a grid point usually all
basis functions of the next level that cover the same area are added [P{I10].
While basis functions that also cover area that is not covered by the refined
point are excluded. An example for two dimensions is shown in Figure [2.10]
When refining a point we add 2 new points per dimension (the two neigh-
boring points).

One approach to identify the crucial parts of the domain is to use the val-
ues of our basis functions. The higher the value of a basis function the more
it is correcting the higher level parent function. We assume that this region
need a higher resolution. This refinement is called surplus refinement [Pfi10].
However other refinement criteria are also possible.

2.2 Classification

Sparse grids can be applied to a classification problem. I will introduce two
classification methods. The Regression is a method very similar to interpola-
tion. Whereas the density estimation interprets the data as random samples
of a underlying density function and tries to approximate the density.

10



Figure 2.10: Refinement of the red point (on the left) is done by adding the
next level basis functions that cover the same area. The added points (in
green) and their effecting area are shown in the two middle boxes. On the
right we have the refined grid.

2.2.1 Sparse grid regression

First the classification problem has to be transformed to a regression problem.
I will first view a binary classification to introduce the regression and later
present a method for more classes.

For two classes we can simply assign the value 41 to one class and —1 to
the other and then apply a regression. Data is then classified by the sign of
the output.

The basic idea of regression is to approximate a function f(x) that is as
close as possible to the targets for the given training data. To avoid over
fitting a regularization term can be introduced. Pfliiger used following least
squares formula [PfI10]:

M

Fla) = angmin - S (F(r) — ) + AV ()3 (2.14)

fevt i=1

The sum Y20 (f(x;) — y:)? assures that the function is close to the data.
While |V f(x)|3 penalizes functions that are not smooth. The trade off be-
tween the closeness to the data and smoothness can be adjusted with the
choice of . The value of A is chosen problem specific and typically ranges
between 1075 and 1. The problem can be formulated to the following system
of linear equations

1. 1
(MBB + )\C) a= MBy (2.15)

to calculate the coefficients a [Pfl10]. The regularization term is represented
by C;; = (Vi(x),Vg;(x))r2. While B and BT contain the evaluation of
the basis functions B, ; = ¢;(x;) for each data point x;. Since the matrix B
is of size N x M and dependent on the data set, solving the linear system
becomes more complex with a larger dataset. Instead of solving the system
of linear equations explicitly gradient decent is commonly used.

11



For a problem with more than two classes we could assign each class with
a different value and then apply a regression. This might not be the optimal
approach for most problems, since classes that are close to each other in the
input data may not have been assigned values that are close to each other.
A different approach is a “one hot” method where a regression is applied
for each class. Data points that lie in the class are assigned to value 1 and
the other points to 0. We can then use f;(x) for class i as a measure of
how certain the function is and assign the label of the highest evaluating
function [Pfl10].
label(x) = arg max f;(x) (2.16)

)

2.2.2 Classification with sparse grid density estimation

In contrast to regression density estimation interprets the data as random
samples generated from a probability distribution instead of noisy evaluations
of a function. The goal of the density estimation is to approximate the
underlying density function. Areas that have a lot of samples will have a
higher density then areas with fewer samples.

Density based classification Classification based on a density functions
follows the previously mentioned “one hot” approach. For each class the
underlying density is approximated with the training data. Data is classified
by choosing the label that has the highest density at a given point.

Sparse grid density estimation According to Peherstorfer in 2013 we
can formulate the sparse grid density estimation with following system of
linear equations [Pehl13].

(R+XC)a=b (2.17)

Where R is a matrix containing L-2 scalar products of the ansatz functions
R;j = (¢i, 0j)12- Cij = (Api, Apj) 12 is a regularization matrix with A > 0
as regularization factor. The vector a represents the weights «; of the basis
functions ¢;. on the right side, b is the average evaluation of the basis function
¢, resulting in b; = - ij ¢i(xj). For A there are many different options
including very complex ones. However by choosing C' equal to the identity [/
we obtain a regularization that benefits smooth functions and does not need
any computation. An explanation can be found in [Peh13] and [PPB14].
This system of linear equations has some beneficial properties. The ma-
trix (R+AC) has the dimensions N x N. This allows the use of large datasets
since the system does not scale with the size of the dataset. Furthermore for
a fixed \ the matrix is completely independent of the data. Hence we can

12



precompute a matrix decomposition to reduce the complexity during training
form O(N3) to O(N?).

Cholesky decomposition A practical decomposition for the Density Es-
timation is the Cholesky decomposition. It allows us to efficently add new
grid points even after the matrix is decomposed [Siel6]. With this property
we can train the system, then apply adaptivity at crucial parts of the system
and continue the training without needing to recompute the matrix decom-
position. However a change of A in the decomposed form is to time intensive
to be done [Siel6]. So the value of A has to be set before training.

13



3 Image Classification with Sparse Grids

The following section will deal with the challenges of using sparse grids for
image classification. The most challenging aspect is the high number of di-
mensions since each pixel represents a dimension of the input data. However
image data has the property of having organized dimensions. Each pixel has
an exact position on a two dimensional grid with neighboring pixels in each
dimension. This property will be used to construct a sparse grid classifier
that can deal with large number of dimensions.

3.1 Geometrically aware sparse grids

The goal of geometrically aware sparse grids is to reduce a regular sparse
grid intelligently to obtain a more efficient error to gridpoint ratio.

3.1.1 Interaction terms

Similar to the step from full to spare grid in [2.1.3] a further reduction can
be performed by not including certain subspaces. W, only adds a new
resolution in the z; direction as seen in the contour plots of 3.1} Equivalently
W 2 only contains resolution in the x direction. Only with W, 5 information
on the interaction between the two dimensions is gained. This becomes even
clearer with the use of modified linear basis functions (see Figure [3.2)). A
d-dimensional subspace models the interactions between all dimensions that
are of level two or higher.

This property can be used to reduce the grid by only including sub-
spaces corresponding to set of interactions. To describe what subspaces
should be included I will make use of interaction-terms mentioned by Krenz
in 2016 [Krel6]. Each interaction-term is a subset of all input dimensions
D ={dy,ds, ...,d4}.

t:= {d17d4,d9} Q D (31)

T = {t1,ty, ...t} C2° (3.2)

Lets define a function () that returns the modeled interactions of the sub-
space Wr:
¢:NT— 27
- , (3.3)
With the use of this function the interaction term aware sparse grid V7
can be described. The grid contains all subspaces that model a interaction

14
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Figure 3.1: 2 D contour plots of linear basis functions

between dimensions given in the set of wanted interactions 7.

vi= & 0w (3.4)

W,eVOAC()ET

A three dimensional example grid is given in Figure 3.3 With a efficient
choice of T' the model can be drastically reduced in size, while still preserving
the wanted information. Section will focus on finding an appropriate 7'
for image data.

3.1.2 Refinement

The refinement of a interaction based sparse grid is very similar to the regular
sparse grid. The difference lies in the added points. Since our modified sparse
grid is limited by the interactions we will continue to only add points if they
model a wanted interaction. So instead of adding 2 - d new grid points for
each refined point only 2- (maxy,er |¢;|) new points are added. The number of
new grid points is limited by the interaction containing the most dimensions.
This can greatly decrease the number of grid points for each refinement step.

15
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Figure 3.3: On the left: 3D interaction term sparse grid of level 4. T =
{9 {x},{y}, {z},{z,y}} On the right the not included point are shown.
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Figure 3.4: Neighbor stencil

3.1.3 Stencil choice

There are several different stencils that can be used for a geometrically aware
sparse grid. The most basic one being only to consider the combination of two
dimensions. One approach is, to take only the direct geometrical neighbors
of a dimension. I will call this stencil DN for Direct Neighbor. This can
be extended to include the diagonals as well (see Figure [3.4)). I will refer to
this as DNDiag. The resulting sparse grid is a highly simplified version of a
regular one. The reduction of grid points is shown in Table|3.5] where 8x8x3
data is put into a sparse grid, using only the direct neighbor method.

H level 2 ‘ level 3 ‘ level 4

neighbor stencil 385 | 3009 11 969
regular SG 385 | 74 497 | 9 659 649

Figure 3.5: comparison in gridsize

Possibly a more powerful stencil could compare more than two dimen-

sions. To achieve a comparison between n different dimensions the sparse
grid level has to go up to n + 2. So very large stencils will face the problem
of increasing the number of grid points a lot.
A simple method for comparing multiple dimensions, is to take a square (for
higher geometric dimensions a hypercube) of size n neighboring dimensions
and comparing all of them. The combinations using less then n¢ dimensions
will be also included. This is shown in Figure for a two by two square.

Different stencils can be combined in different geometrical dimensions.
For image classification an interesting method would be to compare a square

17
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of pixels next to each other in the same color channel, but only compare
different colors channels in the same pixel location.

Grid points of different stencils for images This section will analyze
the effect of stencil choice on the number of grid points. This is a crucial
step in developing an adequate stencil. The number of grid points can be
calculated by counting the subspaces of each level, since subspaces of the
same level have the same number of grid points. A subspace of level [ has
2!=1 grid points. The number subspaces of level | added to the grid by a
interaction of k dimensions is equivalent to the possibilities of distributing
Il — k — 1 not differentiable balls on k differentiable urns. This results in
(l_k?jk_l) = (l_lﬁl) subspaces. When summing up all grid points contained
in the subspaces modeling a interaction of k£ dimensions following formula is
obtained for a sparse grid of level m:

g = Z;ik+1 27:_1 ) (Z_Z;il) if k Z 1 (35)
1 ifk=0

For better calculation the set of interaction terms 7' can be partitioned
by the number of dimensions contained in a interaction.

T =4S

S, ={tlt e T Alt| = i}

The next step is to calculate the cardinality |S;| of each partition. To get
the total number of grid points the sum

max k

#gridpoints = Z |Si| - gs

=0

18



has to be calculated. Since S; is not only dependent on the size of the image,
but also on the stencil choice, different stencils will be investigated. g is
solely dependent in the level of the sparse grid. The number of grid points
for the following stencils are based on a image of size = x y.

Neighbor Stencil on a single color image In Figure the neighbor
stencil can be seen for one color channel. First only the direct neighbors
(excluding the blue lines) will be considered.

The partition 57 is equal to all dimensions D. In this case:

[Sil =Dl =z -y

S, is shown by the arrows in Figure 3.4 There are z(y — 1) green and
(x — 1)y black arrows. This lead to:

1So| =2(y —1) + (z — 1)y

When including the diagonal neighbors as well, the blue arrows have to
be added too.

15| =x(y — 1)+ (z = Dy +2(x — 1)(y — 1)

For the 32x32 images, the resulting grid sizes are shown in table [8.1]

Neighbor Stencil on a 3 color channel image When introducing color
information the dimensions increase by a factor of three. If the same stencils
mentioned in the paragraph above are used on each color channel individually,
without modeling interactions between channels, the number of grid points
will increase by the factor three. This stencil I will refer to as NoCol since
no interactions between the color channels are included.

However interactions between the color channels might be desirable. This
can be achieved by adding interactions consisting of the R,B and G values of
a pixel. T will call this Col. Hence we have to add {r, g}{r,b}{g,b}{r, g,0}
to the interaction terms. This leads to the following new .S;.

|S1] = |D| = 3xy

|So| =3z(y — 1)+ 3(x — Dy + (§>xy

1S3 = zy

In Figure |3.7] we see the grid sizes of the geometrically aware grids and
the regular sparse grid. The introduction of the stencils greatly slows down
the growth of the sparse grid with rising level.

19



3.2 Basis Choice

With the large number of dimensions of image data the choice of basis func-
tions plays a great effect. This section will discuss what basis functions are
feasible for the high dimensions and data distributions of images.

3.2.1 Linear Basis

Linear Basis function are very simple and offer a decent resolution for most
classification problems. Each basis function is a scaled and shifted version
of the hat-function (2.8)), making the implementation simple. However there
are some problems for this application.

1. For the evaluation we have to compute many evaluations of ¢. The
evaluation per grid point is dependent on the dimensions d and the
number of data points M resulting in a complexity of O(d - M).

2. With the high number of multiplications of small numbers the evalua-
tion reaches the machine accuracy. I will illustrate this on the example
of a 32x32 image resulting in 1024 dimensions. With the expected
value of ¢ in one dimension being 0.5 the resulting expected value of
all evaluations is 0.5'9%* ~ 5.6 x 1073 easily exceeding the accuracy
of a standard double.

3. If a fully black or white pixel is located in the image, all basis func-
tions will evaluate to zero. This property is very common for images.
However this problem could be avoided by scaling the image data to a
smaller interval e.g. [0.1;0.9].

3.2.2 Boundary Basis

With the addition of boundary grid points it is possible to deal with fully
black or white pixel. This however will drastically increase the number of
grid points. g°"™ Y = 39-k. g, Even with the interaction terms this results
in an increase of order O(3%). With this increase in grid points it will not be

possible to reach the high dimensionality of image data.

3.2.3 Modified Linear Basis

As result of the problems with the previously mentioned basis functions I
chose modified linear basis functions. The biggest benefit is that the basis
function of level one evaluates to one. So the number of ¢-evaluations per
grid point is dependent on the level of the grid and not on the number of

20



dimensions. Each grid point needs a maximum of [ — 1 ¢-evaluations since
all basis functions of level one do not need to be evaluated. Lower level sub-
spaces will need even less evaluations. This tackles the problem of numerical
stability and greatly decreases the complexity of the evaluation. Further-
more the modified linear basis even provides information at the boarder of
the model.

3.3 Classification Method

The classification method I chose was the sparse grid density estimation,
since the linear system scales with the number of grid points instead of the
data points. Another advantage is the possibility of decomposing the matrix
before training, since the same decomposed matrix can be used for every
class. Additionally we can decompose and store the decomposed matrices
for common image sizes and choices of A\. The stored matrices can then be
used on different datasets.
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Figure 3.7: Number of gridpoints for each stencil for a 32 by 32 image. On
the top single color images are shown and on the bottom the images consist
of three color channels.

[ =

1 2 3 4
grid level
—e—regular sparse grid
—s— direct neighbor
—o— diagonals
—— square
T
| | | | |
1 2 3 4 5
grid level

—e—regular sparse grid
—s— direct neighbor
—o— diagonals

22




4 Implementation

The implementation of the geometrically aware grid was done in the library
SG++ using C++ [PPB10]. I will first go over some minor adjustments and
implementations I made. Then I will present an algorithm for an efficient
evaluation of the grid, that helped to reduce the training time.

4.1 Density estimation with the geometrically aware
grid

The functions for generating and refining a interaction based grid were al-
ready implemented. Additionally the routine of the sparse grid density esti-
mation was implemented as well for linear basis functions. So I simply had
to replace the calls to the regular generation and refinement methods with
the interaction based ones.

I also split up the routine of the density estimation to the part that
decomposes and stores the matrix and the part that deals with training and
evaluation. This allowed me to use the same matrix multiple times without
needing to recompute the decomposition.

4.2 L2 Scalar Product for Modified Linear Basis

The sparse grid density estimation requires the L2 scalar product. I had to
extend the existing operation for the linear basis to incorporate the differences
to the modified linear basis. The necessary modification can be derived with
the Simpson rule, since the basis functions are piecewise linear.

4.3 Evaluation

The main computational cost arises from the evaluation basis functions.
There are two different types of evaluation. The standard evaluation re-
turns the density function for each data point. This is needed to classify
data or for some refinement functors. The transposed evaluation returns the
sum of each basis functions, which is needed for the right side b of the linear
system . Both of these evaluations can be implemented in a similar
fashion, only differing on where the elemental evaluations are summed up to.

SG++ already offers implementations for the evaluation, however they
do not make use of the properties of modified linear basis functions and the
interaction terms.

The basic idea of Algorithm [I]is to iterate over all subspaces that model
a interaction, for each interaction. According to (3.4) we know that the
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Algorithm 1 Evaluation with modified linear basis and interaction terms

1: for datapoints d € D do

2 for interaction ¢ in 7" do
3 [ < Vector of size |t|
4: Set all [ to 0
5: rel Level < |l|;
6 while a point was computed or |I|; did not change do
7 for all dim ¢t do
8 g.set(dim,1,1)
9: end for
10: for all dim € t do
11: level <+ lgim + 2
12: index < 1+ 2| 2gim2'°04 1|
13: g.set(dim, level, index)
14: end for
15: g.hash()
16: if g € Grid then
17: eval < ay
18: for all dim € t do
19: eval < eval - ¢g(T4im)
20: end for
21: result|d] < result[d] + eval > result[g] for transposed
22: end if
23: Get next [ with |l|; = relLevel
24: if not possible do rel Level++ first
25: end while
26: end for
27: end for
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Table 1: Level surplus for a ternary interaction

level of the dimensions not in the interaction have to be 1. Since the other
dimensions are of level 2 or greater, I will set them to 2 and add a level
surplus to them. The surplus is stored in the vector [. During the iteration
we gradually increase the level of subspaces we look at. This is done by fixing
|I|;. We start with |I|; = 0 which only leaves us the surplus vector [ = 0. For
higher levels we can interpret [ as the digits of a number of base |I|; +1. This
allows a simple traversal of all subspaces for a given level by incrementing
the number [ represents. The development of [ for a interaction of size 3 is
shown in Table [IL With this interaction traversal of subspaces, grid points
that cannot be in the Grid according to the interaction terms are not iterated
over. This drastically reduces the number of hash operations needed, since
we need to hash each grid point before checking if it is included in the grid.
Another improvement is made in the loop starting at line Instead of
evaluating ¢(z) in each dimension, only the dimensions in the interaction
are evaluated, since the other dimensions will evaluate to one. The runtimes
are plotted in Figure 1.1 We can see that Algorithm [I] performs at a faster
order. This allows us to reach higher dimensions.

4.4 Data preprocessing

All data preprocessing was done in Python. Basic image manipulation like re-
sizing images was performed using NumPy [vdWCV11] and OpenCV [Bra00).
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Figure 4.1: Log-log plot of the runtime. The blue line represents the standard
evaluation, the red one the modified evaluation of Algorithm [I 60000 points
were evaluated on a geometrically aware of level 3. The underlying stencil
was NN with added Diagonals. Image size ranges from 8x8 to 16x16 in
increments of two.
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Gridtype Imagesize Gridpoints Trainerror Testerror

DN 8x8 833 31.41% 30.28%
DNDiag 8x8 1225 36.18% 35.23%
regular SG 8x8 8449  25.15% 24.36%
DN 28x28 10 753 27.50% 26.39%
DNDiag 28x28 16 585 28.94% 28.31%

Table 2: Classification error of different Stencils and Resolutions on the digits
2, 5 and 7 of the MNIST dataset. A = 107°

5 Classification Results

In this section I will present the application of the geometrically aware grid.
All examples are done with sparse grid density estimation using the cholesky
decomposition and modified linear basis functions. This method is applied
to the MNIST and CIFAR-10 datasets.

5.1 MNIST Dataset

O /3234785

Figure 5.1: Samples of the MNIST dataset.

The MNIST dataset is one of the most common benchmark sets for image
classification [LBBHO8]. The dataset consists of 60000 images of handwritten
digits. Each image is of size 28x28 with only a single grayscale channel. The
pixel values range from 0 (white) to 255 (black). To fit the data range to a
sparse grid, we can simply divide each value by 255.

With the images scaled to different resolutions and a geometrically aware
grid the results in Table [2| could be obtained. It is noticeable that the ac-
curacy decreases even though more grid points are added to the model by
including the diagonals. When we look at the corresponding confusion ma-
trices in [3, we see that the class 7 is more dominant than 2 and 5. When
adding the diagonals to the stencil, this effect only increases. This might be
a problem of the interaction terms.

That class with the least variance tends to be the most dominant. This
effect can be observed by stepwise removing the dominant class from the
classification problem. With this stepwise removal we obtain following order
of dominant classes: 1,9, 7,4, 6, 8, 3, 5, 2, 0 with 1 being the most dominant
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predicted predicted
2 5 7 2 5 7
21659 43 330 21578 37 417
real b 2 374 516 real 5 1 308 583
7 3 0 1025 7 2 0 1026

Table 3: Confusion matrices of 8x8 Images. On the right Nearest Neighbor
stencil. Added Diagonals on the left

80 s 0 m :

Digit
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I0 Total o0 pixelwise average o

Figure 5.2: Total standard deviation and pixelwise standard deviation of the
digits, sorted by dominance of the class. We see the correlation that more
densely distributed digits are more dominant.

and 0 the least (see Tables [7] to . In Figure we see that this ordering
is very close to the ordering by standard deviation and even closer to the
ordering by average pixelwise standard deviation. The pixelwise standard
deviation can be seen in Figure[5.4]

When we only classify digits that have similar standard deviation, like 4
and 7, the dominant behavior of one class decreases. In the next paragraph
I will have a look at the classification of those two digits.

First I will try to find a optimal A. For this I look at the accuracy of
a level 3 geometrically aware grid containing only the interactions between
direct neighbors. In Figure [5.3| we see that A = 1 is a good choice. With this
A I will compute the classification for different stencils and image resolutions.
A better choice for A may exist for each modification. However it is compu-
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Stencil image size gridlvl gridpoints testacc (%) trainacc (%)

DN 8x8 3 833 93.28 92.09
DNDiag 8x8 3 1225 92.59 91.27
RegSG 8x8 3 8 449 96.57 95.79
DN 8x8 4 3137 88.86 88.51
DNDiag 8x8 4 5 097 87.91 87.32
Square 8x8 4 6 665 82.64 83.35
DN 16x16 3 3 457 94.03 92.88
DNDiag 16x16 3 5 257 92.89 92.05
DN 28x28 3 10 753 94.88 93.94
DNDiag 28x28 3 16 585 93.88 93.07

Table 4: Accuracy of the geometrically aware grid for different stencils and
resolutions. The digits 4 and 7 of the MNIST dataset were classified.

tationally not feasible to optimize \ every time, especially for large images.
With A = 1 the far more promising results in Table {4| could be achieved.
There still is a decreace while adding additional interactions or even using
a higher level. However the loss if far less then for the digits 2, 5 and 7 in
Table 2

A step to solve the dominance problem may be the normalization of the
density functions. The integral of each function is already one, by solving
the linear system. However through random sampling I discovered, that
the density functions include very large negative evaluations of up to —60.
The dominant class tends to have the most extreme minimum. In this case,
normalizing the density functions might require to raise the function by the
minimum of the function and then scaling it so that the integral is 1, instead
of just scaling.

5.2 CIFAR-10

CIFAR-10 is a dataset of 60 000 pictures divided equally on 10 different
classes [Kri09]. In Figure we can see example pictures of all the classes.
Currently the best classifier reaches an error rate of 0.21% using Neural
Networks [WZZ"13]. The images are 32x32 pixel with 3 color channels.
Although it is hard to classify some of these fairly small pictures as a human,
current state of the art systems manage classification accuracies of up to
96.53% using Neural Networks [Gral4]. However as we can see in Table
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Figure 5.3: Test (red) and training (blue) compared to A for the digits 4 and
7 on a 8 x 8 sparse grid of level 3 with the direct neighbor stencil. At A =1
the test accuracy plateaus, while the training accuracy decreaces. Hence
A =1 is a good choice for this problem.

0323956789

Figure 5.4: Pixelwise standard deviation. Digit 1 only has few pixel with a
high deviation, while Digits 0 and 2 have many varying pixel.
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Figure 5.5: Samples images of the 10 classes of the CIFAR dataset. From left
to right: airplane, automobile, bird, cat, deer, dog, frog, horse, ship, truck

the geometrically aware density estimation does not perform well on this
dataset. This time however we do not have this strong dominance effect
like for the MNIST dataset. Since the data points in each class are not
simply sight modification like for the handwritten images, the data points
are distributed very sparsely over the entire domain. This makes density
estimation a difficult task. Even by using the gray scale images of Figure 5.6
did not improve the accuracy. The results for the gray scale images are in
Table

A7

Figure 5.6: Samples grayscale images of the 10 classes of the CIFAR dataset.
From left to right: airplane, automobile, bird, cat, deer, dog, frog, horse,
ship, truck

stencil image size grid Ivl grid points test accuracy (%)

regular SG 8x8 2 385 24.86
DN NoCol 8x8 3 3673 28.01

DN Col 8x8 3 4 441 28.07
regular SG 16x16 2 1537 25.10
DN NoCol 16x16 3 13 441 28.48

Table 5: Sparse grid density estimation on the CIFAR-10 dataset for A = 1.
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stencil image size grid Ivl grid points test accuracy (%)

DN 8x8 3 833 25.28
DNDiag 8x8 3 1225 25.76
DN 16x16 3 3 457 25.76
DNDiag 16x16 3 d 257 24.61

Table 6: Sparse grid density estimation on the grayscale images of the
CIFAR-10 dataset for A = 1.
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6 Conclusion

There are two major assumptions on which the effectiveness of geometrically
aware sparse grid density estimation is based. Firstly we assume that most
of the information of a image lies in the comparison of neighboring pixel.
This however generally is not the case. Secondly sparse grid methods work
best with smooth functions. However image date will not necessarily be
distributed smoothly. This seem to somewhat be the case for the MNIST
dataset. The pictures of the CIFAR dataset however are more sparsely dis-
tributed.

Even though we made these assumptions, we still managed to reach an
accuracy of 94.88% for the digits 4 and 7 of the MNIST dataset using all
784 pixel as input values. This is a large step from the regression of 166
dimensions of the Muskl dataset by Pfliiger in 2010 [PfI10].

The presented method however currently still faces issues that have to be
solved, before it is a reliable tool to classify images.
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7 Future research

To justify geometrically aware grid a method has to be developed that avoids
the dominance effect seen in the MNIST dataset. The described method of
geometrically aware sparse grids only achieves a comparison between neigh-
boring pixels. As possible way to avoid this one or more coarsened images can
be added as additional dimensions. On every scaled down image the same
method of geometrically aware sparse grids is applied, comparing neighbor-
ing pixels of the scaled image. Now there is a comparison between pixels
that would not have been compared in the stencil of the base image.

Additionally current state of the art classifier use image augmentation
and committees of classifier to reach top results. For more detail I will refer
to [CMS12] and [Roml6]. These methods could be directly applied to a
sparse grid method.

Further research may include the application of geometrically aware grids
to non image data. A possible input are temperature measurement at certain
points.

I personally think the future of image classification with sparse grids is
in the development of sparse grid neural networks. A sparse grid containing
only the dimensions as interaction terms and not any combination of them
is fairly similar to a typical neural net with one output node and no hidden
layer. The difference is that sparse grids use piecewise linear basis functions
whereas neural nets typically use a single linear function. With the use of
polynomial function backward propagation should be feasible as well.
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8 Apendix

482 0 0 1 62 9 147 34 18 227
0O 0 O 0 0 0 0 0 0 0
5 0 331 100 52 1 193 133 133 &4
0 0 1 563 1 4 29 204 56 152
0 0 O 0 445 O 1225 0 500
o 0 0 9 31 165 62 192 37 315
0 0 O 0 66 4 817 7 1 63
0 0 1 0 ) 0 1 949 3 69
1 0 0 1 3 4 34 137 380 404
0 0 O 2 7 0 3 150 & 839

Table 7: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digit 1 is removed from the problem.

484 0 0 4 100 12 253 71 56 O
0 0 O 0 0 0 0 0 0 0
5 0 332 102 82 1209 158 143 O
o 0 1 592 10 4 39 294 70 O
0 0 O 0 82 0 26 124 0 O
0 0 0 103 112 207 93 334 43 O
0O 0 O 0O 7 8 80 18 5 0
0o 0 2 0 1 0 1 1011 3 O
1 0 0 17 34 4 56 367 495 0
0 0 O 0 0 0 0 0 0 0

Table 8: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9 are removed from the problem.
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495 0 0 4 138 14 269 0 60 O
0 0 0 0 0 0 0 0 0 O
5 0 335 140 120 1 242 0 189 O
0 0 1 724 101 6 54 0 118 O
0 0 0 0 94 0 27 0 1 O
0 0 0 130 268 333 109 0 52 O
0 0 0 0 &8 8 85 0 6 0
0 0 0 0 0 0 0 0 0 O
1 0 0 25 187 4 72 0 68 0
0 0 0 0 0 0 0 0 0 O

Table 9: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9,7 are removed from the problem.

517 0 0 6 0 41 338 0 78 0
0 0 0 0 0 0 0 0 0 O
5 0 348 143 0 4 335 0 197 O
0O 0 2 760 0 13 91 0 144 O
0 0 0 0 0 0 0 0 0 0
0 0 O 136 0 49 186 0 75 0
1 0 0 0 0 11 938 0 8 0
0 0 0 0 0 0 0 0 0 0
1 0 1 32 0 5 113 0 822 0
0 0 0 0 0 0 0 0 0 0

Table 10: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9,7,4 are removed from the problem.

598 0 2 35 0 71 0 0 274 O
0 0 0 0 0 0 00 0 0
6 0 572 182 0 38 0 0 234 O
0 0 3 820 0 29 0 0 158 0
0 0 0 0 0 0 0 0 0 0
0 0 O 204 0 574 0 0 114 O
0 0 0 0 0 0 00 0 O
0 0 0 0 0 0 0 0 0 0
2 0 1 71 0 8 0 0 892 0
0 0 0 0 0 0 0 0 0 0

Table 11: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9,7,4,6 are removed from the problem.
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634 0 3 131 0 212 0 O O O
0 0 O 0O 0 0 0 0 0 0
8§ 0 640 307 0 77 0 0 O O
0 0 6 918 0 8 O 0 O O
0 0 O 0O 0 0 0 0 0 0
0o 0 2 225 0 665 0 0 0 O
0 0 O 0O 0 0 0 0 0 0
0O 0 O 0O 0 0 0 0 0 0
0 0 O 0O 0 0 0 0 0 0
0 0 O 0 0 0 0 0 0 0

Table 12: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9,7,4,6,8 are removed from the problem.

654 0 5 0 0 321 0 O O O
o 0 o0 00 0 0000
8 0 85 0 0 139 0 0 0 O
o 0 0 00 0 00 00
o 0 0 00 0 00 00
2 0 7 0 0 83 0 0 0 O
o 0 o0 00 0 0000
o 0 o0 00 0 00 00
o 0 0 00 0 00 00
o 0 0 00 0 00 00

Table 13: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9,7,4,6,8,3 are removed from the problem.
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Table 14: Confusion matrix of the density estimation with the DN stencil on
8x8 MNIST images. Digits 1,9,7,4,6,8,3,5 are removed from the problem.
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level H 1 ‘ 2 ‘ 3 ‘ 4 ‘ 5
direct neighbors, 1 color | 1 | 2049 | 14081 | 54017 | 165633
added diagonals, 1 color || 1 | 2049 | 21769 | 92457 | 296329
direct neighbors, 3 colors || 1 | 6145 | 54529 | 231681 | 763137
added diagonals, 3 colors || 1 | 6145 | 77593 | 347001 | 1155225
square selection, 1 color || 1 | 2049 | 21769 | 123209 | 526969

Figure 8.1: gridpoints by stencil for a 32x32 image
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