Difference between revisions of "Algorithms of Scientific Computing II - Winter 17"

From Sccswiki
Jump to navigation Jump to search
 
(One intermediate revision by one other user not shown)
Line 11: Line 11:
 
: Master Mathematics in Data Science
 
: Master Mathematics in Data Science
 
| tutorials = [[Kilian Röhner]], [[Benjamin Rüth, M.Sc. (hons) | Benjamin Rüth]]
 
| tutorials = [[Kilian Röhner]], [[Benjamin Rüth, M.Sc. (hons) | Benjamin Rüth]]
| exam =  tba
+
| exam =  14.2.2018, oral exam, you will be informed about your slots for the examination individually
  
 
}}
 
}}
  
 
= News =
 
= News =
* Moodle-Course is setup: https://www.moodle.tum.de/course/view.php?idnumber=950316140
+
* Moodle-Course is set up: https://www.moodle.tum.de/course/view.php?idnumber=950316140
  
 
= Moodle =
 
= Moodle =

Latest revision as of 17:03, 22 December 2017

Term
Winter 17/18
Lecturer
Univ.-Prof. Dr. Hans-Joachim Bungartz
Time and Place
Lecture: weekly, Thursdays 12:15 - 13:45 MI 02.07.023 (starting 19.10.2017)
Tutorial: biweekly, Mondays 10:00 - 12:00 MI 01.09.014 (starting 6.11.2017)
Audience
Elective topic in Informatik Bachelor/Master/Diplom subject area Algorithms and Scientific Computing
Wirtschaftsinformatik Bachelor (Modul IN2002)
Master Data Engineering and Analytics
Master Mathematics in Data Science
Tutorials
Kilian Röhner, Benjamin Rüth
Exam
14.2.2018, oral exam, you will be informed about your slots for the examination individually
Semesterwochenstunden / ECTS Credits
3 SWS (2V + 1Ü) / 4 Credits
TUMonline
https://campus.tum.de/tumonline/wbLv.wbShowLVDetail?pStpSpNr=950316140&pSpracheNr=1



News

Moodle

All materials are provided in moodle

Content

This semester the lecture will be held by Prof. Bungartz with a focus on Scientific Computing. The following themes will be covered:

  • Molecular Dynamics Simulations
  • Sparse Grid Methods
  • Algebraic Multigrid Methods (AMG)


Exam

Bei geringer Zahl von Prüfungsanmeldungen wird die Prüfung als etwa halbstündige mündliche Prüfung stattfinden.

In case of low number of exam registrations, there will be an oral exam of about 30 minutes.

Prerequisites

Lecture IN0019 Numerical Programming or similar basic knowledge in numerical methods.