Difference between revisions of "Completed Research and Development Projects"
Line 1,076: | Line 1,076: | ||
'''Technology Integration:''' The Tablet PCs were used in several configurations tailored to the specific course – with Windows or Linux operating systems and a selection of software for scientific computing (especially Maple and MATLAB, but also department-specific special software). The different configurations were stored as images on a server at the IPVS, where a set of Tablet PCs with the required configuration could easily be prepared. | '''Technology Integration:''' The Tablet PCs were used in several configurations tailored to the specific course – with Windows or Linux operating systems and a selection of software for scientific computing (especially Maple and MATLAB, but also department-specific special software). The different configurations were stored as images on a server at the IPVS, where a set of Tablet PCs with the required configuration could easily be prepared. | ||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
− | |||
== Virtual Arabia == | == Virtual Arabia == |
Revision as of 14:29, 5 January 2016
Contents
- 1 Project list (sorted by funding agency)
- 1.1 Bayerische Forschungsstiftung
- 1.2 Excellence Initiative
- 1.3 Federal Ministry of Education and Research (BMB+F)
- 1.4 German Academic Exchange Service (DAAD)
- 1.5 German Research Foundation (DFG)
- 1.6 Hochschulrektorenkonferenz
- 1.7 Industrial cooperations
- 1.8 Landesstiftung Baden-Württemberg
- 1.9 TUM-KAUST Strategic Partnership
- 1.10 Virtuelle Hochschule Bayern
- 1.11 Volkswagen Foundation
- 1.12 Others
- 2 Project Descriptions
- 2.1 BaCaTeC-NPS
- 2.2 Belgrad
- 2.3 CANDI
- 2.4 DAAD/EU: Accompanying Mobility Measures for the SimLab in Belgrade - SimLab Scholarship Program and Compact Courses
- 2.5 DEISA-DECI4
- 2.6 Development of New Methods for the Production of Highly Reactive Polyisobutenes
- 2.7 Distributed stochastic simulation for the hydroelastic analysis of very large floating structures
- 2.8 Efficient Parallel Simulation of Fluid Flow on Cartesian Grids
- 2.9 ELPA
- 2.10 EU: DEISA DECI 7 - DiParTS
- 2.11 FOR493
- 2.12 Hardware-oriented Simulation and Computing
- 2.13 IMEMO
- 2.14 ITO
- 2.15 KONWIHR: Computational Steering of Complex Flow Simulations
- 2.16 Non-Linear Characterization and Analysis of FEM Simulation Results for Motor-Car Components and Crash Tests (SIMDATA-NL)
- 2.17 Nucleation
- 2.18 NumStoch
- 2.19 Mathematical Thinking
- 2.20 Micropumps
- 2.21 MISTI MIT-TUM Project: Combining Model Reduction with Sparse Grids into a Multifidelity Framework for Design, Control and Optimization
- 2.22 MSV
- 2.23 Simulation of CO2 Sequestration
- 2.24 Simulation Technology
- 2.25 SFB411 - C4
- 2.26 SP1103
- 2.27 vhb - CSE
- 2.28 Teaching Simulation Technology Goes Mobile!
- 2.29 Virtual Arabia
Project list (sorted by funding agency)
Bayerische Forschungsstiftung
Website of the Bayerische Forschungsstiftung
Short name | Project name | Project type | Finished |
- | Postdoctoral Grant Ekaterina Elts | Postdoctoral Grant | 2009 |
FORTWIHR | Design of efficient computation methods for problems of fluid dynamics | Bavarian Consortium for High Performance Scientific Computing | |
FORTWIHR | Design of efficient parallel algorithms for the computation of fluid dynamics in complex geometries | Bavarian Consortium for High Performance Scientific Computing | |
FORTWIHR | Simulation und Optimalsteuerung von Luft- und Raumfahrtsystemen und Werkzeuge für Parallelrechner | Bavarian Consortium for High Performance Scientific Computing | |
FORTWIHR | Numerische Simulation von Schmelz- und Beschichtungsprozessen | Bavarian Consortium for High Performance Scientific Computing |
Excellence Initiative
Short name | Project name | Project type | Finished |
IGSSE-1-8 | Hardware-aware Simulation and Computing | IGSSE Project | 2011 |
IGSSE-1-4 | Development of New Methods for the Production of Highly Reactive Polyisobutenes | IGSSE Project | 2011 |
IGSSE-3-10 | Distributed stochastic simulation for the hydroelastic analysis of very large floating structures | IGSSE Project | 2012 |
Federal Ministry of Education and Research (BMB+F)
Website of the Federal Ministry of Education and Research (BMB+F)
Short name | Project name | Project type | Finished |
ELPA | Highly Scalable Eigenvalue Solvers for Petaflop Applications | Förderinitiative "HPC Software for Scalable, Parallel Hardware" | 2012 |
IMEMO | Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation | Förderinitiative "HPC Software for Scalable, Parallel Hardware" | 2012 |
FIDEUM | Finanzderivate in unvollständigen Märkten | Förderinitiative "Mathematik für Innovationen in Industrie und Dienstleistungen" | 2010 |
DIWERK | DIWERK - Density Functional Methods as a Tool for Chemistry | Förderinitiative "High Performance Scientific Computing" | |
03ZEM1M1 | Efficient, robust and accuruate Solvers for linear system of equations resulting from mechanistic models for the simulation of time-dependant two-phase water-steam-streams | Förderinitiative "Neue mathematische Verfahren in Industrie und Dienstleistungen" | |
ITO | Information Technology Online (ITO) | Förderprogramm Neue Medien in der Bildung (NMB) | 2003 |
Non-Linear Characterization and Analysis of FEM Simulation Results for Motor-Car Components and Crash Tests (SIMDATA-NL) | BMBF support program: Mathematics for innovations in the Industrial and Service Sectors | 2013 |
German Academic Exchange Service (DAAD)
Website of the German Academic Exchange Service (DAAD)
Short name | Project name | Project type | Finished |
Simulation Technology | Summer school Simulation Technology in Romania | Programm Sommerschulen im Ausland | 2004 |
SimLab | Accompanying Mobility Measures for the SimLab in Belgrade - SimLab Scholarship Program and Compact Courses | DAAD Programme Academic Reconstruction of South Eastern Europe | 2010 |
German Research Foundation (DFG)
Website of the German Research Foundation (DFG)
Short name | Project name | Project type | Finished |
Micropumps | Modeling and Simulation of Micropumps | DFG project | 2010 |
FOR493 | Numerical Simulation of Fluid-Structure Interactions on Cartesian Grids | Research Group FOR493 | 2010 |
SFB411 - C4 | Principles of aerob biological wastewater treatment | Subproject of Priority Program 411 | 2003 |
SFB438 - Z2 | Mathematical Modelling, Simulation and Verification of material-oriented processes and intelligent systems | Subproject of Priority Program 438 | |
SFB342 | Methods and Tools for the use of parallel hardware archictures | Subproject of Priority Program 342 | |
Research Training Group | Kooperation und Ressourcenmanagement in verteilten Systemen | - | |
SP1103 | Volume-oriented Modeling as a Foundation of Network-based Co-operative Planning Processes in Structural Engineering | Schwerpunktprogramm 1103 | 2006 |
Hochschulrektorenkonferenz
Short name | Project name | Project type | Finished |
SimLab Belgrade | Installation of a simulation laboratory (SimLab) at the University of Belgrade for use in research and education | Förderung von hochschulpolitischen Projekten in der Bundesrepublik Jugoslawien |
Industrial cooperations
Short name | Project name | Project type | Funded by | Finished |
TabletPC | Simulation Technology Goes Mobile | HP Hardware Grant | Hewlett-Packard | 2006 |
Structural mechanics | Distributed Simulation of structural mechanic problems based on recursive substructering | Within the framework FORTWIHR | Siemens AG | |
Numerical Simulation of coupled problems | Numerical Simulation of coupled problems | Within the framework FORTWIHR | Siemens AG | |
Octree | Algorithms on Octree-datastructures for the examnination of collisions in CAD-modeled components in automotive engineering | Within the framework FORTWIHR | Tecoplan Informatik | |
NEC | Scalable High Performance Shared Memory Vector Computer and their Applications to Fluid Flow Investigations | Within the framework FORTWIHR | NEC-ESS | |
Cray | The combination method for turbulence simulation | Within the framework FORTWIHR | Cray Research |
Landesstiftung Baden-Württemberg
Website of the Landesstiftung Baden-Württemberg
Short name | Project name | Project type | Finished |
MSV | Multimodale Simulation des Verkehrsablaufs in großen Netzen | Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern | 2007 |
Nucleation (S) | Massive parallel molecular simulation and visualization of the nucleation in mixtures for scale-overlapping models | Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern | 2006 |
TUM-KAUST Strategic Partnership
Short name | Project name | Project type | Finished |
KAUST-P1 | CO2 Sequestration | KAUST-TUM Kooperation | 2013 |
KAUST-P2 | Virtual Arabia | KAUST-TUM Kooperation | 2013 |
KAUST-P5 | High-Performance Visual Computing | KAUST-TUM Kooperation | 2015 |
Virtuelle Hochschule Bayern
Short name | Project name | Project type | Finished |
vhb - CSE | Development of courses for the vhb | Virtuelle Hochschule Bayern (vhb) |
Volkswagen Foundation
Short name | Project name | Project type | Finished |
Mathematical Thinking | Development and enhancement of creative application of mathematical thinking | Perspektiven der Mathematik an der Schnittstelle von Schule und Universität | 2003 |
Others
Short name | Project name | Project type | Funded by | Finished |
CANDI | CANDI | EU Tempus Project | EU | 2013 |
BaCaTeC-NPS | Scalable Tsunami and Atmospheric Simulation on Heterogeneous Manycore Platforms | Kooperationsvorbereitung | BaCaTeC | 2013 |
Belgrad | EU Tempus Belgrad | EU Tempus Project | EU | 2012 |
SkvG | Efficient Parallel Simulation of Fluid Flow on Cartesian Grids | KONWIHR Übergangsfin. | High-Tech-Offensive Bayern | 2008 |
RTB-Bayern TP3.8 | Distributed computing in engineering applications | part of FORTWIHR | DFN-Verein | |
NumStoch | NumStoch: Automatic pre-correction of numerical programming tasks | self-study online | Universität Stuttgart | |
DEISA DECI 4 | DEISA DECI 4: DRatchet | HPC Project | [1] |
Project Descriptions
BaCaTeC-NPS
Project type | High-tech research collaborations between Bavaria and California |
Funded by | BaCaTeC |
Begin | Juli 2012 |
End | December 2013 |
Leader | Univ.-Prof. Dr. Michael Bader, Prof. Francis X. Giraldo |
Staff | Kaveh Rahnema, Alexander Breuer |
Contact person | Univ.-Prof. Dr. Michael Bader |
Scalable Tsunami and Atmospheric Simulation on Heterogeneous Manycore Platforms:
Applications in the geosciences more than others rely on the availability of extreme computational performance. The required HPC and supercomputing platforms are heavily based on heterogeneous accelerator hardware: general-purpose graphical processing units (GPGPU), accelerator hardware, and mainstream manycore developments, such as Intel’s MIC architecture, will soon dominate this field. While fully exploiting the performance of such platforms is a challenge of its own, the applications’ need for dynamic adaptive mesh refinement makes the development of algorithms and software even more demanding. Within this BaCaTeC project, the two involved groups together with two consultants at Intel will combine their expertise to optimize their simulation codes for tsunami and atmospheric simulation (both using discontinuous Galerkin methods for discretization) for CPU and GPU-based platforms.
Belgrad
Project type | EU Tempus Project |
Funded by | EU |
Begin | 15.01.2009 |
End | 14.01.2012 |
Leader | Faculty of Mechanical Engineering, University of Belgrade |
Staff | Prof. Dr.-Ing. Martin Gabi (Universität Karlsruhe), Prof. Dr. rer. nat. Ernst Rank (TUM), Univ.-Prof. Dr. Hans-Joachim Bungartz (TUM), Dr. Mihailo Ristic (Imperial College London), Prof. Dr. Javier Alvarez del Castillo (Universitat Politècnica de Catalunya)), The German University in Cairo - GUC, Prof. Dr. Milos Nedeljkovic (University of Belgrade), Prof. Dr. Milan Matijevic (University of Kragujevac), Prof. Dr. Dragan Lazic (University of Belgrade), Prof. Dr. Zarko Cojbasic (University of Nis) |
Contact person | Prof. Milos Nedeljkovic |
Co-operation partner | ASIIN e.V. (Düsseldorf), Andrej Vrbancic (Robotina doo, Slovenija), Prof. Dr. Radivoje Mitrovic (Ministry of Education, Serbia), National Tempus Office Serbia, Dr. Zaljko Despotovic (Institute "Mihajlo Pupin", Serbia), Rectorate of University of Belgrade, Biserka Ilic (Informatika doo, Serbia), Dusan Babic (IvDam Process Control doo, Serbia) |
CANDI
Project type | EU Tempus Project |
Funded by | EU |
Begin | January 2010 |
End | December 2013 |
Leader | University Vienna |
Staff | Univ.-Prof. Dr. Hans-Joachim Bungartz, Univ.-Prof. Dr. Ernst W. Mayr, Univ.-Prof. Dr. Helmut Seidl, Dr. rer. nat. Tobias Weinzierl |
Contact person | Dr. rer. nat. Tobias Weinzierl |
Co-operation partner | see official webpage |
Brief description
The CANDI project will develop both the infrastructure for e-Learning / Retraining, and the skills necessary to transfer existing courses and curricula to an e-Learning environment. The project is set up in a way to address multiple problems simultaneously:
- Most obviously, CANDI will help to educate large numbers of students. Additional costs for the infrastructure will be modest, since no new buildings are necessary, existing teaching \ personnel can be employed, and only modest investment in computer infrastructure is necessary.
- CANDI will help to narrow the gap between the education level in central universities and the provinces.
- CANDI will train the local university staff in systematic and effective use of e-Learning, presentation technology, and related didactic skills. Existing e-Learning approaches we saw in Central Asia mostly involve electronic versions of course notes on the internet.
- Importantly, CANDI will use e-Learning not only to teach students, but also to teach university staff, in particular at institutions in provincial cities. In fact, e-Learning will also become the main medium to teach e-Learning skills.
- CANDI will support the retraining of industry staff. On the other hand, CANDI will also open opportunities for industry to deliver applied courses and lectures to a university audience.
- CANDI will employ cheap open source solutions for e-Learning. In addition to these direct effects, CANDI will also have important positive indirect effects on universities and industries in Uzbekistan and Kazakhstan:
- CANDI will have a pilot phase where existing courses from European partners will be transferred into the e-Learning framework. Since these courses will reflect the state of the art in their respective areas (mostly Computer Science, Chemistry, Computational Science, Soft Skills), they will by their nature improve the quality of the curricula inside and outside of e-Learning.
- The establishment of standardized e-learning courses facilitates the convergence of different academic systems, and thus the possibility of a credit transfer system.
- CANDI will improve the English and soft skill knowledge of all participants, thereby improving the ability of Central Asian staff to achieve sustainability by international grants.
- By building the competence for e-Learning, CANDI will also contribute to the knowledge base in software engineering and programming in Uzbekistan and Kazakhstan.
DAAD/EU: Accompanying Mobility Measures for the SimLab in Belgrade - SimLab Scholarship Program and Compact Courses
Project type | DAAD Programme Academic Reconstruction of South Eastern Europe |
Funded by | German Academic Exchange Service (DAAD) |
Begin | February 2002 |
End | December 2010 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Staff | Dr. Ralf-Peter Mundani, Dipl.-Ing. Ioan Lucian Muntean |
Contact person | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Seventh SimLab Course on Parallel Numerical Simulation
DEISA-DECI4
DEISA DECI 4: DRatchet - Particle Transport in Drift Ratchet as an Application Example for High-Performance CFD and Fluid-Structure Interaction =
Project type | Grid Computing-based CFD and FSI Simulations |
Funded by | DEISA |
Begin | January 2008 |
End | December 2008 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Staff | Dipl.-Ing. Ioan Lucian Muntean |
Contact person | Dipl.-Ing. Ioan Lucian Muntean |
Co-operation partner | Prof.Dr. Peter Hänggi (Physik, Uni Augsburg), Prof.Dr.-Ing. Rodica Potolea (TU Cluj-Napoca) |
Brief description
By means of numerical simulations (CFD and FSI), this project contributes to a better understanding of the physical phenomena involved in particle separation methods based on drift ratchets. This will allow for the optimization and tailoring of the system parameters for specific types of particles and transporting flows. The drift ratchet simulation scenario is computationally expensive, especially because of large simulation times with small time steps, multi-scale models, multi-physics phenomena, and the movement of particles in the complex geometry of the ratchets.
In this project, we focus on:
- computation of CFD and FSI simulations on grid computing environments;
- parameter study of drift ratchet scenarios;
- simulation software tuning for different high-performance computing architectures available within DEISA.
Furthermore, we intend to broaden the software package GridSFEA to support and ease the execution of these large and complex simulations on the Grid.
Development of New Methods for the Production of Highly Reactive Polyisobutenes
Project type | IGSSE Project Team |
Funded by | Excellence Initiative of the German federal and state governments |
Begin | April 2007 |
End | January 2011 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl |
Staff | Csaba Attila Vigh, M.Sc |
Contact person | Dr. rer. nat. Miriam Mehl |
Co-operation partner | Prof. Dr. Fritz Kühn (Chemisty, TUM) |
Brief description
Polyisobutene are used in industry in large amounts. Depending on their molecular weight, they are required for rubber production or applied as adhesives, e.g.. More than 100,000 t of highly reactive polyisobutene are produced per year. Thus, efficiency and environmental compatibility are very important tasks. However, to achieve a high qulity and good productivity, all known production methods require reaction temperatures far below 0 degree celsius and solvents such as methylenchloirde, dichlormethane, or ethene. Recently, a new type of catalysts was developed at TUM (Lst. für Anorganische Chemie), that allows the production of highly reactive polyisobutene at ambient temperature and in solvents free from chlorine. The tasks of this group are to transfer this method developed on the laboratory scale to the scale of a production reactor, the detection of the underlying chemical reaction mechanisms, and, finally, the further improvement of the method. To reach these tasks, we will exploit synergies between chemistry and informatics by combining methods of experimental chemistry (reaction mechanisms, testing of other catalysts, heterogeneous catalysis, etc.) and scientific computing (examination and optimization of the cooling of the exothermic reactions, flow and transport processes).
Distributed stochastic simulation for the hydroelastic analysis of very large floating structures
Project type | IGSSE Project Team |
Funded by | Excellence Initiative of the German federal and state
governments |
Begin | Oktober 2008 |
End | September 2011 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl |
Staff | Bernhard Gatzhammer, M.Sc, Dipl.-Inf. Marion Bendig |
Contact person | Dr. rer. nat. Miriam Mehl |
Co-operation partner | Prof.Dr. Ernst Rank, Dr. Ralf-Peter
Mundani, PD Dr. Alexander Düster, Prof. PhD Chien Ming Wang (Singapur), SOFiSTiK AG (Oberschleißheim) |
Brief description
Very large floating structures (VLFS) are more and more employed by a number of countries in creating land space from the ocean. These “swimming islands” are of pontoon-type and benefit from high stability, low manufacturing costs, and easy maintenance. Owing to their much larger dimensions in length than in depth, the VLFS are relatively flexible and, thus, VLFSs have to be robustly designed against wave-induced deformations and stresses. As such a reliability analysis involves many uncertainties, efficient methods have to be developed that allow for both the modelling of uncertain behaviour and the handling of the computational complexity. In this project, the main objective focuses on the development and implementation of a prototype for the hydroelastic analysis of VLFS. Therefore, stochastic finite elements are subject of choice for the planned reliability analysis over huge sets of different structural properties, while sophisticated techniques of modern grid computing should tackle the computational problem of such complex parameter studies.
Efficient Parallel Simulation of Fluid Flow on Cartesian Grids
Project type | Competence Network for Technical, Scientific High Performance Computing in Bavaria |
Funded by | High-Tech-Offensive Bayern |
Begin | 2001 |
End | open |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz, Univ.-Prof. Dr. Christoph Zenger, Dr. rer. nat. Miriam Mehl |
Staff | Dipl.-Ing. Ioan Lucian Muntean, Dipl.-Tech. Math. Tobias Neckel, Dipl.-Inf. Tobias Weinzierl |
Contact person | Dr. rer. nat. Miriam Mehl |
Brief description
Due to their structuredness in combination with highly local adaptive refinement possibilities, adaptive Cartesian grids offer a very big potential in the context of hardware and, in particular, memory efficient implementation of numerical flow solvers. This project examines the applicability of the corresponding methods for the direct numerical simulation of turbulent channel flows on high performance computers. A particular focus is on the isotropic adaptive refinement of boundary layers and the efficient parallelization on high performance computing architectures.
ELPA
Highly Scalable Eigenvalue Solvers for Petaflop Applications
Project type | BMBF-Projekt; "HPC Software für skalierbare Parallelrechner" |
Funded by | BMBF |
Begin | 2008 |
End | 2012 |
Leader | Rechenzentrum Garching, Dr. Hermann Lederer |
Staff | Thomas Auckenthaler, Univ.-Prof. Dr. Michael Bader, Univ.-Prof. Dr. Hans-Joachim Bungartz, Univ.-Prof. Dr. Thomas Huckle |
Contact person | Thomas Auckenthaler |
Co-operation partners | Rechenzentrum Garching (Dr. H. Lederer), Bergische Universität Wuppertal, Lehrstuhl für Angewandte Informatik (Prof. A. Frommer, Prof. B. Lang), Fritz-Haber-Institut, Berlin, Abt. Theorie (Prof. M. Scheffler, Dr. V. Blum), Max-Planck-Institut für Mathematik in den Naturwissenschaften, Leipzig, Abt. Komplexe Strukturen in Biologie und Kognition (Prof. J. Jost), IBM Deutschland GmbH |
Brief description
The ELPA project will develop highly scalable solvers for Eigenvalue problems. Primary goal will be the design and implementation of a highly scalable direct Eigensolver for large, dense, symmetric matrices. Integration of the respective code into a respective library is planned. In addition, the use of iterative solvers for specific Eigenproblems will also be investigated.
EU: DEISA DECI 7 - DiParTS
Project type | HPC/Grid Project |
Funded by | DEISA |
Begin | July 2010 |
End | April 2011 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Tobias Weinzierl |
Staff | Dipl.-Inf. Atanas Atanasov, Dipl.-Inf. Kristof Unterweger |
Contact person | Dr. rer. nat. Tobias Weinzierl |
Co-operation partner | Dr.-Ing. Ionel Muntean (TU Cluj-Napoca), King Abdullah University of Science and Technology (KAUST) |
Brief description
The DiParTS project (Distributed Particle Transport Simulation in a Grid-like HPC CFD Environment) numerically studies particles dispersed in non-stationary fluids within tube-like geometries on the micro-scale, where the fluid and, as a consequence, the particles are stimulated by an oscillating pressure. The particles’ long-time behaviour due to the pressure oscillations, i.e. their averaged movement on the long-term time-scale, allows us to draw conclusions, for example, on the causes of particle sedimentary deposition and centrifugal particle separation in several applications, as the particles exhibit a drift along the stimulation amplitude. Here, classical fluid-structure interaction phenomena interplay with Brownian motion and particle-wall interaction. In a preceding DEISA project, we already studied simplified experimental setups on the short-time time-scale. Despite some promising and interesting insights from a fluid-dynamics point of view, the full simulation of the situation described above however proved to be far from solvable with today’s computing power. Due to this proposal, we nevertheless will broaden the horizon of computability, as we switch from a fully coupled system to an approach where the fluid simulation without particles on an extremely fine spatial and temporal resolution is cut into small time intervals, these chunks of computational challenges are deployed to supercomputers, and the fluid fields are coarsened spatially before the supercomputer streams the data back to the scientist’s local workstation where it is post-processed, i.e. the Brownian motion and the particles’ effect are remotely added to the flow field after the fluid dynamics time step has terminated. The extreme computing power spent on this waterfall process – in particular on the fine-scale fluid dynamics simulation – will yield new insights on the long-time behaviour of the overall simulation setup, while the approach is validated simultaneously by a comparison of a fully-coupled fluid-interaction setting with the decoupled simulation for several small time steps.
FOR493
DFG: Numerical Simulation of Fluid-Structure Interactions on Cartesian Grids (FOR493)
Project type | Forschergruppe 493 |
Funded by | German Research Foundation |
Begin | August 2003 |
End | May 2010 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl |
Staff | Bernhard Gatzhammer, M.Sc, Dipl.-Tech. Math. Tobias Neckel |
Contact person | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Co-operation partner | Prof.Dr. Krafczyk (Institut für Computeranwendungen im Bauingenieurwesen, TU Braunschweig)
Prof.Dr. E. Rank (Lehrstuhl für Bauinformatik, TU München) |
Brief description
Im Projekt P6 der DFG-Forschergruppe 493 soll ein streng partitionierter Ansatz zur numerischen Simulation von Fluid-Struktur-Wechselwirkungen weiterentwickelt und an prototypischen und zugleich technisch relevanten Modellkonfigurationen erprobt werden. Für die Strömungsberechnungen wird der auf kartesischen Gittern arbeitende MAC-Code Nast++, entwickelt für die Behandlung zeitabhängiger laminarer Strömungen viskoser inkompressibler Fluide in veränderlichen dreidimensionalen Geometrien, weiterentwickelt und eingesetzt. Zur Berechnung der Antwort der flexiblen Strukturen bringt das Projekt P10 (Prof. Rank, Dr.-Ing. Düster) einen Löser zur strukturdynamischen Simulation in den partitionierten Ansatz ein. Nach zunächst vorzunehmenden Verbesserungen bzw. Erweiterungen am Ströungscode soll die voll transiente (implizite) Kopplung im Sinne der partitionierten Lösung realisiert und im Hinblick auf Robustheit und Stabilität untersucht und optimiert werden. Zur Validierung soll vor allem das Prinzipexperiment FLUSTRUC-A aus Projekt P4 (Prof. Durst, Dr.-Ing. Breuer, Dipl.-Ing. Lienhart) dienen. Ein weiterer Schwerpunkt der Arbeiten liegt auf der Bereitstellung einer modularen Software-Infrastruktur, die über einheitlich definierte Schnittstellen den einfachen Austausch von Komponenten gestattet und somit in der Forschergruppe beispielsweise zum Vergleich verschiedener Strukturlöser bzw. verschiedener Fluidlöser in unterschiedlichen Szenarien genutzt werden kann. Hierbei findet eine intensive Kooperation der Teilprojekte P6, P8 und P10 statt.
Hardware-oriented Simulation and Computing
Project type | IGSSE Project Team |
Funded by | Excellence Initiative of the German federal and state governments |
Begin | April 2007 |
End | March 2010 |
Leader | Dr. rer. nat. Michael Bader, Dr. Carsten Trinitis |
Staff | Csaba Attila Vigh, M.Sc, |
Contact person | Dr. rer. nat. Michael Bader |
Co-operation partner | Prof.Dr. Arndt Bode (CeCVDE, TUM-Informatik), Prof. Dr. Markus Schwaiger (BioMedTUM) |
Brief description
The recent development of commodity as well as high-performance computers shows that computationally and data intensive tasks can only benefit from the hardware's full potential, if both processor and architecture features are taken into account - from the early algorithmic design up to the final implementation. Evident examples are the limited memory access via a hierarchy of cache memory and the increasingly hybrid and hierarchical design of high-end systems, both complicated by the ongoing trend towards multi- and manycore CPUs, accelerators and other HPSoCs (High Performance Systems on a Chip). Against this background, this proposal focuses on hardware-aware programming in the context of several applications from Science and Engineering:
- Simulation of fluid flow problems on dynamically adaptive discretisation grids using recursive structured grid generation approaches and space-filling curves for parallelisation and cache-oblivious implementation.
- Compute- and memory-intensive Boundary Element calculations of electric field and potential distributions in the context of simulation and optimisation of High Voltage Apparatus design. (Group Prof. Bode).
- Hardware-aware algorithms for image reconstruction in medical imaging. (Group Prof. Schwaiger)
IMEMO
Innovative HPC-Methoden und Einsatz für hochskalierbare Molekulare Simulation
Project type | BMBF-Projekt; "HPC Software für skalierbare Parallelrechner" |
Funded by | BMBF |
Begin | 2008 |
End | 2012 |
Leader | Prof. Dr.-Ing. Michael Resch, HLRS, Universität Stuttgart |
Staff | Martin Buchholz, Ekaterina Elts, M.Sc, Wolfgang Eckhardt, Univ.-Prof. Dr. Michael Bader, Univ.-Prof. Dr. Hans-Joachim Bungartz |
Contact person | Martin Buchholz |
Co-operation partners | Institut für Techno- und Wirtschaftsmathematik (ITWM) an der Fraunhofer Gesellschaft (Dr. Franz-Josef Pfreundt), Höchstleistungsrechenzentrum (HLRS) der Universität Stuttgart (Prof. Dr.-Ing. Michael Resch), Lehrstuhl für Thermodynamik (LTD) an der Universität Kaiserslautern (Prof. Dr.-Ing. Hans Hasse), Lehrstuhl für Thermodynamik und Energietechnik (ThEt) an der Universität Paderborn (Prof. Dr.-Ing. Jadran Vrabec) |
Brief description
Within the IMEMO project, our SCCS group will develop efficient algorithms for the parallelisation of large-scale molecular simulations. One of the main questions is the dynamical load balancing in settings where strong imbalances occur, such as during condensation processes, where the distribution of molecules in different parts of the computational domain will vary over several orders of magnitude. A further important focus is the development of hierarchical parallel algorithms on highly parallel clusters of manycore processors.
ITO
Information Technology Online
Project type | Förderprogramm Neue Medien in der Bildung (NMB) |
Funded by | BMB+F |
Begin | January 2001 |
End | December 2003 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Srihari Narasimhan, M.Sc. Dr.rer.net Stefan Zimmer |
Contact person | Srihari Narasimhan, M.Sc. |
Co-operation partner | miscellaneous Institutes of the Universität Stuttgart, TU Dresden, TU Hamburg-Harburg, TU Müchen and the PH Ludwigsburg |
Brief description
Das Ziel des Projektes bestand darin, multimediale englischsprachige Lehrinhalte auf der Basis der Vorlesungen der Projektpartner zu entwickeln und innerhalb unterschiedlicher Lernszenarien einzusetzen.
Um Austausch und Wiederverwendung zu gewährleisten, war ein modulares Konzept mit geeigneter Hierarchie erforderlich. Auf oberster Ebene steht jeweils ein multimedialer Kurs, welcher ein gesamtes Themengebiet abdeckt und sich aus mehreren Lehrmodulen zusammensetzt. Die Bandbreite der Lehrmodule reicht dabei von Basis-Lehrmaterialien, wie z. B. einzelnen Folien einer PowerPoint-Präsentation, Video-Clips und Screen-Movies, bis hin zu größeren, in sich abgeschlossenen Multimedia-Vorlesungen. Letztere setzen sich aus Lehrmodulen feinerer Granularität zusammen, wobei multimediale Darstellungsformen die Anschaulichkeit wissenschaftlicher Zusammenhänge verbessern.
Während bei den Multimedia-Vorlesungen die Erläuterung des Lehrstoffes durch Dozenten erfolgt, ermöglichen web-basierte Lernapplikationen ergänzend dazu eine selbstständige Erarbeitung des Lehrstoffes. Die für die Präsenzveranstaltungen erstellten Lehrmodule bilden dabei die Ausgangsbasis für die Realisierung dieser Lernapplikationen. Die Lehrmodule und Lernapplikationen kommen schließlich auch im Rahmen der beruflichen Weiterbildung zum Einsatz.
Overview of the implemented Course modules
KONWIHR: Computational Steering of Complex Flow Simulations
Project type | Kompetenznetzwerk für Technisch-Wissenschaftliches
Hoch- und Höchstleistungsrechnen in Bayern KONWIHR II |
Funded by | BMBF |
Begin | 2008 |
End | 2011 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz, Dr. rer. nat. Miriam Mehl |
Staff | |
Contact person | Dr. rer. nat. Miriam Mehl |
Co-operation partner | Prof.Dr. Ernst Rank, Prof. Dr. Michael Manhart, Prof. Dr. Bernd Simeon, Prof. Dr. Peter Rentrop |
Brief description
Computational Science and Engineering faces a continuous increase of speed of computers and availability of very fast networks. Yet, it seems that some opportunities offered by these ongoing developments are only used to a fraction for numerical simulation. Moreover, despite new possibilities in computer visualisation, virtual or augmented reality and collaboration models, most available engineering software still follows the classical way of a strict separation of pre-processing, computing and post-processing. In the previous work of the applicants of this proposal, some of the major obstructions for an interactive computation for complex simulation tasks in engineering sciences have been identified and partially removed. These were especially found in traditional software structures, in the definition of geometric models and boundary conditions, and in the often still very tedious work of generating computational meshes. A generic approach for collaborative computational steering has been developed, where pre- and post-processing are integrated with high-performance computing and which supports cooperation of workgroups being connected via the internet. Suitable numerical methods are at the core of this approach such as the Lattice Boltzmann method (LBM) for fluid flow simulation. The proposed project will extend this approach in various directions.
Non-Linear Characterization and Analysis of FEM Simulation Results for Motor-Car Components and Crash Tests (SIMDATA-NL)
Project type | BMBF support program: Mathematics for innovations in the Industrial and Service Sectors |
Funded by | BMBF |
Begin | July 2010 |
End | June 2013 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Staff | Benjamin Peherstorfer, M.Sc, Dr. rer. nat. Dirk Pflüger |
Contact person | Dr. rer. nat. Dirk Pflüger |
Co-operation partner | Prof. Dr. Michael Griebel (INS, Bonn)
Prof. Dr. Claudia Czado (Mathematical Statistics, TU München), Dr. Jochen Garcke (Institute of Mathematics, TU Berlin), Clemens-August Thole, Prof. Dr. Ulrich Trottenberg (SCAI, St. Augustin), AUDI AG, PDTec AG, Volkswagen AG |
Brief description
The project aims at the extraction of the (few) effective dimensions in high-dimensional simulation data in the context of automotive design. Linear methods, like the principal component analysis, alone are not sufficient for many of those applications due to significant non-linear effects. Therefore, they will be complemented by methods that are able to resolve nonlinear relationships, especially by means of sparse grid discretizations.
Nucleation
Massive parallel molecular simulation and visualization of the nucleation in mixtures for scale-overlapping models
Project type | Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern |
Funded by | Landesstiftung Baden-Württemberg |
Begin | October 2004 |
End | October 2006 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dr.-Ing. Martin Bernreuther |
Contact person | Prof.Dr. Hans-Joachim Bungartz |
Co-operation partner | Prof.Dr. Thomas Ertl (VIS, Universität Stuttgart) Prof.Dr.-Ing. Hans Hasse (ITT, Universität Stuttgart) Prof.Dr.-Ing. Karlheinz Schaber (ITTK, Universität Karlsruhe) |
Brief description
Spontan auftretende Phasenzerfälle bestimmen viele Prozesse in Natur und Technik. Solche Zerfälle sind zum Beispiel der entscheidende Schritt bei der Herstellung nanoskaliger Partikel, sie sind auch für Vorgänge in der Atmosphäre verantwortlich, die unser Klima stark beeinflussen. Bei der Modellierung und Simulation solcher Prozesse ist die Bestimmung der Keimbildungsrate von zentraler Bedeutung. Die Kenntnisse hierüber sind bislang völlig unzureichend, insbesondere, wenn Mischungen mehrerer Stoffe betrachtet werden. Die direkte molekulare Simulation bietet die Möglichkeit, solche Keimbildungsraten vorauszuberechnen. Bislang ist dies aber aufgrund von Beschränkungen der Rechenleistung nur für den weniger interessanten Fall extrem hoher Übersättigungen (Keimbildungsraten) möglich. Der Einsatz von HPC eröffnet hier völlig neue Perspektiven. Als besonders attraktiv erscheinen dabei Simulationen auf massiv parallelen, skalierbaren Architekturen mit verteiltem Speicher, von Clustern bis hin zum Grid, für die geeignete Verteilungs- und Lastausgleichsstrategien zu entwickeln sind. Zum besseren Verständnis des Prozesses der Keimbildung sowie der Morphologie der Nanopartikel muss deren Entstehung visualisiert werden. Hierzu müssen eine Vielzahl von verteilt simulierten Partikeln und ihre Eigenschaften in einer Darstellung vereint und durch adaptive Clustering-Verfahren interaktiv Strukturen extrahiert werden. Schließlich müssen, auch zur Validierung, die Ergebnisse der molekularen Betrachtung an höhere Ebenen der Prozessmodellierung und -simulation angebunden werden. Hierfür ist eine Schnittstelle zur populationsdynamischen Beschreibung der Phänomene zu schaffen. Ziel des Projekts ist es letztlich, Methoden und Werkzeuge für die skalenübergreifende Modellierung, Hochleistungsrechner-basierte Simulation und Visualisierung der betrachteten, technisch bzw. in der Natur außerordentlich wichtigen Vorgänge bereitzustellen. Dazu ist ein eng aufeinander abgestimmtes Zusammenwirken von ingenieurwissenschaftlichen Gruppen und Gruppen aus der Informatik erforderlich, wie es im Projekt vorgesehen ist.
NumStoch
Automatic pre-correction of numerical programming tasks
Project type | self-study online |
Funded by | Universität Stuttgart |
Begin | January 2004 |
End | December 2004 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dr.rer.net Stefan Zimmer |
Contact person | Dr.rer.net Stefan Zimmer |
Brief description
Im Rahmen der Übungen zur Vorlesung Numerische und Stochastische Grundlagen der Informatik, die im WS03/04 erstmals angeboten wurde und für Informatiker und Softwaretechniker Pflichtveranstaltung im 3. Semester ist, haben die Teilnehmer Programmieraufgaben zu numerischen Fragestellungen zu bearbeiten und im bestehenden eClaus-System elektronisch einzureichen.
Die Korrektur dieser Programme soll durch eine automatische Vorkorrektur effizienter gestaltet werden, die Ergebnisse der Vorkorrektur sollen so aufbereitet werden, dass sie den Teilnehmern als Ergänzung zu den Kommentaren der Korrektoren zur Verfügung gestellt wird, um mit vertretbarem Aufwand ein aussagekräftigeres individuelles Feedback zu ermöglichen.
Bei einer Nutzung der Programmieraufgaben als Selbstlernmodule ist auch eine ausschließliche Verwendung der automatischen Vorkorrektur möglich, die den Studierenden konkrete Hinweise auf Fehler und Verbesserungsmöglichkeiten liefert.
Mathematical Thinking
Development and enhancement of creative application of mathematical thinking
Project type | Perspektiven der Mathematik an der Schnittstelle von Schule und Universität |
Funded by | VW-Stiftung |
Begin | January 2001 |
End | December 2003 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Prof.Dr. Hans-Joachim Bungartz |
Contact person | Prof.Dr. Hans-Joachim Bungartz |
Co-operation partner | Lehrstuhl für Angewandte Analysis mit Schwerpunkt Numerik (Prof. Dr. Ronald H.W. Hoppe, Universität Augsburg), Lehrstuhl für Algebra und Zahlentheorie (Prof. Dr. Jürgen Ritter, Universität Augsburg) |
Micropumps
DFG: Modeling and Simulation of Micropumps
Project type | German Research Foundation Project |
Funded by | German Research Foundation |
Begin | April 2003 |
End | August 2010 |
Leader | Dr. rer. nat. Miriam Mehl, Univ.-Prof. Dr. Christoph Zenger |
Staff | Dipl.-Inf. Tobias Weinzierl, Dipl.-Tech. Math. Tobias Neckel, Dipl.-Ing. Ioan Lucian Muntean |
Contact person | Dr. rer. nat. Miriam Mehl |
Co-operation partner | Prof.Dr. Peter Hänggi (Physik, Uni Augsburg) |
Brief description
In this project, a new type of micropumps will be examined in detail. The micropump consists of a three-dimensional array of identical pores with periodically but asymmetrically varying diameter, within which a suspension with particles to be sorted is pumped to and fro. The interplay of the flow field and of stochastic thermical forces results - according to the principles of Brownian Motors - in a directed movement of the suspended particles. As the transport direction depends on the dynamically relevant details of the system, in particular for example of the particle size, this hydrodynamical micropump can be used for a continuous and parallel sorting of particles. The Brownian motion of small particles in a time-dependent viscous flow field through a pore with varying diameter represents a challenging and complex hydrodynamical problem. As, however, an as accurate as possible understanding of the underlying physical processes is indispensable for an experimental realization of the micropump, this problem shall be exhaustively examined within this project with the help of a combination of analytical and numerical methods. Special subjects are:
- transport properties of particles in dependence on the parameters particle size, pumping amplitude and frequency, pore shape, etc.,
- Interactions between particles via their volume and hydrodynamical effects,
- efficiency of particle sorting.
MISTI MIT-TUM Project: Combining Model Reduction with Sparse Grids into a Multifidelity Framework for Design, Control and Optimization
Project type | MISTI Germany Project |
Funded by | MISTI |
Begin | January 2012 |
End | September 2013 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Staff | Daniel Butnaru, M.Sc, Benjamin Peherstorfer, M.Sc |
Contact person | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Co-operation partner | Univ.-Prof. Dr. Karen Willcox (MIT) |
Brief description
Many engineering problems require repeated simulations in order to model and optimize a real life system. Such models are typically quite complex and a single solution usually involves a huge computational effort. If a large number of such expensive solutions is needed, the models become impractical and alternatives are sought, with the goal of enabling interactive and highly reliable high-accuracy simulations. Surrogate models mimic the behavior of the simulation model as closely as possible and are at the same time computationally much cheaper to evaluate. While certain surrogate methods exist and perform well for specific problems, their acceptance is slowed by their complex and intrusive manner. They need to be reconsidered for each problem class and are sensitive to the characteristics of the underlying simulation.
In this project we open a collaboration between MIT and TUM in the area of model reduction with an initial focus on non-intrusive methods. These treat the simulation as a black box and, based only on a number of snapshots, deliver an approximation which can than be efficiently queried. The joint work will combine MIT’s model-reduction techniques with TUM’s sparse grid methods with the goal of delivering a novel non-intrusive model reduction technique.
MSV
Multimodal Simulation of Traffic Flow in Large Networks
Project type | Förderprogramm Modellierung und Simulation auf Höchstleistungsrechnern |
Funded by | Landesstiftung Baden-Württemberg |
Begin | October 2004 |
End | January 2007 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dipl.-Inf. Michael Moltenbrey |
Contact person | Prof.Dr. Hans-Joachim Bungartz |
Co-operation partner | Prof.Dr.-Ing. Markus Friedrich (ISVS, Universität Stuttgart) Prof.Dr.-Ing. Wolfram Ressel (ISVS, Universität Stuttgart) |
Brief description
Within this projects methods of traffic simulations (private transport and public transport) are examined. The main focus is on the implementation of the used assignment models (route search, route choice and traffic flow model) on high performance computers, in order to simulate large networks in arguable time.
Simulation of CO2 Sequestration
Project type | Strategic Partnership with the King Abdullah University of Science and Technology (KAUST)] |
Funded by | KAUST |
Begin | 2009 |
End | 2013 |
Leader | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Staff | see Munich Centre of Advanced Computing |
Contact person | Tobias Weinzierl |
Co-operation partner | Prof. Dr. Dr.-Ing. habil. Arndt Bode (Computer Architecture), Prof. Dr. Martin Brokate (Numerical Mathematics and Control Theory), Prof. Dr. Drs. h.c.Karl-Heinz Hoffmann (Numerical Mathematics and Control Theory), Prof. Dr.-Ing. Michael Manhart (Hydromechanics), Prof. Dr. Michael Ulbrich (Mathematical Optimisation) |
Brief description
The goal of this project is to design and investigate novel approaches to modelling and simulation of CO2 sequestration processes, in particular in the context of enhanced oil recovery. The project will involve both fine-grain simulations - with all related aspects from multi-phase schemes via numerical algorithmics to high-performance computing issues - and homogenization approaches to efficiently capture the fine-grain effects on the macro-scale. For that, groups with expertise in flow physics, mathematical modelling, numerical analysis, numerical algorithmics, optimisation and inverse problems, and high-performance computing and HPC systems join their forces. Topics addressed will cover multi-scale modelling and homogenisation, fully-resolved pore-scale simulation, constrained optimisation of the sequestration process, enhanced numerics and parallelisation, and HPC implementation.
Simulation Technology
Project type | Sonderprogramm Akademischer Neuaufbau Südosteuropa |
Funded by | Deutscher Akademischer Austauschdienst (DAAD) |
Begin | September 2004 |
End | September 2004 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dipl.-Ing. Ioan Lucian Muntean |
Contact person | Dipl.-Ing. Ioan Lucian Muntean |
SFB411 - C4
Principles of aerobic biological wastewater treatment
Teilprojekt C4: Einfluss von Biofilmstruktur auf Stofftransportvorgänge in durchströmten Biofilmen
Project type | Subproject of SFB 411 |
Funded by | German Research Foundation (DFG) |
Begin | January 2001 |
End | December 2003 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dipl.-Geophys. Markus Brenk Dipl.-Inf.Univ. Ralf-Peter Mundani Dr.rer.net Stefan Zimmer |
Contact person | Prof.Dr. Hans-Joachim Bungartz |
Co-operation partner | Lehrstuhl für Wassergüte und Abfallwirtschaft (Prof. Dr. Dr. h.c. Peter Wilderer, TU München |
SP1103
Volume-oriented Modeling as a Foundation of Network-based Co-operative Planning Processes in Structural Engineering
Project type | Schwerpunktprogramm 1103 |
Funded by | German Research Foundation |
Begin | October 2000 |
End | October 2006 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dr. Ralf-Peter Mundani |
Contact person | Prof.Dr. Hans-Joachim Bungartz |
Co-operation partner | Prof.Dr. E. Rank (Lehrstuhl für Bauinformatik, TU München) |
Brief description
Die ungebremste Steigerung der Rechen- und Speicherleistung von Arbeitsplatzrechnern sowie neue Konzepte der geometrischen Modellierung und der numerischen Berechnungsverfahren lassen erwarten, dass in weniger als 10 Jahren ein erheblicher Teil der computergestützten Planung im konstruktiven Ingenieurbau nicht mehr an dimensionsreduzierten Modellen, sondern an streng volumenorientierten Modellen durchgeführt werden kann. Dies wird weitreichende Folgen für den gesamten Planungsprozess und insbesondere für die Integration der verschiedenen Teilmodelle mit sich bringen. Hierfür werden in diesem Forschungsvorhaben Konzepte entwickelt und deren Leistungsfähigkeit demonstriert.
vhb - CSE
Development of courses for the Virtuelle Hochschule Bayern
Project type | - |
Funded by | Virtuelle Hochschule Bayern |
Begin | 2001 |
End | open end |
Leader | Prof.Dr. Hans-Joachim Bungartz Prof.Dr. Christoph Zenger |
Staff | Dr.rer.nat. Michael Bader |
Contact person | Dr.rer.nat. Michael Bader |
Brief description
Zum Wintersemester 2001/2002 wurde an der TUM das interdisziplinäre, englischsprachige Master-Programm Computational Science and Engineering (CSE) als Aufbaustudiengang für Natur- und Ingenieurwissenschaftler eingeführt. Als Besonderheit sieht die CSE-Studienordnung vor, dass einzelne Module des Studiengangs auch von Instituten anderer Hochschulen eingebracht werden können, u.a. als virtuelle Lehreinheit im Rahmen der Virtuellen Hochschule Bayern (vhb).
Das Angebot virtueller Lehreinheiten soll gewährleisten, dass teilnehmende Studenten von der CSE-Kompetenz in ganz Bayern profitieren können. Darüber hinaus soll ein hochschulübergreifendes zeitgemäßes Lehrangebot zum Thema High Performance Computing (HPC) und CSE aufgebaut werden, auf das auch andere Universitäten bei Einführung entsprechender Studiengänge oder Vertiefungsfächer zugreifen können.
Im Rahmen dieses Projekts sollen zunächst zwei ausgewählte Module zur virtuellen Vorlesung bzw. virtuellen Übung ausgebaut werden: das Modul "Introduction to Scientific Computing", sowie das Modul "Modelling and Simulation in Continuum Mechanics".
Teaching Simulation Technology Goes Mobile!
HP Technology for Teaching grant
Project type | HP Technology for Teaching grant |
Funded by | Hewlett-Packard |
Begin | July 2004 |
End | May 2006 |
Leader | Prof.Dr. Hans-Joachim Bungartz |
Staff | Dr.rer.net Stefan Zimmer |
Contact person | Dr.rer.net Stefan Zimmer |
As part of HP Technology for Teaching grant, 34 TabletPCs and
accompanying equipment have been donated to improve education in the
field of simulation techniques at the Universität Stuttgart.
They were used in various courses in the faculties
- Computer Science, Electical Engineering, and Information Technology (Institutes: IPVS, VIS)
- Civil and Environmental Engineering (IWS, ISVS)
- Aero- and Astronautics Engineering (IAG)
- Mechanical Engineering (ITT)
- Mathematics and Physics (IANS)
Additionally, they have been successfully used in summer schools:
- Summer School Berlin 2004 Use Transport Data! (Sept. 6-10, 2004)
- Summer School Simulation Technology, Constanta/Romania (Sept. 9-20, 2004)
- Ferienakademie Sarntal/Italy (2004-2008)
Project Abstract & Goals: Simulation has turned out to be one of the key technologies in practically all fields of science and engineering. Today, a successful use of simulation methods typically requires an interdisciplinary approach and involves researchers from mathematics, informatics, and the respective field of application. Hence, the education of students in simulation technology has to reflect this transdisciplinary nature.
This project’s goal was to improve education in simulation technology by connecting courses in the related fields via a homogeneous learning and problem-solving environment by means of mobile technology.
Impacts on Student Learning: Central point in the courses that used the Tablet PCs was to create a homogeneous working environment for the participants with the same set software tools (for numerical computations, for visualization of the results, and for presentation tools) and accompanying documents.
For example, in the course teaching numerics and statistics in the computer science program, interactive exercises using Maple helped to bring “dead mathematics” alive and the classroom group that was selected for these experiment was visibly more committed than the other groups – where the use of the students’ laptops is always handicapped by the different system environments.
In seminars in the mathematics program, as another example, the students were teamed up in pairs to work out their presentation (usually involving MATLAB computations). Here, especially the possibility to combine their final report into a well structured common document was considered as a significant boost in the student’s motivation and is again greatly facilitated by the homogenous environment provided to the participants.
Between the terms, the equipment was heavily in use on summer schools, where we noticed an additional advantage of the homogeneous equipment as it facilitates the connection between summer school courses and courses from the regular program. This results in an advanced level of the presentations involving simulation software and a better flow of summer school’s results back to the home university.
Impacts on Teaching: While the design of interactive elements into a course is always a fairly big effort, we noticed that the set of Tablet PCs facilitated the process in two ways. First, we have to care about only one system which saves a lot of work (and annoyance for students and teachers in case of unforeseen technical problems). Second, and this turned out to be the main advantage of the Tablet PCs over conventional laptop computers, an interesting and unconventional system turns out to motivate students to help voluntarily in the design of the course materials, bringing in a lot of ideas of their own. We found that the equipment was very helpful to remove the “glass wall” in the classrooms between teaching staff and students.
Technology Integration: The Tablet PCs were used in several configurations tailored to the specific course – with Windows or Linux operating systems and a selection of software for scientific computing (especially Maple and MATLAB, but also department-specific special software). The different configurations were stored as images on a server at the IPVS, where a set of Tablet PCs with the required configuration could easily be prepared.
Virtual Arabia
Project type | Strategic Partnership with the King Abdullah University of Science and Technology (KAUST)] |
Funded by | KAUST |
Begin | 2009 |
End | 2013 |
Leader | Tobias Weinzierl |
Staff | see Munich Centre of Advanced Computing |
Contact person | Univ.-Prof. Dr. Hans-Joachim Bungartz |
Co-operation partner | Prof. Dr. Dr.-Ing. habil. Arndt Bode (Computer Architecture), Prof. Gudrun Klinker, Ph.D. (Augmented Reality), Prof. Dr. Ernst Rank (Computation in Engineering), Prof. Dr. Rüdiger Westermann (Computer Graphics & Visualization) |
Brief description
The goal of this project is to develop a virtual environment for the interactive visual exploration of Saudi Arabia. In contrast to virtual globe viewers like Google Earth, this environment will allow the user to look both above and underneath the earth surface in an integrated way. It will, thus, provide interactive means for the visual exploration of 3D geological structures and dynamic seismic processes as well as atmospheric processes and effects or built or planned infrastructure. The specific techniques required to support such functionality will be integrated into a generic infrastructure for visual computing. The project will cooperate with the KAUST 3D Modelling and Visualisation Centre and the KAUST Computational Earth Sciences Centre.