# Difference between revisions of "Introduction to Scientific Computing II - Summer 12"

Jump to navigation
Jump to search

Line 82: | Line 82: | ||

|- | |- | ||

| July 3 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/moldyn_01.pdf Molecular Dynamics (Modelling)]<br>[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/moldyn_02.pdf Time Integration] || July 9 | | July 3 || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/moldyn_01.pdf Molecular Dynamics (Modelling)]<br>[http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/moldyn_02.pdf Time Integration] || July 9 | ||

− | || | + | || [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_C/C_discretisation_tutorial.pdf MD Discretisation] <BR> [http://www5.in.tum.de/lehre/vorlesungen/sci_compII/ss12/tutorial_C/C_discretisation_tutorial_solution.pdf solution]|| |

<!-- | <!-- | ||

|- | |- |

## Revision as of 07:28, 9 July 2012

**Term**- Summer 12
**Lecturer**- Prof. Dr. Michael Bader
**Time and Place**- Tuesday 8:30-10:00, lecture room MI 02.07.023

First Lecture: April 17 **Audience**- Computational Science and Engineering, 2nd semester (Module IN2141)
**Tutorials**- Wolfgang Eckhardt

lecture room MI 02.07.023, time:

Monday 9:00-9:45,

First Tutorial: April 23 **Exam**- written exam
**Semesterwochenstunden / ECTS Credits**- 2V + 1Ü / 4 Credits
**TUMonline**- Scientific Computing II

## Contents

# Announcements

# Exam

# Contents

This course provides a deeper knowledge in two important fields of scientific computing:

- solution of large sparse systems of linear equations:
- Gaussian elemination
- relaxation methods
- multigrid methods
- steepest descent
- conjugate gradient methods

- molecular dynamics simulations
- the physical model
- the mathematical model
- approximations and discretization
- implementational aspects
- parallelisation
- examples of nanofluidic simulations

The course is conceived for computer scientists, mathematicians, engineers, or natural scientists with already a background in the numerical treatment of (partial) differential equations.

# Lecture Notes and Material

## Further Material

Annotated slides for the lecture in summer 2010 /(given by Dr. Tobias Weinzierl) are available from the TeleTeachingTool Lecture Archive

Matlab (together with installation instructions) is available from https://matlab.rbg.tum.de/

# Literature

- William L. Briggs, Van Emden Henson, Steve F. McCormick. A Multigrid Tutorial. Second Edition. SIAM. 2000.
- J.R. Shewchuk. An Introduction to the Conjugate Gradient Method Without the Agonizing Pain (download as PDF). 1994.
- M. Griebel, S. Knapek, G. Zumbusch, and A. Caglar. Numerische Simulation in der Molekulardynamik. Springer, 2004.
- M. P. Allen and D. J. Tildesley. Computer Simulation of Liquids. Oxford University Press, 2003.
- D. Frenkel and B. Smith. Understanding Molecular Simulation from Algorithms to ASpplications. Academic Press (2nd ed.), 2002.
- R. J. Sadus. Molecular Simulation of Fluids; Theory, Algorithms and Object-Orientation. Elsevier, 1999.
- D. Rapaport. The art of molecular dynamics simulation. Camebridge University Press, 1995.