Kilian Röhner, M.Sc.
Jump to navigation
Jump to search

- Address:
- TU München
- Institut für Informatik
- Boltzmannstr. 3
- 85748 Garching b. München
- Office:
- MI 02.05.041
- Email:
- Phone:
- (089) 289 18 638
- Fax:
- (089) 289 18 607
- Office hours:
- by arrangement
Contents
Research interests
- Online Data Mining
- Machine Learning with Big Data
- Sparse Grids Methods
Talks
Teaching
- Lectures/Seminars/Exercises/Practicals:
- Tutorials & Course Assistant Diskrete Strukturen, WT 2016/2017
- Seminar Computational Aspects of Machine Learning, WT 2016/2017
- Proseminar Data Mining, ST 2016
- Seminar Computational Aspects of Machine Learning, WT 2015/2016
- Tutorials & Course Assistant Algorithms of Scientific Computing, ST 2015
- Proseminar Data Mining, ST 2015
- Tutorials & Course Assistant Diskrete Strukturen, WT 2014/2015
- Seminar Computational Aspects of Machine Learning, WT 2014/2015
- Tutorials & Course Assistant Algorithms of Scientific Computing, ST 2014
- Proseminar Data Mining, ST 2014
- Tutor Diskrete Strukturen, WT 2012/2013
- Tutor Diskrete Strukturen, WT 2010/2011
- Summer Schools:
- University preparation courses
- Central organisation Study Introduction Days WT 2012/2013
- Main coordination Study Introduction Days WT 2011/2012
- Tutor Vorkurs Mathematik für Informatiker, WT 2011/2012
- Main coordination Study Introduction Days ST 2011
- Main coordination Study Introduction Days WT 2010/2011
- Tutor Vorkurs Mathematik für Informatiker, WT 2010/2011
- Main coordination Study Introduction Days ST 2010
- Central organisation Study Introduction Days WT 2009/2010
- Tutor Vorkurs Mathematik für Informatiker, WT 2009/2010
- Tutor Study Introduction Days WT 2008/2009
- Tutor Vorkurs Mathematik für Informatiker, WT 2008/2009
Student Projects
Open
If you are interested in doing a student project, please contact me via e-mail and provide some ideas, what the project should be about.
Some topic ideas:
- Parallelization of model refinement techniques for sparse grid classification
- Speeding up matrix factorization with the combigrid technique for SGDE
Running
- V. Bautista Anguiano: Visualization of High Dimensional Models within the SG++ Datamining Pipeline
Guided Research, Fakultät für Informatik, Technische Universität München, since April 2019 - S. Weber: Exploiting the data hierarchy with geometry aware sparse grid for image classification
Bachelor's thesis, Fakultät für Informatik, Technische Universität München, since April 2019 - N. Rösel: Combigrid-based Block Adaptivity for Sparse Grids Density Estimation and Classification
Bachelor's thesis, Fakultät für Informatik, Technische Universität München, since November 2018 - J. Zhang: Grid Coarsening for Classification in SG++
Guided Research, Fakultät für Informatik, Technische Universität München, since October 2018 - N. Bountos: The Sparse Grid Combination Technique for SGOOBL
Guided Research, Fakultät für Informatik, Technische Universität München, since April 2018 - D. Boschko: Generalization and Parallelization of Sherman-Morrison System Matrix Updates for Sparse Grid Density Estimation
IDP, Fakultät für Mathematik, Technische Universität München, since January 2018
Finished
About me
- Ultimate Frisbee
- Music