Difference between revisions of "Michael Rippl, M.Sc. (hons)"
Jump to navigation
Jump to search
(→Talks) |
|||
Line 52: | Line 52: | ||
Übung: [[Numerisches_Programmieren_-_Summer_16 | Numerisches Programmieren SoSe 16]] <br/> | Übung: [[Numerisches_Programmieren_-_Summer_16 | Numerisches Programmieren SoSe 16]] <br/> | ||
− | == Talks == | + | == Publications and Talks == |
− | < | + | <pubsccs3 pubid=670479 person="Rippl"/> |
+ | <!--pubsccs>noheader=1&lang=en&persid=119&utypid=1010,1020,1030,1070,2010,2020,2030,2040,2050,2070,2080,3010,3020,3030,3040</pubsccs>> | ||
− | + | == Talks and Posters == | |
+ | <pubsccs>noheader=1&lang=en&persid=119&utypid=1120,1130,2090,3070</pubsccs> | ||
+ | --> | ||
[[Category:Chair]] | [[Category:Chair]] |
Revision as of 19:21, 26 November 2018
- Address:
- TU München
- Institut für Informatik
- Boltzmannstr. 3
- 85748 Garching b. München
- Office:
- MI 02.05.059
- Email:
- Phone:
- (089) 289 18 629
- Fax:
- (089) 289 18 607
- Office hours:
- Tuesday, Thursday 09:00 - 11:30 during lecture period, by arrangement otherwise
Contents
Project
Eigenvalue Solver for Petaflop Applications: ELPA-AEO
- Improvement of existing algorithms for the standard eigenvalue problem
- Development of new algorithms for the generalized and standard eigenvalue problem
Research Interests
- Numerical Linear Algebra
- Efficient parallel eigenvalue computation
- High Performance Computing
Possible Thesis topics
- Thesis proposal: Additional Parallelization Level for HPC algorithm
- Thesis Proposal: Taskbased approach for a HPC algorithm
- Performance Optimization of Numerical Linear Algebra code
- Parallelization of Numerical Linear Algebra code
- Developement and investigation of algorithms for Numerical Linear Algebra
Secretary of CSE
Responsibilities
- Processing of Master's thesis
- Questions and advice concerning examination regulations
- Requests to the examination board
Teaching
Übung: Numerisches Programmieren SoSe 17
Übung: Parallel Numerics WiSe 17/18
Seminar Projektmanagement WiSe 17/18
Übung: Numerisches Programmieren SoSe 17
Übung: Numerisches Programmieren WiSe 16/17
Übung: Numerisches Programmieren SoSe 16