Difference between revisions of "Parallel Numerics - Winter 13"
Jump to navigation
Jump to search
(update) |
(Drehscheiben link entfernt) |
||
Line 9: | Line 9: | ||
| tumonline = [[https://campus.tum.de/tumonline/lv.detail?clvnr=950114291 reference]] | | tumonline = [[https://campus.tum.de/tumonline/lv.detail?clvnr=950114291 reference]] | ||
}} | }} | ||
− | |||
− | |||
This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern". | This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern". |
Revision as of 16:19, 11 October 2013
- Term
- Winter 13
- Lecturer
- Univ.-Prof. Dr. Thomas Huckle
- Time and Place
- Tuesday, 09:00-10:45, Room 02.07.023
- Audience
- CSE (compulsory course, 3rd semester), Mathematics (Master), Informatics (Master) (Modul IN2012 oder IN2012)
- Tutorials
- Friday, 10:15-11:45, Room 02.07.023
- Exam
- Michael Lieb
- Semesterwochenstunden / ECTS Credits
- SWS (2V + 2Ü) / 5 Credits
- TUMonline
- [reference]
This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern".
Contents
News
19.09.2013 | First lecture will be on 22.10.2013, first tutorial will be on 25.10.2013. |
---|
Contents
- High-Performance Computing
- Performance: Analysis, Modeling, and Measurements
- Basic Linear Algebra Subprograms
- Direct Solution of Sparse Linear Systems
- Iterative Methods for Linear Systems
- Linear Eigenvalue Problems
- Programming in MPI
Course Material
Lecture Notes
Slides
Tutorials
Corrections with new version are marked in red.
Literature & External Links
- Introduction to High Performance Scientific Computing (Eijkhout, Chow, van de Geijn) [free download]
- Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
- Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
- A User's Guide to MPI (Pacheco)
- Iterative Methods for Sparse Linear Systems (Saad)
- Loesung linearer Gleichungssysteme auf Parallelrechnern (Frommer)