# Difference between revisions of "Parallel Numerics - Winter 13"

Term
Winter 13
Lecturer
Univ.-Prof. Dr. Thomas Huckle
Time and Place
Tuesday, 09:15-10:45, Room 02.07.023
Audience
CSE (compulsory course, 3rd semester), Mathematics (Master), Informatics (Master) (Modul IN2012)
Tutorials
Friday, 10:15-11:45, Room 02.07.023, Organization: Michael Lieb
Exam
to be defined
Semesterwochenstunden / ECTS Credits
SWS (2V + 2Ü) / 5 Credits
TUMonline
[reference]

This course will be given in every winter term. The lectures and tutorials are conducted in English, and the course substitutes the German lecture "Numerik auf Parallelrechnern".

## News

14.11.2013 The tutorial on 15.11.2013 will take place.

## Contents

1. High-Performance Computing
2. Performance: Analysis, Modeling, and Measurements
3. Basic Linear Algebra Subprograms
4. Direct Solution of Sparse Linear Systems
5. Iterative Methods for Linear Systems
6. Linear Eigenvalue Problems
7. Programming in MPI

## Course Material

### Tutorials

 Tutorial Topics Worksheet Proposal for solution / code Additional (Slides) 1 Flynn's Taxonomy & MPI Basics sheet1.pdf sheet1_solution.pdf ws1_task6.cpp 2 Numerical Integration & P2P Communication I sheet2.pdf 3 Vector-Vector Operations & P2P Communication II sheet3.pdf 4 Matrix-Matrix-Operations & P2P Communication III sheet4.pdf 5 Parallel Gaussian elimination & Collective Operations sheet5.pdf 6 Tridiagonal Matrices, Hockney/Golub method & Message Tags sheet6.pdf 7 Sparse Matrix-Vector Multiplication & MPI Communicators sheet7.pdf 8 Stationary Methods sheet8.pdf 9 Gradient Methods, Preconditioning & Eigenvalues sheet9.pdf 10 Domain Decomposition sheet10.pdf

1. Introduction to High Performance Scientific Computing (Eijkhout, Chow, van de Geijn) [free download]
2. Numerical Linear Algebra for High-Performance Computers (Dongarra, Duff, Sorensen, van der Vorst)
3. Parallel Algorithms for Matrix Computations (Gallivan, Heath, Ng, Ortega,...)
4. A User's Guide to MPI (Pacheco)
5. Iterative Methods for Sparse Linear Systems (Saad)
6. Loesung linearer Gleichungssysteme auf Parallelrechnern (Frommer)
7. An Introduction To Quantum Computing for Non-Physicists